实验14_醋酸纤维素薄膜电泳法分离蛋白质
- 格式:ppt
- 大小:240.50 KB
- 文档页数:13
醋酸纤维薄膜电泳分离血清蛋白质一、实验目的:掌握电泳的一般原理和醋酸纤维薄膜电泳的操作技术;二、实验原理:1、电泳:带电粒子在电场中向着与其电荷相反的方向泳动。
2、分类:按支持介质、电场强度、技术特点等分类。
支持介质:自由界面电泳;区带电泳:滤纸、醋纤薄膜、凝胶等。
3、基本原理---电荷效应:F=Eq,f=6лrηv。
匀强电场中,F=f,v=Eq/6лrη。
在同一电泳条件下,混合物中不同组分将因其r和q的差异而具有不同的移动速度。
因此,电泳一定的时间(t),就可以互相分离。
通常使用“迁移率”(m)表示不同物质具有不同移动速度的特性。
m=V/E指在单位电场强度下带电颗粒的移动速度。
4、影响电泳的因素:内在因素:样品本身所带净电荷、分子大小和形状。
外界因素:电场强度、缓冲液、支持介质。
5、血清蛋白的分离:血清蛋白各组分pI≤7.5,缓冲液pH=8.6,净电荷为负电荷,向正极泳动。
由于各蛋白质成分的pI不同,所带电荷量q不同,加上分子半径大小r和形状的差别,依V=Eq/6πrη 可知,不同蛋白质成分向正极泳动的速度不同,电泳一定时间就可相互分离(Δd=Δv·t)。
分离后的蛋白质须经显色才能检测鉴定,通常用氨基黑10B 将血清蛋白质显色。
三、实验步骤:1.泡膜洗净手,戴乳胶手套,取薄膜,于毛面距一端1.5 cm 处用铅笔轻画一直线。
小心将膜浮于巴比妥缓冲液上,待下面湿润后再将膜完全浸入,浸泡1小时。
2.仪器准备检查电源,接好电线(不通电),注意正负极。
加巴比妥缓冲液于电泳槽内,调整水平。
3.点样取出泡好的薄膜,用滤纸吸去多余的缓冲液。
毛面向上,于毛面膜的一端画线处点样,注意点样量适当。
待样品渗入膜内后,将点样面翻转朝向下方(以防电泳时薄膜表面蒸发干燥),置于电泳槽的支架上,点样端放在负极。
4.电泳盖上电泳槽盖平衡 5 分钟。
然后检查电源正负极无误后通电,E= 15V/cm,电泳 60分钟后断电。
醋酸纤维薄膜电泳分离血清蛋白实验报告醋酸纤维薄膜电泳分离血清蛋白实验报告引言:血清蛋白是人体内一类重要的生物大分子,对于维持人体正常生理功能具有重要作用。
因此,对血清蛋白的研究一直备受关注。
本实验旨在利用醋酸纤维薄膜电泳技术,对血清蛋白进行分离和鉴定,以期获得关于血清蛋白的更深入了解。
实验方法:1. 实验仪器和试剂准备本实验所需仪器包括电泳装置、电源、薄膜电泳槽等。
试剂包括醋酸纤维、缓冲液、血清样品等。
2. 实验步骤(1)制备醋酸纤维薄膜:将醋酸纤维溶液均匀涂布在玻璃板上,待干燥后剥离,得到醋酸纤维薄膜。
(2)制备电泳槽:将醋酸纤维薄膜固定在电泳槽中,保证其平整并与电极接触良好。
(3)样品准备:将待测血清样品离心,取上清液作为实验样品。
(4)电泳操作:将实验样品均匀涂布在醋酸纤维薄膜上,接通电源进行电泳,设定适当的电压和时间。
(5)染色和观察:将电泳结束后的薄膜进行染色处理,然后观察薄膜上蛋白带的分布情况。
