北京市海淀区2019_2020学年八年级数学上学期月考试题无答案
- 格式:docx
- 大小:142.96 KB
- 文档页数:11
北京市海淀区 2021—2021 学年八年级上学期期末考试数学试题及答案数学2021 . 1班级姓名成绩一.选择题〔本大题共30 分;每题 3 分〕在以下各题的四个备选答案中;只有一个是正确的.请将正确选项前的字母填在表格中相应的地点.题号12345678910答案1. 第 24 届冬天奥林匹克运动会;将于2022年02月04日~2022年02月20日在中华人民共和国北京市和张家口市结合举行. 在会徽的图案设计中;设计者经常利用对称性进行设计;以下四个图案是历届会徽图案上的一部份图形;此中不是轴对称图形的是〔〕..2.以下运算中正确的选项是〔〕A .x2x8x 4B.a a2 a 2C.a32a633D.3a9a3.石墨烯是从石墨资猜中剥离出来;由碳原子构成的只有一层原子厚度的二维晶体。
石墨烯(Graphene) 是人类强度最高的物质;据科学家们测算;要施加55 牛顿的压力才能使米长的石墨烯断裂。
此中0.000001 用科学记数法表示为〔〕A.1 106B.10 107C.10 5D.1 1064.在分式x〕中 x 的取值范围是〔x2A .x2 B. x2C.x 0D .x25.以下各式中;从左到右的变形是因式分解的是〔〕A .2a22a12a(a 1)1B .(x y)(x y)x2y2C.x26x5(x5)(x1) D .x2y2(x y) 22xy 6.如图;△ABE≌△ACD;以下选项中不可以被证明的等式是〔〕A.AD AE B.DB AE AC. DF EFD.DB ECD EFB C7.以下各式中;计算正确的选项是22B. 98102(1002)(1002) 9996A . (15x y 5 xy ) 5xy 3x 5 yC.x13D. (3x1)(x2)3x2x2 x3x 38. 如图;D C 90 ;E 是 DC 的中点; AE 均分DAB ; DEA 28 ;那么ABE 的度数是〔〕A DA.62B. 31C. 28D.25EB C9.在等边三角形ABC中;D, E分别是BC, AC 的中点;点P 是线段AD 上的一个动点;当△ PCE 的周长最小时;P 点的地点在〔〕AA .△ABC的重心处B .AD的中点处P E C.A点处D.D点处B D Ca a 1 ;假定a1;b;那么以低等式中不正确的选项是〔〕10.定义运算b11.bA .a b1B. b c b c C. (a)2(a22a)D.a12/14二.填空题〔本大题共24 分;每题 3 分〕11.如图△ ABC ;在图中作出边 AB 上的高 CD .AB C12.分解因式:x2 y 4xy 4y.13.点M (2,3) 对于x轴对称的点的坐标是.14.假如等腰三角形的两边长分别为 4 和 8;那么它的周长为.15.计算:4(a2b 1 )28ab2.16.如图;在△ABC中;AB AC ; AB 的垂直均分线MN 交 AC 于 D 点.假定 BD 均分ABC ;那么A.AMD NB C17.教材中有以下一段文字:小明经过对上述问题的再思虑;提出:两边分别相等且这两边中较大边所对的角相等的两个三角形全等 . 请你判断小明的说法. 〔填“正确〞或“不正确〞〕18.如图 1;△ ABC 中;AD 是∠ BAC 的均分线;假定 AB=AC+CD ;那么∠ ACB 与∠ ABC 犹如何的数目关系?小明经过察看剖析;形成了以下解题思路:AAB DC BD CE图 1图 2如图 2;延伸 AC 到 E;使 CE=CD ;连结 DE .由 AB=AC+CD ;可得 AE=AB .又由于 AD 是∠BAC 的均分线;可得△ABD≌△ AED;进一步剖析就能够获得∠ACB 与∠ ABC 的数目关系.(1〕判断△ ABD 与△ AED 全等的依照是 ______________________________________ ;(2〕∠ ACB 与∠ ABC 的数目关系为: __________________________________.三.解答题〔本大题共18 分;第 19 题 4 分;第20题4分;第21题10分〕19.分解因式:(a 4b)(a b)3abD E20.如图;DE∥BC;点A为DC的中点;点B, A, E共A线;求证: DE CB.BC21.解以下方程:〔 1〕5x2 3 ;〔 2〕x11. x2x x 1x2x2四.解答题〔本大题共14 分;第 22题4 分;第 23、 24 题各 5 分〕22.a b 2;求(11 )ab的值.a b (a b)24ab23. 如图;在等边三角形ABC 的三边上;分别取点 D , E, F ;使得△ DEF 为等边三角形;求证:AD BE CF.ADFB E C24. 列方程解应用题:老舍先生曾说“天堂是什么样子;我不知晓;但从我的生活经验去判断;北平之秋即是天堂。
2019-2020年八年级上月考数学试卷含答案解析
一、选择题
1.下列计算正确的是()
A.x3?x4=x7B.x?x7=x7C.b4?b4=2b8D.a3+a3=2a6
2.下列各式中与x3n+1相等的是()
A.(x 3
)n+1B.(x n+1)3C.x3?x n?x D.x?x3n
3.计算:(﹣2)2003
?等于()
A.﹣2 B.2 C.﹣D.
4.下列关于两个三角形全等的说法:
①三个角对应相等的两个三角形全等;
②三条边对应相等的两个三角形全等;
③有两角和其中一个角的对边对应相等的两个三角形全等;
④有两边和一个角对应相等的两个三角形全等.
正确的说法个数是()
A.1个B.2个C.3个D.4个
5.下列式子的变形,不是因式分解的有()
①(x+1)(x﹣2)=x2﹣x﹣2;②x2﹣2x+1=x(x﹣2)+1;
③x2﹣9y2=(x+3y)(x﹣3y);④x2y﹣2xy+y=(x2﹣2x+1)y.
