绝对值第1课时绝对值
- 格式:pptx
- 大小:1.95 MB
- 文档页数:17
1.2.4 绝对值一、创设情境,导入新知甲、乙两辆汽车从同一处O出发,分别向东西方向行驶10 km,达到A,B两处,请在数轴上表示出来并回答问题(规定向东为正方向).(1) 它们行驶的路线相同吗?(2) 它们行驶的路程相等吗?二、小组合作,探究概念和性质知识点一:绝对值合作探究:探究一探究两辆车的行驶路线相同吗?行驶路程相同吗?请用数轴解释(规定向东为正方向).师生活动:学生思考上述问题,在分析问题的过程中得到,表示两辆汽车位置的数是互为相反数,那么进一步思考就会提出一个问题:互为相反数的两个数只有符号不同,那么相同的方面是什么?为了解决这一问题,先请同学们观察两个点的位置关系,并请同学在讨论后说出它们的位置关系.学生小组内交流:位置关系是两个点分别在原点的两侧,两个点到原点的距离相等或者说两个点到原点有相同倍的单位长度.教师引出新课:两个点到原点的距离相等表明相应的有理数具有什么样的性质呢?今天我们就来研究这个问题.绝对值的定义:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作| a |.教材挖掘:例:因为点A表示10,与原点的距离是10 个单位长度,所以| 10 | = 10.师生活动:这样我们就进一步明确一个数是由它的符号和绝对值两部分组成.教师强调:这里的数a可以是正数、负数和0.练一练:1.利用数轴,口答下列问题:师生活动:学生根据绝对值的定义直接求出各数的绝对值,然后观察每个问题中的绝对值符号内的数和相应的结果之间的关系,进行归纳、总结.探究二对于任意数a,你能求出它的绝对值?师生活动:教师引导学生确定数轴上a的位置是需要考虑a的正负性,需要分类讨论.然后共同归纳总结:数学语言:当a > 0时,| a | =_____ ; 当a < 0时,| a | =_____ ; 当a = 0时,| a | =______.总结:一个正数的绝对值是它______;一个负数的绝对值是它的_______;0 的绝对值是_____.典例精析例1 (1) 写出 1,-0.5,−74 的绝对值;(2) 如图,数轴上的点 A ,B ,C ,D 分别表示有理数 a ,b ,c ,d ,这四个数中,绝对值最小的是哪个数?教师活动: 组织学生进行小组讨论,引导学生思考可以从哪些角度来判断绝对值最小的数。
第一讲绝对值绝对值是有理数中非常重要的组成部分,它其中相关的基本思想及数学方法是初中数学学习的基石,希望同学们通过学习、巩固对绝对值的相关知识能够掌握要领。
绝对值的定义及性质绝对值简单的绝对值方程化简绝对值式,分类讨论(零点分段法)绝对值几何意义的使用绝对值的定义:在数轴上,一个数所对应的点与原点的距离称为该数的绝对值,记作|a|。
绝对值的性质:(1)绝对值的非负性,可以用下式表示:|a|≥0,这是绝对值非常重要的性质;a (a>0)(2)|a|= 0 (a=0)(代数意义)-a (a<0)(3)若|a|=a,则a≥0;若|a|=-a,则a≤0;(4)任何一个数的绝对值都不小于这个数,也不小于这个数的相反数,即|a|≥a,且|a|≥-a;(5)若|a|=|b|,则a=b或a=-b;(几何意义)[例1](1) 绝对值大于2.1而小于4.2的整数有多少个?(2) 若ab<|ab|,则下列结论正确的是( )A.a <0,b <0B.a >0,b <0C.a <0,b >0D.ab <0(3) 下列各组判断中,正确的是( )A .若|a|=b ,则一定有a=b B.若|a|>|b|,则一定有a >bC. 若|a|>b ,则一定有|a|>|b|D.若|a|=b ,则一定有a 2=(-b) 2(4) 设a ,b 是有理数,则|a+b|+9有最小值还是最大值?其值是多少?[巩固] 若|x-3|=3-x ,则x 的取值范围是____________[巩固] 有理数a 与b 满足|a|>|b|,则下面哪个答案正确( )A.a >bB.a=bC.a<bD.无法确定[巩固] 绝对值小于3.1的整数有哪些?它们的和为多少?[巩固] 若a >b ,且|a|<|b|,则下面判断正确的是( )A.a <0B.a >0C.b <0D.b >0[巩固] 设a ,b 是有理数,则-8-|a-b|是有最大值还是最小值?其值是多少?