实验结果:经过实验,我们观察到在醋酸纤维薄膜上形成了多个蛋白带,这些蛋白带代表了血清中不同种类的蛋白质。
通过比较不同样品的蛋白带分布情况,我们可以发现不同样品中蛋白质的种类和含量存在差异。
讨论:1. 醋酸纤维薄膜电泳技术的优势相比于传统的凝胶电泳技术,醋酸纤维薄膜电泳具有以下优势:操作简单、分辨率高、分离效果好、重复性好等。
因此,该技术在血清蛋白分离和鉴定中具有广泛应用前景。
2. 血清蛋白的研究意义血清蛋白是人体内一类重要的生物大分子,对于维持人体正常生理功能具有重要作用。
通过对血清蛋白的研究,可以了解人体内不同蛋白质的种类和含量,从而为临床医学、生物医学研究等领域提供重要的参考依据。
结论:本实验利用醋酸纤维薄膜电泳技术成功分离和鉴定了血清蛋白,观察到了不同蛋白质在薄膜上的分布情况。
该实验结果为进一步研究血清蛋白的功能和生理意义提供了基础数据。
醋酸纤维薄膜电泳技术的应用前景广阔,有望在血清蛋白研究领域发挥重要作用。
醋酸纤维薄膜电泳分离血清蛋白实验结果一、前言醋酸纤维薄膜电泳是一种常见的分离血清蛋白的方法,它能够将复杂的血清样品中的蛋白质分离出来,从而便于进行后续的研究。
本文将详细介绍醋酸纤维薄膜电泳分离血清蛋白实验结果。
二、实验方法1. 样品制备将血清样品加入到离心管中,并进行离心处理,去除其中的颗粒物和红细胞等杂质。
然后取出上清液,进行下一步处理。
2. 薄膜电泳将制备好的样品加入到电泳槽中,并在两端接上电极。
然后通过调节电场强度和时间等参数,使得不同分子量的蛋白质在电场作用下向不同方向移动,并最终被分离开来。
3. 银染将分离好的样品进行银染处理,使得其中存在的蛋白质能够被显色。
然后观察显色效果,并对其进行记录和分析。
三、实验结果经过以上实验步骤,我们成功地得到了血清样品中的蛋白质分离结果。
具体结果如下:1. 蛋白质谱图通过醋酸纤维薄膜电泳分离出来的血清蛋白质谱图如下图所示:(图片略)从图中可以看出,我们成功地将血清样品中的蛋白质分离成了不同的条带,并且这些条带在电泳过程中向不同方向移动,最终被分离开来。
2. 蛋白质种类通过对分离出来的蛋白质进行银染处理后,我们可以看到其中存在多种不同种类的蛋白质。
具体包括:(1)白蛋白(2)球蛋白(3)免疫球蛋白(4)转铁蛋白等。
3. 调整实验参数对结果的影响在实验过程中,我们还尝试了调整一些实验参数,以观察其对结果的影响。
具体包括:(1)电场强度:当电场强度较大时,不同分子量的蛋白质能够更快地向两端移动,并且更容易被分离开来。
但是,如果电场强度过大,也会导致蛋白质的断裂和聚集,从而影响分离效果。
(2)电泳时间:当电泳时间较长时,不同分子量的蛋白质能够更充分地被分离开来,并且条带也更加清晰。
但是,如果电泳时间过长,也会导致蛋白质的断裂和聚集,从而影响分离效果。
四、结论通过以上实验结果的观察和分析,我们可以得出以下结论:1. 醋酸纤维薄膜电泳是一种有效的血清蛋白质分离方法。
生物化学实验醋酸纤维素薄膜电泳法分离血清蛋白质一、实验目的掌握醋酸纤维薄膜电泳法分离蛋白质的原理和方法二、实验原理蛋白质是两性电解质。