A.1个B.2个C.3个D.4个
6.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC.将仪器上的点A与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ 的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有
∠QAE=∠PAE.则说明这两个三角形全等的依据是()。
北京市八年级上学期数学12月月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2020七下·厦门期末) 下列各点中,在第二象限的是()A . (-1,1)B . (1,0)C . (1,-1)D . (-1,-1)2. (2分)下列线段中不能组成三角形的是()A . 2,2,1B . 2,3,5C . 3,3,3D . 4,3,53. (2分) (2019八上·鄞州期中) 下列命题是真命题的是()A . 三角形的三条高线相交于三角形内一点B . 等腰三角形一边上的中线、高线、角平分线互相重合C . 一条直线去截另两条直线所得的同位角相等D . 三角形一条边的两个顶点到这条边上的中线所在直线的距离相等.4. (2分) (2019八下·南山期中) 下列不等式变形中,错误的是()A . 若a≥b,则a+c≥b+cB . 若a+c≥b+c,则a≥bC . 若a≥b,则ac2≥bc2D . 若ac2≥bc2 ,则a≥b5. (2分) (2017八下·桂林期末) 如图,在Rt△ABC中,∠C=90°,如果AB=5,BC=3,那么AC等于()A .B . 3C . 46. (2分) (2019八上·潘集月考) 下列说法错误的是().A . 关于某条直线对称的两个三角形一定全等.B . 到线段两端点距离相等的点有无数个.C . 等腰三角形的中线、高、角平分线三线合一.D . 轴对称图形的对称轴是对称点所连线段的垂直平分线.7. (2分) (2018八上·番禺期末) 已知等腰三角形的一边长为4,另一边长为8,则它的周长是().A .B .C .D . 或8. (2分) (2019八上·邯郸期中) 如图,点是外的一点,点分别是两边上的点,点P关于的对称点Q恰好落在线段上,点P关于的对称点R落在的延长线上,若,则线段的长为()A .B .C .D . 79. (2分)如图,△ABC中,∠C=90°,AB=5,AC=4,且点D,E分别是AC,AB的中点,若作半径为3的⊙C,则下列选项中的点在⊙C外的是()A . 点BB . 点DC . 点E10. (2分)已知两点A(5,6)、B(7,2),先将线段AB向左平移一个单位,再以原点O为位似中心,在第一象限内将其缩小为原来的得到线段CD,则点A的对应点C的坐标为()A . (2,3)B . (3,1)C . (2,1)D . (3,3)二、填空题 (共10题;共10分)11. (1分) (2019七上·简阳期末) 班主任老师的想法:七年级我班50名同学,想参加元旦长跑活动的同学就举手,当举手的人数和没有举手的人数之差是一个奇数时,全班就不参加;如果是偶数,全班就参加元旦长跑活动.请思考:老师的想法________(填“参加”或“不参加”).12. (1分) (2019九上·北京开学考) 如图,延长正方形ABCD的边BC至E,使CE=AC,则∠AFC=________.13. (1分) (2018八上·海曙期末) 点A(2,3)关于x轴的对称点是________。
2019-2020学年北京市海淀区八年级(上)期末数学试卷一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的1.(3分)若有意义,则x的取值范围是()A.x>3B.x<3C.x≠﹣3D.x≠32.(3分)若分式的值为0,则x=()A.0B.C.2D.73.(3分)下列等式中,从左到右的变形是因式分解的是()A.9﹣a2=(3+a)(3﹣a)B.x2﹣2x=(x2﹣x)﹣xC.D.y(y﹣2)=y2﹣2y4.(3分)把分式的分子与分母各项系数化为整数,得到的正确结果是()A.B.C.D.5.(3分)在下列运算中,正确的是()A.(x﹣y)2=x2﹣y2B.(a+2)(a﹣3)=a2﹣6C.(a+2b)2=a2+4ab+4b2D.(2x﹣y)(2x+y)=2x2﹣y26.(3分)如图,在△ABC中,∠ABC=50°,∠BAC=20°,D为线段AB的垂直平分线与直线BC的交点,连结AD,则∠CAD=()A.40°B.30°C.20°D.10°7.(3分)把化为最简二次根式,得()A.B.C.D.8.(3分)下列各图是由若干个正方形和长方形组成的,其中能表示等式(a+b)2=a2+2ab+b2的是()A.B.C.D.9.(3分)学完分式运算后,老师出了一道题:化简.小明的做法是:原式=;小亮的做法是:原式=(x+3)(x﹣2)+(2﹣x)=x2+x﹣6+2﹣x=x2﹣4;小芳的做法是:原式==1.对于这三名同学的做法,你的判断是()A.小明的做法正确B.小亮的做法正确C.小芳的做法正确D.三名同学的做法都不正确10.(3分)如图,从一个大正方形中裁去面积为30cm2和48cm2的两个小正方形,则余下部分的面积为()A.78 cm2B.cm2C.cm2D.cm2二、填空题(本题共24分,每小题3分)11.(3分)已知是二次根式,则x的取值范围是.12.(3分)化简:=.13.(3分)实验表明,人体内某种细胞的形状可近似地看作球体,它的直径约为0.00000156m,数字0.00000156用科学记数法表示为.14.(3分)请在“”的位置处填入一个整式,使得多项式x2+能因式分解,你填入的整式为.15.(3分)若x2+2x=1,则2x2+4x+3的值是.16.(3分)若x2+mx+16是完全平方式,则m的值是.17.(3分)如图,在Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,且DA=DB.若CD=3,则BC=.18.(3分)我们用[m]表示不大于m的最大整数,如:[2]=2,[4.1]=4,[3.99]=3.(1)=;(2)若,则x的取值范围是.三、解答题(本题共46分,第19题8分,第20-24题,每小题8分,第25题6分,第26题7分)解答应写出文字说明、演算步骤或证明过程19.(8分)计算:(1)﹣()﹣1+(π﹣3)0;(2)(x+2y)2﹣2x(3x+2y)+(x+y)(x﹣y).20.(5分)化简求值:,其中a=2.21.(5分)解方程:﹣1=.22.(5分)如图,在△ABC中,D是边AB上一点,E是边AC的中点,作CF∥AB交DE的延长线于点F.(1)证明:△ADE≌△CFE;(2)若∠B=∠ACB,CE=5,CF=7,求DB.23.(5分)列分式方程解应用题用电脑程序控制小型赛车进行200m比赛,“畅想号”和“逐梦号”两赛车进入了最后的决赛.比赛中,两车从起点同时出发,“畅想号”到达终点时,“逐梦号”离终点还差20m.从赛后数据得知两车的平均速度相差1m/s.求“畅想号”的平均速度.24.(5分)老师在黑板上书写了一个代数式的正确计算结果,随后用手遮住了原代数式的一部分,如图:(1)求被手遮住部分的代数式,并将其化简;(2)原代数式的值能等于﹣1吗?请说明理由.25.(6分)已知△ABC三条边的长度分别是,记△ABC的周长为C△ABC.(1)当x=2时,△ABC的最长边的长度是(请直接写出答案);(2)请求出C△ABC(用含x的代数式表示,结果要求化简);(3)我国南宋时期数学家秦九韶曾提出利用三角形的三边长求面积的秦九韶公式:S=.其中三角形边长分别为a,b,c,三角形的面积为S.若x为整数,当C△ABC取得最大值时,请用秦九韶公式求出△ABC的面积.26.(7分)如图1,E是等边三角形ABC的边AB所在直线上一点,D是边BC所在直线上一点,且D与C不重合,若EC=ED.则称D为点C关于等边三角形ABC的反称点,点E称为反称中心.在平面直角坐标系xOy中,(1)已知等边三角形AOC的顶点C的坐标为(2,0),点A在第一象限内,反称中心E在直线AO上,反称点D在直线OC上.①如图2,若E为边AO的中点,在图中作出点C关于等边三角形AOC的反称点D,并直接写出点D的坐标:;②若AE=2,求点C关于等边三角形AOC的反称点D的坐标;(2)若等边三角形ABC的顶点为B(n,0),C(n+1,0),反称中心E在直线AB上,反称点D在直线BC上,且2≤AE<3.