[例2](1)(竞赛题)若3|x-2|+|y+3|=0,则xy 的值是多少? (2)若|x+3|+(y-1)2=0,求n xy )4(--的值 【例3】 (1) 已知x 是有理数,且|x|=|-4|,那么x=____(2) 已知x 是有理数,且-|x|=-|2|,那么x=____(3) 已知x 是有理数,且-|-x|=-|2|,那么x=____(4) 如果x ,y 表示有理数,且x ,y 满足条件|x|=5,|y|=2,|x-y|=y-x ,那么x+y的值是多少?【巩固】|x|=4,|y|=6,求代数式|x+y|的值【例4】解方程:(1)05|5|23=-+x (2)|4x+8|=12(3)|3x+2|=-1(4)已知|x-1|=2,|y|=3,且x 与y 互为相反数,求y xy x 4312--的值【例5】 若已知a 与b 互为相反数,且|a-b|=4,求12+++-ab a b ab a 的值【例6】有理数a ,b ,c 在数轴上对应点如图所示,化简|b+a|+|a+c|+|c-b|【巩固】已知a ,b ,c 在数轴上的位置如图所示,化简|a|+|c-b|+|a-c|+|b-a|【巩固】数a ,b 在数轴上对应的点如图所示,是化简|a+b|+|b-a|+|b|-|a-|a||【例7】若abc ≠0,则||||||c c b b a a ++的所有可能值【巩固】有理数a ,b ,c ,d ,满足1||-=abcd abcd ,求dd c c b b a a ||||||||+++的值 【例8】化简|x+5|+|2x-3|【巩固】化简:|2x-1|C B 0A绝对值练习一一、填空题:1、││= ,│-│= 。
1.2.4 绝对值(第1课时绝对值的概念及性质)分层作业1.(2022•邵阳中考)2022-的绝对值是()A.12022B.2022-C.2022D.12022-2.(2022•绥化中考)化简1||2-,下列结果中,正确的是()A.12B.12-C.2D.2-3.下列说法中,正确的是()A.|8|-是求8-的相反数B.|8|-表示的意义是数轴上表示8-的点到原点的距离C.|8|-表示的意义是数轴上表示8-的点到原点的距离是8-D.以上都不对4.实数a、b、c、d在数轴上对应点的位置如图所示,则这四个数中,绝对值最大的数是()A.a B.b C.c D.d5.在检测一批足球时,随机抽取了4个足球进行检测,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看,最接近标准的是()A.B.C.D.6.在3-,0.3,0,13这四个数中,绝对值最小的数是()A.3-B.0.3C.0D.1 37.2022-的相反数与4-的绝对值的和是()A.2022B.4C.2026-D.20268.下列各组数中,互为相反数的是()A .|1|+与|1|-B .(1)--与1C .|(3)|--与|3|--D .|2|-+与(2)+-9.(2021•大庆中考)下列说法正确的是()A .||x x<B .若|1|2x -+取最小值,则0x =C .若11x y >>>-,则||||x y <D .若|1|0x +…,则1x =-10.已知非零有理数a ,b 满足||a a =,||b b =-,||||a b >用数轴上的点来表示a ,b 正确的是()A .B .C .D .11.若|1|a -与|2|b -互为相反数,则a b +的值为( )A .3B .3-C .0D .3或3-12.如图,数轴的单位长度为1,如果点A 、B 表示的数的绝对值相等,那么点A 表示的数是 .13.若|1||5|||0a b c -+-+=,则(+3)(+5)(2)a b c +的值为()A .200-B .0C .200D .以上答案都不正确14.阅读下列材料:我们知道||x 的几何意义是数轴上数x 的对应点与原点之间的距离,即|||0|x x =-,也可以说||x 表示数轴上数x 与数0对应点之间的距离.这个结论可以推广为12||x x -表示数轴上数1x 与数2x 对应点之间的距离.例1:已知||2x =,求x 的值.解:在数轴上与原点距离为2的点表示的数为2-和2,x \的值为2-或2.例2:已知|1|2x -=,求x 的值.解:在数轴上与1对应的点的距离为2的点表示的数为3和1-,x \的值为3或1-.仿照材料中的解法,求下列各式中x 的值.(1)||3x =.(2)|(2)|4x --=.15.当式子|1||2|x x ++-取最小值时,相应的x 的取值范围是 ,最小值是 .16.|8||1||3||5|x x x x ++++-+-的最小值等于()A .10B .11C .17D .21。