在pH值小于其等电点的溶液中,蛋白质为正离子,在电场中向阴极移动;在pH值大于其等电点的溶液中,蛋白质为负离子,在电场中向阳极移动。
血清中含有数种蛋白质,它们所具有的可解离基团不同,在同一pH的溶液中,所带净电荷不同,故可利用电泳法将它们分离。
血清中含有白蛋白、α-球蛋白、β-球蛋白、γ-球蛋白等,各种蛋白质由于氨基酸祖坟、立体构象、相对分子质量、等电点及形状不同,在电场中迁移速度不同。
由表可知,血清中5种蛋白质的等电点大部分低于pH值7.0,所以在剪下,分别用0.4mol/L NaOH溶液浸洗下来,进行比色,测定其相对含量。
也可以将染色后的薄膜直接用光密度计扫描,测定其相对含量。
肾病、弥漫性肝损害、肝硬化、原发性肝癌、多发性骨髓瘤、慢性炎症、妊娠等都可以使白蛋白下降。
肾病时α1、α2、β球蛋白升高,γ-球蛋白降低。
肝硬化时α2、β-球蛋白降低,而α1、γ-球蛋白升高。
三、实验器材1、醋酸纤维薄膜(2cm*8cm,厚度120μm)2、人血清;3、烧杯及培养皿数只;4、点样器;5、竹镊子;6、玻璃棒;7、电吹风;8、试管六只;9、恒温水浴锅;10、电泳槽;11、直流稳压电泳仪;12、7220型分光光度计;13、剪刀四、实验试剂1、巴比妥-巴比妥钠缓冲液:取两个大烧杯,分别称取巴比妥钠和巴比妥溶解于500ml 蒸馏水中;2、染色液,可反复使用;3、漂洗液:取乙醇45ml ,冰醋酸10ml ,混匀;4、浸出液:0.4mol/L NaOH 溶液;5、透明液:取冰醋酸25ml 、无水乙醇75ml ,混匀。
五、实验操作1、准备和点样取一条醋酸纤维薄膜,浸入缓冲液中,完全浸透后,用镊子轻轻取出,将薄膜无光泽的一面向上,平放在干净滤纸上,再放一张干净滤纸吸取多余的缓冲液;用玻棒蘸取少量血清,涂在点样器上,然后轻轻于距纤维薄膜一端1.5cm 处接触,样品即呈一条状突于纤维膜上。
醋酸纤维素薄膜电泳分离及定量测定血清蛋白成分一、实验目的1(掌握醋酸薄膜电泳的原理及操作。
2(定量测定人血清中各种蛋白质的相对百分含量。
3(掌握分光光度计的原理及操作二、实验原理采用醋酸纤维薄膜为支持物的电泳方法,叫做醋酸纤维素薄膜电泳。
醋酸纤维素,是纤维素的羟基乙酰化所形成的纤维素醋酸酯。
将它溶于有机溶剂(如:丙酮、氯仿、氯乙烯、乙酸乙酯等)后,涂抹成均匀的薄膜则成为醋酸纤维素薄膜。
该膜具有均一的泡沫状的结构,有强渗透性,厚度约为120μm。
醋酸纤维素薄膜电泳是近年来推广的一种新技术。
它具有微量、快速、简便、分辨力高、对样品无拖尾和吸附现象等优点。
该技术已广泛应用于血清蛋白、糖蛋白、脂蛋白、结合球蛋白、同功酶的分离和测定等方面。
目前,醋酸纤维薄膜电泳趋向于代替纸电泳。
四、试剂和器材(一)试剂(1)新鲜血清——无溶血现象。
(2)巴比妥——巴比妥钠缓冲液(pH8.6,0.07M,离子强度0.06):称取巴比妥1.66g和巴比妥钠12.76g,溶于少量蒸馏水后定容1 000ml。
?(3)染色液:称取氨基黑10B 0.5g,加入蒸馏水40ml,甲醇50ml和冰乙酸10ml,混匀,在具塞试剂瓶内贮存。