请直接写出点C关于等边三角形ABC的反称点D的横坐标t的取值范围:(用含n的代数式表示).2019-2020学年北京市海淀区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的1.【解答】解:∵分式有意义,∴x﹣3≠0,解得:x≠3.故选:D.2.【解答】解:由题意,得3x﹣6=0且2x+1≠0,解得x=2,故选:C.3.【解答】解:A、9﹣a2=(3+a)(3﹣a),从左到右的变形是因式分解,符合题意;B、x2﹣2x=(x2﹣x)﹣x,不符合题意因式分解的定义,不合题意;C、x+2无法分解因式,不合题意;D、y(y﹣2)=y2﹣2y,是整式的乘法,不合题意.故选:A.4.【解答】解:==,故选:B.5.【解答】解:A、(x﹣y)2=x2﹣2xy+y2,故本选项错误;B、(a+2)(a﹣3)=a2﹣a﹣6,故本选项错误;C、(a+2b)2=a2+4ab+4b2,故本选项正确;D、(2x﹣y)(2x+y)=4x2﹣y2,故本选项错误;故选:C.6.【解答】解:∵D为线段AB的垂直平分线与直线BC的交点,∴DA=DB,∴∠DAB=∠ABC=50°,∴∠CAD=∠DAB﹣∠BAC=50°﹣20°=30°.故选:B.7.【解答】解:,故选:A.8.【解答】解:对于等式(a+b)2=a2+2ab+b2,可看作边长为(a+b)的正方形由一个边长为a的正方形、一个边长为b的正方形和一个长宽为a、b的矩形组成.故选:B.9.【解答】解:小明的作法是错误的,错误在于第二个等号后面的分子书写错误,忘记加括号了,分子部分正确书写是(x+3)(x﹣2)﹣(x﹣2);小亮的作法是错误的,错误在于第一个等号后面的部分,此处应该是通分,而小亮直接把分母漏掉了;小芳的作法是正确的;故选:C.10.【解答】解:从一个大正方形中裁去面积为30cm2和48cm2的两个小正方形,大正方形的边长是+=+4,留下部分(即阴影部分)的面积是(+4)2﹣30﹣48=8=24(cm2).故选:D.二、填空题(本题共24分,每小题3分)11.【解答】解:依题意得:x﹣3≥0,解得x≥3.故答案是:x≥3.12.【解答】解:==;故答案为:.13.【解答】解:0.000 001 56=1.56×10﹣6.故答案为:1.56×10﹣6.14.【解答】解:填入的整式为﹣1,(答案不唯一)故答案为:(﹣1),(﹣1),﹣1.15.【解答】解:∵x2+2x=1,∴原式=2(x2+2x)+3=2+3=5.故答案为:516.【解答】解:∵x2+mx+16是一个完全平方式,∴x2+mx+16=(x±4)2,=x2±8x+16.∴m=±8,故答案为:±8.17.【解答】解:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD=3,∵AD=BD,∴AE=BE,在Rt△AED与Rt△ACD中,∴Rt△AED≌Rt△ACD(HL),∴AE=AC,∴AB=2AC,∴∠B=30°,∴∠CAD=30°,∴AD=BD=2CD=6,∴BC=9.18.【解答】解:(1)∵[m]表示不大于m的最大整数,∴=1;(2)∵,∴6≤3+<7,解得9≤x<16.故x的取值范围是9≤x<16.故答案为:9≤x<16.三、解答题(本题共46分,第19题8分,第20-24题,每小题8分,第25题6分,第26题7分)解答应写出文字说明、演算步骤或证明过程19.【解答】(1)解:原式=2﹣2+1=2﹣1;(2)解:原式=x2+4xy+4y2﹣6x2﹣4xy+x2﹣y2=﹣4x2+3y2.20.【解答】解:原式====,当a=2时,原式=.21.【解答】解:方程两边乘(x+1)(x﹣1),得:x(x+1)﹣(x+1)(x﹣1)=2.解得:x=1,检验:当时x=1,得(x+1)(x﹣1)=0,因此x=1不是原分式方程的解,所以原分式方程无解.22.【解答】(1)证明:∵E是边AC的中点,∴AE=CE.又∵CF∥AB,∴∠A=∠ACF,∠ADF=∠F,在△ADE与△CFE中,∴△ADE≌△CFE(AAS).(2)解:∵△ADE≌△CFE,CF=7,∴CF=AD=7,又∵∠B=∠ACB,∴AB=AC,∵E是边AC的中点,CE=5,∴AC=2CE=10.∴AB=10,∴DB=AB﹣AD=10﹣7=3.23.【解答】解:设“畅想号”的平均速度为xm/s.由题意,得.解得x=10.经检验,x=10是原方程的解,且符合题意.答:“畅想号”的平均速度为10m/s.24.【解答】解:(1)设被手遮住部分的代数式为A,由题意得:(A﹣)÷=,A﹣=,A﹣=,A=+=﹣=;(2)不能,理由:假设原代数式的值能等于﹣1,则=﹣1,解得:x=0,但是,当x=0时,原代数式中作为除数的式子=0,无意义,∴原代数式的值不能等于﹣1.25.【解答】解:(1)当x=2时,=,==3,4﹣=4﹣2=2,∴△ABC的最长边的长度是3,故答案为:3;(2)由根式有意义可得即﹣1≤x≤4.可得,.所以C△ABC==.(3)由(2)可得,且﹣1≤x≤4.由于x为整数,且要使C△ABC取得最大值,所以x的值可以从大到小依次验证.当x=4时,三条边的长度分别是,但此时,不满足三角形三边关系.所以x≠4.当x=3时,三条边的长度分别是2,2,3,满足三角形三边关系.故此时C△ABC取得最大值为7,符合题意.不妨设a=2,b=2,c=3,得==.26.【解答】解:(1)①如图,过点E作EF⊥OC,垂足为F,∵EC=ED,EF⊥OC∴DF=FC,∵点C的坐标为(2,0),∴AO=CO=2,∵点E是AO的中点,∴OE=1,∵∠AOC=60°,EF⊥OC,∴∠OEF=30°,∴OE=2OF=1∴OF=,∵OC=2,∴CF==DF,∴DO=1∴点D坐标(﹣1,0)故答案为:(﹣1,0)②∵等边三角形AOC的两个顶点为O(0,0),C(2,0),∴OC=2.∴AO=OC=2.∵E是等边三角形AOC的边AO所在直线上一点,且AE=2,∴点E与坐标原点O重合或点E在边OA的延长线上,如图,若点E与坐标原点O重合,∵EC=ED,EC=2,∴ED=2.∵D是边OC所在直线上一点,且D与C不重合,∴D点坐标为(﹣2,0)如图,若点E在边OA的延长线上,且AE=2,∵AC=AE=2,∴∠E=∠ACE.∵△AOC为等边三角形,∴∠OAC=∠ACO=60°.∴∠E=∠ACE=30°.∴∠OCE=90°.∵EC=ED,∴点D与点C重合.这与题目条件中的D与C不重合矛盾,故这种情况不合题意,舍去,综上所述:D(﹣2,0)(2)∵B(n,0),C(n+1,0),∴BC=1,∴AB=AC=1∵2≤AE<3,∴点E在AB的延长线上或在BA的延长线上,如图点E在AB的延长线上,过点A作AH⊥BC,过点E作EF⊥BD∵AB=AC,AH⊥BC,∴BH=CH=,∵AH⊥BC,EF⊥BD∴AH∥EF∴若AE=2,AB=1∴BE=1,∴=1∴BH=BF=∴CF==DF∴D的横坐标为:n﹣﹣=n﹣2,若AE=3,AB=1∴BE=2,∴=∴BF=2BH=1∴CF=DF=2∴D的横坐标为:n﹣1﹣2=n﹣3,∴点D的横坐标t的取值范围:n﹣3<t≤n﹣2,如图点E在BA的延长线上,过点A作AH⊥BC,过点E作EF⊥BD,同理可求:点D的横坐标t的取值范围:n+2≤t<n+3,综上所述:点D的横坐标t的取值范围:n﹣3<t≤n﹣2或n+2≤t<n+3.故答案为:n﹣3<t≤n﹣2或n+2≤t<n+3.。
北京市海淀区2019-2020八年级上学期期末数学试卷一、选择题(本大题共10小题,共30.0分)1.下列图案是轴对称图形的是().A. B.C. D.2.用科学记数法表示−0.0000031,结果是()A. −3.1×10−4B. 3.1×10−6C. −0.31×10−5D. −3.1×10−63.下列运算的结果为a6的是()A. a3+a3B. (a3)3C. a3⋅a3D. a12÷a24.下列分解因式正确的是()A. x2−4=(x−4)(x+4)B. 2x3−2xy2=2x(x+y)(x−y)C. x2+y2=(x+y)2D. x2−2x+1=x(x−2)+15.如图,在△ABC中,AB=AC.在AB、AC上分别截取AP,AQ,使AP=AQ.再分别以点P,Q为圆心,以大于12PQ的长为半径作弧,两弧在∠BAC内交于点R,作射线AR,交BC于点D.若BC=6,则BD的长为()A. 2B. 3C. 4D.56.一个长方形的面积为2x2y−4xy3+3xy,长为2xy,则这个长方形的宽为()A. x−2y2+32B. x−y3+32C. x−2y+3D. xy−2y+327.如图,AD是△ABC的角平分线,DE⊥AB于E,DF⊥AC于F,则有下列结论:(1)△ADE≌△ADF;(2)△BDE≌△CDF;(3)△ABD≌△ACD;(4)AE=AF;(5)DE=DF;(6)BD=CD;(7)∠ADE=∠ADF,错误的个数有()A. 1个B. 2个C. 3个D. 4个8.如图,在正方形ABCD中,点E、F在边BC、CD上,且CE=CF.则图中全等的三角形的对数为()A. 6B. 7C. 8D. 99.分式1a+1+1a(a+1)的计算结果是().A. 1a+1B. aa+1C. 1aD. a+1a10.一个大长方形ABCD按如图方式分割成九个四边形,且只有标号为①和②的两个正好为正方形,其余均为长方形.若已知小正方形①的周长为12,小长方形③的周长为2m,小长方形④的周长为2n,且3(m+n)+mn=61,这个大长方形ABCD的面积()A. 60B. 70C. 80D. 90二、填空题(本大题共8小题,共16.0分)11.如果分式x(x−2)x−2的值为0,则x的值是______.12.计算(−x2)2⋅(2xy2)2=______ .13.如图,要测量河两岸相对两点A、B间的距离,在河岸BM上截取BC=CD,作DE⊥BD交AC的延长线于点E,垂足为点D,测得ED=3,CD=4,则A、B两点间的距离等于______.14.两点之间________叫做这两点之间的距离.15.在平面直角坐标系xOy中,如果AB//y轴,点A的坐标为(−3,4),A、B两点的距离为5,那么点B的坐标为____________。
2019-2020学年度第一学期初二数学月考八年级上册10月份月考数学试卷及答案解析一、选择题(每题3分,共10题,满分30分)1.如图所示,图中不是轴对称图形的是()A.B.C.D.2.下列各组线段中能围成三角形的是()A.2cm,4cm,6cm B.8cm,4cm,6cmC.14cm,7cm,6cm D.2cm,3cm,6cm3.已知△ABC的三个内角∠A,∠B,∠C满足关系式∠B+∠C=3∠A,则此三角形()A.一定有一个内角为45°B.一定有一个内角为60°C.一定是直角三角形D.一定是钝角三角形4.工人师傅经常利用角尺平分一个任意角,如图所示,∠AOB是一个任意角,在边OA,OB上分别取OD=OE,移动角尺,使角尺两边相同的刻度分别与D,E重合,这时过角尺顶点P的射线OP就是∠AOB的平分线.你认为工人师傅在此过程中用到的三角形全等的判定方法是这种作法的道理是()A.SAS B.ASA C.AAS D.SSS(第4题)(第5题)(第6题)5.如图,点P是AB上任意一点,∠ABC=∠ABD,还应补充一个条件,才能推出△APC≌△APD.从下列条件中补充一个条件,不一定能推出△APC≌△APD的是()A.BC=BD B.AC=AD C.∠ACB=∠ADB D.∠CAB=∠DAB6.如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=42°,则∠P的度数为()A.44°B.66°C.96°D.92°7.一个正多边形的每一个外角都等于30°,则这个多边形的边数是()A.6B.8C.9D.128.如图,直线l1,l2,l3表示三条公路.现要建造一个中转站P,使P到三条公路的距离都相等,则中转站P可选择的点有()A.一处B.二处C.三处D.四处(第8题)(第9题)(第10题)9.△ABC中,AB=AC=12厘米,∠B=∠C,BC=9厘米,点D为AB的中点.如果点P在线段BC上以v厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.若点Q 的运动速度为3厘米/秒,则当△BPD与△CQP全等时,v的值为()A.2.5B.3C.2.25或3D.1或510.如图,在△ABC中,AD、CF分别是∠BAC、∠ACB的角平分线,且AD、CF交于点I,IE⊥BC于E,下列结论:①∠BIE=∠CID;②S=IE(AB+BC+AC);③BE=(AB+BC﹣AC);④AC=AF+DC.其△ABC中正确的结论是()A.①②③B.①②④C.②③④D.①②③④二、填空题(每题3分,共6题,满分18分)11.如图是两个全等三角形,图中的字母表示三角形的边长,则∠1等于多少度?.(第11题)(第12题)(第13题)12.如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2=.13.如图,∠B=∠DEF,AB=DE,若要以“ASA”证明△ABC≌△DEF,则还缺条件.14.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M、N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是.(第14题)(第15题)(第16题)15.如图,已知四边形ABCD中,对角线BD平分∠ABC,∠ADB=32°,∠BCD+∠DCA=180°,那么∠ACD为度.16.如图,在Rt△ABC和Rt△BCD中,∠BAC=∠BDC=90°,BC=8,AB=AC,∠CBD=30°,BD=4,M,N分别在BD,CD上,∠MAN=45°,则△DMN的周长为.三、解答题(共8小题,共72分)17.(8分)在△ABC中,∠B=∠A+10°,∠C=∠B+10°,求△ABC各内角的度数.18.(8分)如图,已知AD=AE,∠B=∠C,求证:AB=AC.19.(8分)已知等腰三角形的一边等于4,另一边等于9,求它的周长.20.(8分)如图,在平面直角坐标系中,A(﹣1,5),B(﹣1,0),C(﹣4,3)(1)在图中作出△ABC关于y轴的对称图形△A1B1C1;(2)求出△A1B1C1的面积;(3)将△ABC向左平移2个单位,再向上平移2个单位得△A2B2C2,请直接写出点A2,B2,C2的坐标.21.(8分)如图,AD平分∠EAC,DE⊥AB于E,DF⊥AC于F,BD=CD,(1)求证:BE=FC;(2)已知AC=20,BE=4,求AB的长.22.(10分)已知D、E分别为△ABC中AB、BC上的动点,直线DE与直线AC相交于F,∠ADE 的平分线与∠B的平分线相交于P,∠ACB的平分线与∠F的平分线相交于Q.(1)如图1,当F在AC的延长线上时,求∠P与∠Q之间的数量关系.(2)如图2,当F在AC的反向延长线上时,求∠P与∠Q之间的数量关系(用等式表示).23.(10分)等腰Rt△ABC中,CA=CB,∠ACB=90°,点O是AB的中点.(1)如图1,求证:CO=BO;(2)如图2,点M在边AC上,点N在边BC延长线上,MN﹣AM=CN,求∠MON的度数;(3)如图3,AD∥BC,OD∥AC,AD与OD交于点D,Q是OB的中点,连接CQ、DQ,试判断线段CQ与DQ的关系,并给出证明.24.(12分)已知:在平面直角坐标系中A(0,a)、B(b,0),且满足4(a﹣2)2+(b﹣4)2=0,点P(m,m)在线段AB上(1)求A、B的坐标;(2)如图1,若过P作PC⊥AB交x轴于C,交y轴交于点D,求的值;(3)如图2,以AB为斜边在AB下方作等腰直角△ABC,CG⊥OB于G,设I是∠OAB的角平分线与OP的交点,IH⊥AB于H.请探究的值是否发生改变,若不改变请求其值;若改变请说明理由.月考数学试卷参考答案与解析一、选择题(每题3分,共10题,满分30分)1.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.【解答】解:A、有四条对称轴,是轴对称图形,故本选项错误;B、有三条对称轴,是轴对称图形,故本选项错误;C、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,故本选项正确;D、有二条对称轴,是轴对称图形,故本选项错误.故选:C.2.【分析】根据三角形三边关系定理:三角形两边之和大于第三边进行分析即可.【解答】解:A、2+4=6,不能组成三角形,故此选项错误;B、4+6>10,能组成三角形,故此选项正确;C、6+7<14,不能组成三角形,故此选项错误;D、2+3<6,不能组成三角形,故此选项错误;故选:B.3.