?(4)漂洗液:取95,乙醇45ml,冰乙酸,ml和蒸馏水50ml。
混匀,在具塞试剂瓶内贮存。
[易挥发、密封]?(5)透明液[易挥发、密封]甲液—取冰乙酸15ml和无水乙醇85ml,混匀,装入试剂瓶内,塞紧瓶塞,备用。
乙液—取冰乙酸25ml和无水乙醇75ml,混匀,装入试剂瓶内,塞紧瓶塞,备用。
(6)液体石腊。
(7)0.4mol氢氧化钠溶液:称取16g氢氧化钠(分析纯)用少量蒸馏水溶解后定容到1000ml。
(二)器材(1)醋酸纤维素薄膜—2?×8?(浙江黄岩曙光化工厂等处生产)(2)培养皿(直径9,10?) (3)血色素吸管或点样器(4)直尺和铅笔 (5)镊子(6)电泳仪和电泳槽 (7)万用电表(8)玻璃板(8?×12?) (9)普通滤纸(10)试管和试管架 (11)吹风机(12)单面刀片 (13)擦镜纸(14)吸量管(2ml、5ml)和吸量管架 (15)722型分光光度计五、实验仪器介绍(1)722型分光光度计?测量原理分光光度法测量的理论依据是伯郎—比耳定律:当容液中的物质在光的照射和激发下,产生了对光吸收的效应。
醋酸纤维薄膜电泳分离血清蛋白实验报告醋酸纤维薄膜电泳分离血清蛋白实验报告引言:血清蛋白是人体内一种重要的生物大分子,它在维持人体正常生理功能中起着至关重要的作用。
因此,对血清蛋白的研究一直备受科学家的关注。
本实验旨在利用醋酸纤维薄膜电泳技术,对血清蛋白进行分离,以期进一步了解血清蛋白的组成和功能。
实验方法:1. 准备样品:从健康人体中提取血清样品,将其离心,得到血清上清液。
2. 制备醋酸纤维薄膜:将醋酸溶液倒入玻璃容器中,将玻璃容器放置在恒温槽中,使醋酸溶液温度保持在60℃左右。
然后,将玻璃容器从恒温槽中取出,迅速浸入冷水中,使醋酸溶液迅速凝固形成醋酸纤维薄膜。
3. 实验操作:将醋酸纤维薄膜放置在电泳槽中,加入足够的电泳缓冲液,使醋酸纤维薄膜完全浸泡其中。
然后,将血清样品均匀涂抹在醋酸纤维薄膜上,并连接电源进行电泳分离。
4. 电泳条件:设置电泳电压和时间,一般情况下,电泳电压为100V,电泳时间为30分钟。
5. 实验结果:观察电泳结束后的醋酸纤维薄膜,记录血清蛋白的分离情况。
实验结果与讨论:经过电泳分离后,观察到醋酸纤维薄膜上出现了多个带状条纹,这些条纹代表了不同的血清蛋白组分。
根据条纹的迁移距离和形状,我们可以初步判断血清蛋白的分子量和电荷特性。
通过对实验结果的分析,我们可以发现,血清蛋白主要可以分为白蛋白、球蛋白、半胱氨酸蛋白和β-球蛋白等几个主要组分。
白蛋白是血清蛋白中含量最高的成分,迁移速度最快;球蛋白次之,迁移速度较慢;半胱氨酸蛋白和β-球蛋白迁移速度最慢。
这些血清蛋白的分离结果与其分子量和电荷特性有关。
白蛋白分子量较小,电荷较弱,因此迁移速度最快;球蛋白分子量较大,电荷较强,迁移速度较慢;半胱氨酸蛋白和β-球蛋白分子量更大,电荷更强,迁移速度最慢。
结论:本实验利用醋酸纤维薄膜电泳技术成功地对血清蛋白进行了分离,并初步了解了血清蛋白的组成和特性。
通过观察醋酸纤维薄膜上的带状条纹,我们可以对血清蛋白的分子量和电荷特性进行初步判断。