【分析】由三角形内角和定理知.【解答】解:∵∠B+∠C+∠A=180°,∠B+∠C=3∠A,∴∠B+∠C+∠A=4∠A=180°,∴∠A=45°.故选:A.4.【分析】由三边对应相等得△DOF≌△EOF,即由SSS判定两个三角形全等.做题时要根据已知条件结合判定方法逐个验证.【解答】解:依题意知,在△DOF与△EOF中,,∴△DOF≌△EOF(SSS),∴∠AOF=∠BOF,即OF即是∠AOB的平分线.故选:D.5.【分析】根据题意,∠ABC=∠ABD,AB是公共边,结合选项,逐个验证得出正确结果.【解答】解:A、补充BC=BD,先证出△BPC≌△BPD,后能推出△APC≌△APD,故正确;B、补充AC=AD,不能推出△APC≌△APD,故错误;C、补充∠ACB=∠ADB,先证出△ABC≌△ABD,后能推出△APC≌△APD,故正确;D、补充∠CAB=∠DAB,先证出△ABC≌△ABD,后能推出△APC≌△APD,故正确.故选:B.6.【分析】根据等腰三角形的性质得到∠A=∠B,证明△AMK≌△BKN,得到∠AMK=∠BKN,根据三角形的外角的性质求出∠A=∠MKN=42°,根据三角形内角和定理计算即可.【解答】解:∵PA=PB,∴∠A=∠B,在△AMK和△BKN中,,∴△AMK≌△BKN,∴∠AMK=∠BKN,∵∠MKB=∠MKN+∠NKB=∠A+∠AMK,∴∠A=∠MKN=42°,∴∠P=180°﹣∠A﹣∠B=96°,故选:C.7.【分析】任何一个多边形的外角都等于360°,用360除以每一个外角的度数就是这个多边形的边数.【解答】解:360÷30=12(条)故选:D.8.【分析】到三条相互交叉的公路距离相等的地点应是三条角平分线的交点.把三条公路的中心部位看作三角形,那么这个三角形两个内角平分线的交点以及三个外角两两平分线的交点都满足要求.【解答】解:满足条件的有:(1)三角形两个内角平分线的交点,共一处;(2)三个外角两两平分线的交点,共三处.故选:D.9.【分析】分两种情况讨论:①若△BPD≌△CPQ,根据全等三角形的性质,则BD=CQ=6厘米,BP=CP=BC=×9=4.5(厘米),根据速度、路程、时间的关系即可求得;②若△BPD≌△CQP,则CP=BD=6厘米,BP=CQ,得出,解得:v=3.【解答】解:∵△ABC中,AB=AC=12厘米,点D为AB的中点,∴BD=6厘米,若△BPD≌△CPQ,则需BD=CQ=6厘米,BP=CP=BC=×9=4.5(厘米),∵点Q的运动速度为3厘米/秒,∴点Q的运动时间为:6÷3=2(s),∴v=4.5÷2=2.25(厘米/秒);若△BPD≌△CQP,则需CP=BD=6厘米,BP=CQ,∴,解得:v=3;∴v的值为:2.25或3,故选:C.10.【分析】如图,作IM⊥AB于M,IN⊥AC于N.根据角平分线的性质定理以及全等三角形的判定和性质一一判断即可;【解答】解:如图,作IM⊥AB于M,IN⊥AC于N.∵AD 、CF 分别是∠BAC 、∠ACB 的角平分线,IM ⊥AB ,IN ⊥AC ,IE ⊥BC ,∴IE =IM =IN ,∴S △ABC =S △ABI +S △ACI +S △BCI =•AB •IM +•AC •IN +•BC •IE =•IE •(AB +BC +AC ),故②正确,∵∠ABC +∠ACB +∠BAC =180°,∠IBE =∠ABC ,∠IAC =∠BAC ,∠ICA =∠ACB , ∴∠IBE +∠IAC +∠ICA =90°,∵∠CID =∠IAC +∠ICA =90°﹣∠IBE =∠BIE ,故①正确,∵BI =BI ,IM =IE ,∴Rt △BIM ≌Rt △BIE (HL ),∴BE =BM ,同法可证:AM =AN ,CN =CE ,∴BE =(AB +BC ﹣AC ),故③正确,④只有在∠ABC =60°的条件下,AC =AF +DC ,故④错误,故选:A .二、填空题(每题3分,共6题,满分18分)11.【分析】根据图形和亲弟弟三角形的性质得出∠1=∠C ,∠D =∠A =54°,∠E =∠B =60°,根据三角形内角和定理求出即可.【解答】解:∵△ABC ≌△DEF ,∴∠1=∠C ,∠D =∠A =54°,∠E =∠B =60°,∴∠1=180°﹣∠E ﹣∠F =66°,故答案为:66°.12.【分析】根据四边形内角和为360°可得∠1+∠2+∠A +∠B =360°,再根据直角三角形的性质可得∠A+∠B=90°,进而可得∠1+∠2的和.【解答】解:∵四边形的内角和为360°,直角三角形中两个锐角和为90°∴∠1+∠2=360°﹣(∠A+∠B)=360°﹣90°=270°.∴∠1+∠2=270°.故答案为:270°.13.【分析】利用全等三角形的判定方法结合ASA得出即可.【解答】解:当添加∠A=∠D时,可证明△ABC≌△DEF;理由:在△ABC和△DEF中,∴△ABC≌△DEF(ASA).故答案为:∠A=∠D.14.【分析】根据角平分线的性质得到DE=DC=4,根据三角形的面积公式计算即可.【解答】解:作DE⊥AB于E,由基本尺规作图可知,AD是△ABC的角平分线,∵∠C=90°,DE⊥AB,∴DE=DC=4,∴△ABD的面积=×AB×DE=30,故答案为:30.15.【分析】延长BA和BC,过D点作DE⊥BA于E点,过D点作DF⊥BC于F点,根据BD是∠ABC的平分线可得出DE=DF,过D点作DG⊥AC于G点,进而得出CD为∠ACF的平分线,设∠ABD=x,则∠ABC=2x,∠EAD=∠ABD+∠ADB=x+32,再根据∠BAE+∠BCF=360°,即可得出结论.【解答】解:延长BA和BC,过D点作DE⊥BA于E点,过D点作DF⊥BC于F点,过D点作DG⊥AC于G点,∵BD是∠ABC的平分线,∴DE=DF,又∵∠BCD+∠DCA=180°,∠BCD+∠DCF=180°,∴∠ACD=∠DCF,∴DG=DF=DE∴AD为∠EAC的平分线,设∠ABD=x,则∠ABC=2x,∠EAD=∠ABD+∠ADB=x+32,∵∠BAE+∠BCF=360°,∴2(x+32)+∠BAC+∠ACB+2∠ACD=360,2x+64+180﹣2x+2∠ACD=360,∠ACD=58°.故答案为:58°.16.【分析】将△ACN绕点A逆时针旋转,得到△ABE,由旋转得出∠NAE=90°,AN=AE,∠ABE =∠ACD,∠EAB=∠CAN,求出∠EAM=∠MAN,根据SAS推出△AEM≌△ANM,根据全等得出MN=ME,求出MN=CN+BM,解直角三角形求出DC,即可求出△DMN的周长=BD+DC,代入求出即可.【解答】解:将△ACN绕点A逆时针旋转,得到△ABE,如图:由旋转得:∠NAE=90°,AN=AE,∠ABE=∠ACD,∠EAB=∠CAN,∵∠BAC=∠D=90°,∴∠ABD+∠ACD=360°﹣90°﹣90°=180°,∴∠ABD+∠ABE=180°,∴E,B,M三点共线,∵∠MAN=45°,∠BAC=90°,∴∠EAM=∠EAB+∠BAM=∠CAN+∠BAM=∠BAC﹣∠MAN=90°﹣45°=45°,∴∠EAM=∠MAN,在△AEM和△ANM中,,∴△AEM≌△ANM(SAS),∴MN=ME,∴MN=CN+BM,∵在Rt△BCD中,∠BDC=90°,∠CBD=30°,BD=4,CD=BD×tan∠CBD=4,∴△DMN的周长为DM+DN+MN=DM+DN+BM+CN=BD+DC=4+4,故答案为:4+4.三、解答题(共8小题,共72分)17.【分析】根据三角形的内角和定理,结合已知条件解方程即可.【解答】解:∵∠B=∠A+10°,∠C=∠B+10°,又∵∠A+∠B+∠C=180°,∴∠A+(∠A+10°)+(∠A+10°+10°)=180°,3∠A+30°=180°,3∠A=150°,∠A=50°.∴∠B=60°,∠C=70°.18.【分析】根据AAS推出△ABE≌△ACD,根据全等三角形的性质得出即可.【解答】证明:在△ABE和△ACD中,∴△ABE≌△ACD(AAS),∴AB=AC.19.【分析】此题先要分类讨论,已知等腰三角形的一边等于4,另一边等于9,先根据三角形的三边关系判定能否组成三角形,若能则求出其周长.【解答】解:当4为腰,9为底时,∵4+4<9,∴不能构成三角形;当腰为9时,∵9+9>4,∴能构成三角形,∴等腰三角形的周长为:9+9+4=22.20.【分析】(1)分别作出点A,B,C关于y轴的对称点,再顺次连接即可得;(2)由图形得出A1B1=5,这条边上的高为3,根据面积公式计算可得.