醋酸纤维薄膜电泳分离血清蛋白实验报告实验室报告
题目:醋酸纤维薄膜电泳分离血清蛋白实验报告
一、实验目的
本实验旨在使用醋酸纤维薄膜电泳技术分离血清蛋白,并分析其分离效果。
二、实验原理
醋酸纤维薄膜电泳技术是一种利用薄膜作为电泳载体,在交流电场中将带电微粒体分离的方法。
其分离原理在于不同电动力学直径的带电微粒体在局部电场中受到的电离流和离子机动力学的影响不同,导致粒径较小的微粒体在电场中移动的速度较快,粒径较大的微粒体则移动较慢,从而实现了分离。
三、实验步骤
1.将5μL血清样品加入凝胶载体中。
2.在醋酸纤维薄膜电泳仪中进行样品电泳分离,设置电场参数:电压300 V,电泳时间30分钟。
3.将分离后的血清蛋白样品涂在聚丙烯酰胺凝胶上进行电泳定
量和分析。
四、实验结果
通过电泳定量和分析,我们可以得到血清蛋白的分离效果。
我
们发现,血清蛋白样品在30分钟内可以被醋酸纤维薄膜电泳技术
有效地分离,分离效果良好,明显区分了不同种类的蛋白。
五、结论
醋酸纤维薄膜电泳技术是一种非常有效的血清蛋白分离方法。
通过本次实验,我们得到了良好的分离效果和明确的蛋白种类区分。
这种技术具有高分离效率、高通量、简单易行等特点,可以
在临床医学、药物研发、生命科学等领域得到广泛应用。
此外,在使用醋酸纤维薄膜电泳技术分离血清蛋白时,需要注意控制一定的电场参数,以确保实验效果。
醋酸纤维薄膜电泳分离血清蛋白实验报告
为了研究血清蛋白的分离和鉴定,我们进行了醋酸纤维薄膜电泳分离血清蛋白
的实验。
本实验旨在通过醋酸纤维薄膜电泳技术,对血清蛋白进行有效的分离和检测,为进一步的蛋白质研究提供可靠的技术支持。
实验方法:
1. 样品制备,取血清样品,并进行蛋白质浓缩处理。
2. 醋酸纤维薄膜电泳,将处理后的血清样品加载到醋酸纤维薄膜电泳仪中,进
行电泳分离。
3. 凝胶染色,对电泳分离后的蛋白进行凝胶染色处理。
4. 结果分析,观察电泳结果,分析血清蛋白的分离情况。
实验结果:
经过醋酸纤维薄膜电泳分离,我们成功地将血清蛋白分离成多个明显的条带,
这表明醋酸纤维薄膜电泳技术能够有效地实现血清蛋白的分离。
通过凝胶染色后,我们观察到不同条带对应的蛋白质成分,为后续的蛋白质鉴定和研究奠定了基础。
实验结论:
醋酸纤维薄膜电泳技术能够有效地分离血清蛋白,为血清蛋白的研究提供了重
要的技术手段。
通过本实验的分离和分析,我们成功地获取了血清蛋白的组成信息,为进一步的蛋白质研究提供了可靠的数据支持。
总结:
本实验通过醋酸纤维薄膜电泳技术,成功地分离了血清蛋白,并对其进行了初
步的鉴定分析。
醋酸纤维薄膜电泳技术具有分离效率高、操作简便等优点,适用于
血清蛋白等复杂蛋白质混合物的分离和分析。
希望本实验的结果能够为相关领域的研究工作提供一定的参考价值。
醋酸纤维素薄膜电泳分离血清蛋白原理和实验方法一、原理醋酸纤维薄膜电泳是用醋酸纤维素薄膜作为支持物的电泳方法。
带电颗粒在电场力作用下,向着与其电性相反的电极移动的现象称为电泳。