(3)分别作出点A,B,C向左平移2个单位,再向上平移2个单位得到的对应点,再顺次连接即可得.【解答】解:(1)如图所示,△A1B1C1即为所求.(2)△A1B1C1的面积为×5×3=;(3)如图所示,△A2B2C2即为所求,其中点A2的坐标为(﹣3,7),B2的坐标为(﹣3,2),C2的坐标为(﹣6,5).21.【分析】(1)根据角平分线性质和全等三角形的性质即可解决问题;(2)由△ADE≌△ADF(AAS),推出AF=AE,由BE=CF=4,AC=20,推出AF=AE=20﹣4=16即可解决问题;【解答】(1)证明:∵AD平分∠BAC,DE⊥AB于E,DF⊥AC于F,∴DE=DF,∠DEB=∠DFC=90°,在Rt△BED和Rt△CFD中,∴Rt△BED≌Rt△CFD(HL),∴BE=CF;(2)解:在△ADE和△ADF中,,∴△ADE≌△ADF(AAS),∴AF=AE,∵BE=CF=4,AC=20,∴AF=AE=20﹣4=16,∴AB=AE﹣BE=16﹣4=12.22.【分析】(1)先根据三角形内角和定理和三角形外角的性质求出2∠P=∠DEB,2∠Q=∠CEF,即可得出答案;(2)先根据三角形内角和定理和三角形外角的性质求出∠P=∠BED,∠Q=90°+∠FEC,根据邻补角互补求出即可.【解答】解:(1)∵DP是∠ADF的平分线,BP是∠ABC的平分线,∴∠ADF=2∠ADP,∠ABC=2∠ABP,∵∠ADF=∠ABC+∠DEB,∠ADP=∠P+∠ABP,∴2∠ADP=2∠P+2∠ABP,∴∠DEB=2∠P,同理∠CEF=2∠Q,∵∠DEB=∠CEF,∴2∠P=2∠Q,∴∠P=∠Q;(2)∠P+∠Q=180°,理由是:∵由(1)知:2∠P=∠BED,∴∠P=∠BED,∵FQ是∠CFE的平分线,CQ是∠ACB的平分线,∴∠QFC=∠EFC,∠QCF=ACB,∵∠FEC+∠EFC+∠ECF=180°,∴∠EFC+∠ECF=180°﹣∠FEC,∴∠Q=180°﹣(∠QFC+∠QCF)=180°﹣(∠EFC+∠ECF)=180°﹣(180°﹣∠FEC)=90°+∠FEC,∴∠P+∠Q=∠BED+90°+∠FEC=90°+(∠BED+∠FEC)=90°+=180°.23.【分析】(1)根据等腰三角形的三线合一证明;(2)在线段BC上取点H,使CH=AM,连接OH,分别证明△AOM≌△COH和△MON≌△HON,根据全等三角形的性质计算即可;(3)作DG⊥AO于G,证明△COQ≌△QGD,根据全等三角形的性质,垂直的定义证明.【解答】(1)证明:∵∠ACB=90°,AO=BO,∴CO=AB=BO;(2)解:在线段BC上取点H,使CH=AM,连接OH,∵∠ACB=90°,AO=BO,∴∠A=∠B=45°,∠ACO=∠BCO=45°,在△AOM和△COH中,,∴△AOM≌△COH(SAS)∴OM=OH,∵MN﹣AM=CN,∴NM=NH,在△MON和△HON中,,∴△MON≌△HON(SSS),∴∠MON=∠HON,∴∠MON=∠AOM+∠COH,∴∠MON=∠AOC=45°;(3)QC=QD,QC⊥QD,理由如下:作DG⊥AO于G,∵AD∥BC,∴∠OAD=∠B=45°,∵OD∥AC,∴∠AOD=∠OAC=45°,∴DA=DO,又DG⊥AO,∴DG=AG=AO=OA,∵Q是OB的中点,∴OQ=BQ=OB,∴DG=OQ,GQ=OC,在△COQ和△QGD中,,∴△COQ≌△QGD(SAS),∴QC=QD,∠GQD=∠OCQ,∵∠OCQ+∠CQO=90°,∴∠GQD+∠CQO=90°,即∠CQD=90°,∴QC⊥QD,则QC=QD,QC⊥QD.24.【分析】(1)根据非负数的性质即可解决问题.(2)先求出直线AB的解析式,利用方程组求出点P坐标,再求出直线PC的解析式,求出点C 坐标即可解决问题.(3)如图2中,作IE⊥OA于E,CM⊥y轴于M,IF⊥OB于F.由△ACM≌△BCF,推出AM =BG,CM=CG,推出BH﹣AH=OB﹣OA=2CG,即可解决问题.【解答】解:(1)∵4(a﹣2)2+(b﹣4)2=0,又∵4(a﹣2)2≥0,(b﹣4)2≥0,∴a=2,b=4,∴A(0,2),B(4,0).(2)如图1中,∵A(0,2),B(4,0),∴直线AB的解析式为y=﹣x+2,∵P(m,m),∴点P在直线y=x上,由解得,∴点P(,),∵PC⊥AB,∴直线PC的解析式为y=2x﹣,∴点C坐标为(,0),∴OC=,BC=,∴==5.(3)的值不变.理由如下:如图2中,作IE⊥OA于E,CM⊥y轴于M,IF⊥OB于F.∵设I是∠OAB的角平分线与OP的交点,OP平分∠AOB,∴I是内心,∵IH⊥AB,IE⊥OA,IF⊥OB,∴IE=IH=IF,易知AH=AE,BF=BH,∴BH﹣AH=BF﹣AE=OB﹣OA,∵∠MCG=∠ACB=90°,∴∠ACM=∠BCG,在△ACM和△BCG中,,∴△ACM≌△BCF(AAS),∴AM=BG,CM=CG,∵∠OMC=∠OGC=∠MOG=90°,∴四边形OMCG是矩形,∵CM=CG,∴四边形OMCG是正方形,∴OM=OG=CG=CM,∴BH﹣AH=OB﹣AO=(BG+OG)﹣(AM﹣OM)=2CG,∴==2.。
2019-2020学年八年级(上)第一次月考数学试卷一、选择题(本大题共10小题,共30.0分)1.在△ABC中,∠C=90°,AB=10,AC:BC=3:4,则BC=()A. 4B. 6C. 8D. 102.下列数中,有理数是()A. −√7B. −0.6C. 2πD. 0.151151115…3.已知P(x,y)在第二象限,且x2=4,∣y∣=7,则点P的坐标是()A. (2,−7)B. (−4,7)C. (4,−7)D. (−2,7)4.在下列各式中正确的是()A. √(−2)2=2B. ±√9=3C. √16=8D. √22=±25.若a=√13,则实数a在数轴上对应的点P的大致位置是()A. B.C. D.6.下列说法中:(1)√5是实数;(2)√5是无限不循环小数;(3)√5是无理数;(4)√5的值等于2.236,正确的说法有()A. 4个B. 3个C. 2个D. 1个7.(如图)在4×8的方格中,建立直角坐标系E(−1,−2),F(2,−2),则G点坐标()A. (−1,1)B. (−2,−1)C. (−3,1)D. (1,−2)8.如图,将边长为8cm的正方形ABCD折叠,使点D落在BC边的中点E处,点A落在F处,折痕为MN,则线段CN的长是()A. 3cmB. 4cmC. 5cmD. 6cm9.和数轴上的点一一对应的数是()A. 整数B. 有理数C. 无理数D. 实数10.在直角坐标系xOy中,△ABC关于直线y=1轴对称,已知点A坐标是(4,4),则点B的坐标是()A. (4,−4)B. (−4,2)C. (4,−2)D. (−2,4)二、填空题(本大题共4小题,共16.0分)11.一直角三角形的三边分别为6,8,x,那么以x为边长的正方形的面积为______.12.916的算术平方根是.13.计算:√−83+√9=______.14.若点(a,−4)与点(−3,b)关于x轴对称,则a=________,b=________.三、计算题(本大题共2小题,共14.0分)15.计算12√113+(3√18+15√50−4√12)÷√3216.计算(1)(2x−1)2+(1−2x)(1+2x)(2)(x+2)(x−3)−x(x+1)四、解答题(本大题共5小题,共40.0分)17.求满足下列各式的未知数x(1)27x3+125=0(2)(x+2)2=16.18.如图,在每个小正方形是边长为1的网格中,A,B,C均为格点.(Ⅰ)仅用不带刻度的直尺作BD⊥AC,垂足为D,并简要说明道理;(Ⅱ)连接AB,求△ABC的周长.19.如图,在海上观察所A处.我边防海警发现正南方向60海里的B处有一可疑船只正以每小时20海里的速度向正东方向C处驶去,海我边防海警即刻从A处派快艇去拦截.若快艇的速度是每小时1003里.问快艇最快几小时拦截住可疑船只?20.求代数式的值:(1)当a=7,b=4,c=0时,求代数式a(2a−b+3c)的值.(2)如图是一个数值转换机的示意图.请观察示意图,理解运算原理,用代数式表示为______ .若输入x的值为3,y的值为−2,输出的结果是多少?21.如图1,在平面直角坐标系中,A(a,0),B(0,2√3)(1)点(k+1,2k−5)关于x轴的对称点在第一象限,a为实数k的范围内的最大整数,求A点的坐标及△AOB的面积;(2)在(1)的条件下如图1,点P是第一象限内的点,且△ABP是以AB为腰的等腰直角三角形,请直接写出P点坐标;(3)在(1)的条件下,如图2,以AB、OB的作等边△ABC和等边△OBD,连接AD、OC交于E 点,连接BE.①求证:EB平分∠CED;②M点是y轴上一动点,求AM+CM的最小值.-------- 答案与解析 --------1.答案:C解析:解:∵∠C=90°,AB=10,AC:BC=3:4,∴BC2+AC2=AB2,AC:BC:AB=3:4:5,∴BC=8;故选:C.根据勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方,即BC2+AC2=AB2,结合已知条件,即可得出BC的长.本题考查了勾股定理;熟记勾股定理是解决问题的关键.2.答案:B解析:解:A、−√7是无理数,故选项错误;B、−0.6是有理数,故选项正确;C、2π是无理数,故选项错误;D、0.151151115…是无理数,故选项错误.故选:B.本题考查了实数,根据有理数的定义选出即可.3.答案:D解析:【分析】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).根据第二象限内点的横坐标是负数,纵坐标是正数分别求出x、y的值,然后写出点P的坐标即可.【解答】解:∵P(x,y)在第二象限,且x2=4,|y|=7,∴x=−2,y=7,∴点P的坐标为(−2,7).故选D.4.答案:A解析:【分析】此题考查了算术平方根,以及平方根,熟练掌握各自的性质是解本题的关键.根据算术平方根和平方根的定义分别对每一项进行计算,即可得出答案.【解答】解:A.√(−2)2=√4=2,正确;B.±√9=±3,故本选项错误;C.√16=4,故本选项错误;D.√22=2,故本选项错误;故选A.5.答案:C解析:解:∵3<√13<4,故选:C.根据3<√13<4,即可选出答案本题主要考查了是实数在数轴上的表示,熟悉实数与数轴的关系式解答此题的关键.6.答案:B解析:解:(1)√5是实数,故正确;(2)√5是无限不循环小数,故正确;(3)√5是无理数,故正确;(4)√5的值等于2.236,故错误;故选B.根据实数的分类进行判断即可.本题考查了实数的分类,掌握实数包括有理数和无理数,有理数是有限小数和无限循环小数,而无理数是无限不循环小数.7.答案:C解析:【分析】本题考查了平面直角坐标系,点的坐标的确定,先由E(−1,−2),F(2,−2)确定平面直角坐标系,然后确定G点坐标即可.【解答】解:如图,由E(−1,−2),F(2,−2)可确定平面直角坐标系如下图:∴G点坐标为(−3,1),故选C.8.答案:A解析:【分析】折叠问题其实质是轴对称,对应线段相等,对应角相等,通常用勾股定理解决折叠问题.根据折叠的性质,只要求出DN就可以求出NE,在直角△CEN中,若设CN=x,则DN=NE=8−x,CE=4cm,根据勾股定理就可以列出方程,从而解出CN的长【解答】解:设CN=xcm,则DN=(8−x)cm,BC=4cm,根据题意可知DN=EN,EC=12在Rt△ECN中,由勾股定理可知EN2=EC2+CN2,即(8−x)2=16+x2,整理得16x=48,∴x=3,则CN=3cm.故选A.9.答案:D解析:和数轴上的点一一对应的数是实数,故选:D .熟练掌握实数与数轴上的点是一一对应的关系是解题的关键.10.答案:C解析:解:根据题意,点A 和点B 是关于直线y =1对称的对应点,它们到y =1的距离相等是3个单位长度,所以点B 的坐标是(4,−2).故选:C .根据轴对称的两点到对称轴的距离相等,此题易解.主要考查了坐标的对称特点.解此类问题的关键是要掌握轴对称的性质:对称轴垂直平分对应点的连线.利用此性质可在坐标系中得到对应点的坐标.11.答案:100或28解析:解:当较大的数8是直角边时,根据勾股定理,得x 2=36+64=100;当较大的数8是斜边时,根据勾股定理,得x 2=64−36=28.所以以x 为边长的正方形的面积为100或28.故答案为:100或28.以x 为边长的正方形的面积是x 2,所以只需求得x 2即可.但此题应分8为直角边和为斜边两种情况考虑.此题考查勾股定理,此类题在没有明确直角边或斜边的时候,一定要注意分情况考虑,熟练运用勾股定理进行计算.12.答案:34解析:【分析】此题主要考查了算术平方根的定义,根据算术平方根的定义即可解答.【解答】解:916的算术平方根为34.故答案为34.13.答案:1解析:解:原式=−2+3=1,故答案为:1原式利用平方根与立方根定义计算即可得到结果.此题考查了实数的运算,熟练掌握运算法则是解本题的关键.14.答案:−3;4解析:【分析】本题考查了关于轴x、y轴对称的点的坐标,据关于x轴对称的点的坐标规律是:横坐标相同,纵坐标互为相反数,根据关于x轴对称的点的坐标规律是:横坐标相同,纵坐标互为相反数,可得答案.【解答】解:点P(a,−4)与点Q(−3,b)关于x轴对称,得a=−3,b+(−4)=0,解得a=−3,b=4,故答案为−3;4.15.答案:解:原式=12×2√3+(9√2+√2−2√2)÷4√23=8√3+2.解析:先化简二次根式,然后根据二次根式的混合运算法则计算得出答案.此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.16.答案:解:(1)(2x−1)2+(1−2x)(1+2x)=4x2−4x+1+1−4x2=−4x+2;(2)(x+2)(x−3)−x(x+1)=x2−3x+2x−6−x2−x=−2x−6.解析:(1)根据完全平方公式和平方差公式可以解答本题;(2)根据多项式乘多项式和单项式乘多项式可以解答本题.本题考查整式的混合运算,解答本题的关键是明确整式混合运算的计算方法.17.答案:解:(1)27x3+125=0则x3=−12527解得:x=−5;3(2)(x+2)2=16则x+2=±4,解得:x1=−6,x2=2.解析:(1)直接利用立方根的定义化简求出答案;(2)直接利用平方根的定义化简求出答案.此题主要考查了立方根以及平方根,正确把握相关定义是解题关键.18.答案:解:(Ⅰ)取线段AC的中点为格点D,则有DC=AD.连接BD,则BD⊥AC,理由:由图可知BC=√32+42=5,连接AB,则AB=5,∴BC=AB,又CD=AD,∴BD⊥AC.(Ⅱ)由(1)可得AB=5,BC=5由图得AC=√22+42=2√5,∴△ABC的周长=5+5+2√5=10+2√5.解析:本题考查作图−应用与设计,勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.(Ⅰ)取线段AC的中点为格点D,则有DC=AD.连接BD,根据等腰三角形的性质可得BD⊥AC,(Ⅱ)利用勾股定理求出AC、BC即可解决问题;19.答案:解:设快艇最快x小时拦截住可疑船只,x,则BC=20x,AC=1003由勾股定理得:AC2=AB2+BC2,x)2=602+(20x)2,即(1003(负值舍去),解得:x=±94∴x=9,4小时拦截住可疑船只.答:快艇最快94解析:本题考查了勾股定理在实际生活中的应用,本题中正确的找到CB,AB,AC的等量关系,并且根据该等量关系在直角△CAB中求解是解题的关键.首先求得线段AC,BC的长,然后利用勾股定理得出方程,解方程即可.20.答案:(1)∵a=7,b=4,c=0,∴原式=2a2−ab+3ac=98−28+0=70;(2x+y2)(2)用代数式表示为12将x=3,y=−2代入(2×3+4)=5.得:原式=12解析:解:(1)∵a=7,b=4,c=0,∴原式=2a2−ab+3ac=98−28+0=70;(2x+y2),(2)由题意可得:12将x=3,y=−2代入得:原式=5.(2x+y2).故答案为:12(1)直接利用已知数据代入代数式求出答案;(2)直接利用已知数值转换机的示意图得出代数式,进而求出答案.此题主要考查了代数式求值,正确列出代数式是解题关键.21.