由于各种蛋白质都有特定的等电点,如将蛋白质置于pH值低于其等电点的溶液中,则蛋白质将带正电荷而向负极移动。
反之,则向正极移动。
因为蛋白质分子在电场中移动的速度与其带电量、分子的形状及大小有关,所以,可用电泳法将不同的蛋白质分离开来。
血清中含有多种蛋白质,它们的等电点都在pH 7.5以下。
将血清放于pH 8.6的缓冲液电泳时,所有的血清蛋白都带有负电荷,在电场中将向正极移动。
由于各种血清蛋白在相同pH时所带电荷数量不等,分子颗粒大小不一,因而泳动速度不同,经电泳被分离开来。
血清蛋白质的等电点和分子量见下表。
本实验以醋酸纤维素薄膜(简称CAM)为支持物分离血清中的不同蛋白质。
它是一种良好的呈均一泡沫状疏松薄膜,厚约120μm具有一定的吸水性。
二、实验材料、仪器及试剂1.材料:健康人血清或鸡血清2.仪器:电泳仪电泳槽3.试剂:(1)醋酸纤维素薄膜;(2)pH8.6 巴比妥缓冲液(离子强度0.06~0.07):取巴比妥0.83克,巴比妥钠6.38克,加蒸馏水加热溶解后,定容至500ml。
(3)染色液:取氨基黑10 B 0.5克,溶于50ml甲醇中,再加冰醋酸10ml,蒸馏水40ml混匀。
(4)漂洗液:95%乙醇4.5ml,冰醋酸 5ml,蒸馏水50ml混合。
(5)透明液:95%乙醇80ml,冰醋酸20ml混合。
三、实验方法1.准备薄膜:将切割整齐的2.5×6cm的薄膜条,浸入巴比妥缓冲液中浸透后,取出,用吸水纸吸去多余缓冲液。
2.点样:仔细辩认薄膜的粗糙面与光滑面,在粗糙面距离薄膜一端1.5cm处,用铅笔轻轻划一条直线。
用玻棒蘸上血清样品,涂于盖玻片边缘处(边缘长度应比膜条宽度窄),将此边缘按压在直线上。
注意:样品应点在薄膜的粗糙面一侧。
血清蛋白质醋酸纤维素薄膜电泳实验报告
标题:血清蛋白质醋酸纤维素薄膜电泳
一、实验目的:
1.掌握醋酸纤维素薄膜电泳的原理和方法。
2.了解血清蛋白质的组成和分布。
二、实验原理:
醋酸纤维素薄膜电泳是一种常用的分离和鉴定蛋白质的方法。
其原理基于不同蛋白质分子在电场中的迁移率不同,从而实现对蛋白质的分离。
这种电泳方法具有快速、简便、分辨率高等优点。
三、实验步骤:
1.准备试剂和器材:醋酸纤维素薄膜、电极缓冲液、血清样
品、水浴锅、电泳仪、计时器、移液管、剪刀、镊子等。
2.加样:将适量血清样品用移液管加到醋酸纤维素薄膜上,
注意不要形成气泡。
3.电泳:将加好样的醋酸纤维素薄膜放入电泳仪中,接通电
源,开始电泳。
记录电泳时间和电流强度。
4.染色:电泳结束后,将醋酸纤维素薄膜取出,放入染色液
中染色。
5.观察和拍照:观察染色后的醋酸纤维素薄膜,记录各蛋白
带的颜色和位置。
用相机拍摄结果。
四、实验结果:
五、实验结论:
通过本次实验,我们成功地分离了血清中的各种蛋白质,并观察到了它们在醋酸纤维素薄膜上的分布情况。
实验结果表明,血清中含有白蛋白、α1-球蛋白、α2-球蛋白、β-球蛋白和γ-球蛋白等多种蛋白质。
这种方法有助于我们进一步了解血清蛋白质的组成和分布,为临床诊断和治疗提供参考。
同时,本实验也锻炼了我们实际操作的能力和对醋酸纤维素薄膜电泳原理的理解。