答案:解:(1)∵点(k+1,2k−5)关于x轴的对称点在第一象限,∴点(k+1,2k−5)在第四象限,∴k+1>0,2k−5<0,∴−1<k<2.5,∵a为实数k的范围内的最大整数,∴a=2,∵A(a,0),∴A(2,0),∴OA=2,∵B(0,2√3),∴OB=2√3,∴S△AOB=12OA⋅OB=12×2×2√3=2√3;(2)如图1,∵点P是第一象限内的点,且△ABP是以AB为腰的等腰直角三角形,∴①当∠BAP=90°时,AB=AP,过点P作PF⊥OA于F,∴∠PAF+∠APF=90°,∵∠BAP=90°,∴∠PAF+∠BAO=90°,∴∠APF=∠BAO,∵AB=AP,∴△OAB≌△FPA(AAS),∴PF=OA=2,AF=OB=2√3,∴OF=OA+AF=2+2√3,∴P(2+2√3,2),②当∠ABP=90°时,同①的方法得,P′(2√3,2√3+2),即:P点坐标为(2+2√3,2)或(2√3,2√3+2);(3)①如图2,∵△OBD和△ABC都是等边三角形,∴BD=OB,AB=BC,∠OBD=∠ABC=60°,∴∠ABD=∠CBO,在△ABD和△CBO中,{BD=OB∠ABD=∠CBO AB=BC,∴△ABD≌△CBO(SAS),∴S△ABD=S△CBO,AD=OC,过点B作BM⊥AD于M,BN⊥OC于N,∴BM=BN,∵BM⊥AD,BN⊥OC,∴BE是∠CED的角平分线;②如图3,作点A关于y轴的对称点A′,∵A(2,0),∴A′(−2,0),连接A′C交y轴于M,过点C作CH⊥OA于H,在Rt△AOB中,OA=2,OB=2√3,∴AB=4,tan∠OAB=OBOA =2√32=√3,∴∠OAB=60°,∵△ABC是等边三角形,∴AC=AB=4,∠BAC=60°,∴∠CAH=60°,在Rt△ACH中,∠ACH=90°−∠CAH=30°,∴AH=2,CH=2√3,∴OH=OA+AH=4,∴点C(4,2√3),∵A′(−2,0),∴直线A′C的解析式为y=√33x+2√33,∴M(0,2√33).解析:(1)根据点在第四象限内,得出不等式,进而求出k的范围,进而求出点A坐标,最后用三角形面积公式即可得出结论;(2)分两种情况:构造全等三角形求出PF和AF,即可求出点P坐标;(3)①先判断出△ABD≌△CBO(SAS),进而得出S△ABD=S△CBO,AD=OC,即可得出BM=BM,最后用角平分线的判定定理即可得出结论;②根据含30度角的直角三角形的性质求出线段的长,进而求出点C坐标,求出直线A′C的解析式,即可得出结论.此题是三角形综合题,主要考查了全等三角形的判定和性质,角平分线的判定定理,等腰直角三角形的性质,待定系数法,等边三角形的性质,正确作出辅助线是解本题的关键.。
2019-2020学年度八年级数学第一学期10 月月考试卷(本检测题满分:120分,时间:100分钟)姓名:班别:分数:一、选择题(每题3分,共30分)1. 以下列各组长度的线段为边,能构成三角形的是( )A.7,3,4B.5,6,12C.3,4,5D.1,2,32. 等腰三角形的一个外角是80°,则其底角是()A.100°B.100°或40°C.40°D.803.一个多边形的每一个外角都等于40°,那么这个多边形的内角和为()A.1260°B.1080°C.1620°D.360°4.用一批完全相同的多边形地砖铺地面,不能进行镶嵌的是()A.正三角形B.正方形C.正六边形D.正八边形5.下列说法正确的是()A.三角形的角平分线、中线及高都在三角形内B.直角三角形的高只有一条.C.三角形至少有一条高在形内D.钝角三角形的三条高都在形外.6.一个多边形的内角和比它的外角的和的2倍还大180°,这个多边形的边数是()A.5B.6C.7D.87.在下图中,正确画出AC边上高的是().B BB BEA E C A C E A C E A C(A)(B)(C)(D)8.如图所示,∠A、∠1、∠2的大小关系是()A. ∠A ∠1∠2B.∠2∠1∠AC. ∠A ∠2∠1D.∠2∠A ∠19. 给出下列命题:⑴三角形的一个外角一定大于它的一个内角.⑵若一个三角形的三个内角之比为1:3:4,它肯定是直角三角形⑶三角形的最小内角不能大于60°⑷三角形的一个外角等于和它不相邻的两个内角的和其中真命题的个数是()(A)1个(B)2个(C)3个(D)4个10.如图1,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是()A.∠A=∠1+∠2B.2∠A=∠1+∠2C .3∠A=2∠1+∠2D .3∠A=2(∠1+∠2)二、填空题(每题 4 分,共 24 分)11.为了使一扇旧木门不变形,木工师傅在木门的背面 加钉了一根木条,这样做的道理是. 12.已知等腰三角形的两边长是 5cm 和 11cm ,则它的周长是_______13.一个等腰三角形的周长为 18,已知一边长为 5,则其他两边长为 ___. 14.已知一个三角形的三条边长为 2、7、 x ,则 x 的取值范围是 _______. 15.如图所示,AB∥CD,∠ABE=66°,∠D=54°,则∠E 的度数为 .16.如图,∠A +∠B +∠C +∠D +∠E +∠F=.AEBFABCECDD15 题16 题三、解答题(共 66 分) ABC 17.已知△ABC 中,为钝角.请你按要求作图(不写作法,但要 保留作图痕迹):(1)过点 A 作 BC 的垂线 AD;AC(2)作 的角平分线交 AC 于 E; B(3)取 AB 中点 F,连结 CF .18.在△ABC 中,∠A-∠B=∠B-∠C =15°求∠A 、∠B 、∠C 的度数.19.如图,在△ABC 中,两条角平分线 BD 和 CE 相交于点 O ,若∠BOC=116°,求∠A 的度数AEODC 20.△ABC 中,AB=AC ,AC 上的中线 BD 把△ABC 的周长分为 24 ㎝和 30 ㎝两部分19,题求三角形 的三边长.A BC B21.已知:如图,在△ABC中,∠BAC=900,AD⊥BC于D,AE平分∠DAC,∠B=500,求∠AEC的度数.AB D E C22.如图,ABC中,ABC=BAC,BAC的外角平分线交BC的延长线于点D,若ADC=12CAD,求ABC的度数。
2019-2020学年上期第一次月考数学试卷考试时间:100分钟分值:120分注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题(每题3分,共30分)1.在下列各数中是无理数的个数有( )-π, 3π, 3.1415, 2.010101…(相邻两个1之间有1个0),76.0123456…(小数部分由相继的正整数组成).A .3个B .4个C .5个D .6个2.下列各式中,正确的是() A2=-B .(29=C=D .3=±3.将一根长24cm 的筷子,置于底面直径为5cm 、高为12cm 的圆柱形水杯中,设筷子露在杯子外面的长为cm h ,则h 的取值范围是() A .512h ≤≤ B .524h ≤≤ C .1112h ≤≤D .1224h ≤≤4.以下列各组数为边长,能组成直角三角形的是() A .2,3,4B .10,8,4C .7,25,24D .7,15,125.下列结论中,错误的有( )①在Rt△ABC 中,已知两边长分别为3和4,则第三边的长为5;②△ABC 的三边长分别为a ,b ,c ,若a 2+b 2=c 2,则∠A=90°;③在△ABC 中,若∠A∶∠B∶∠C=1∶5∶6,则△ABC 是直角三角形;④若三角形的三边长之比为3∶4∶5,则该三角形是直角三角形. A .0个 B .1个 C .2个 D .3个6.若△ABC 的三边a 、b 、c 满足(a ﹣b )2+|a 2+b 2﹣c 2|=0,则△ABC 是( ) A .等腰三角形 B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形7.若一直角三角形两边长分别为12和5,则第三边长为( ) A .13 B.13C .13或15D .158.√643的平方根是()A.16B.2C.±2D.±√29.已知|a |=5,√b 2=7,且|a +b |=a +b ,则a −b 的值为() A .2或12B .2或−12C .−2或12D .−2或−1210.如图,在数轴上,点O 对应数字O ,点A 对应数字2,过点A 作AB 垂直于数轴,且AB=4,连接OB ,绕点O 顺时针旋转OB ,使点B 落在数轴上的点C 处,则点C 所表示的数介于( )A .3和4之间B .4和5之间C .5和6之间D .6和7之间第II 卷(非选择题)二、填空题(每题3分,共15分)11.已知a 、b 满足(a ﹣1)2,则a+b=_____.12________.13.已知x 、y 为直角三角形的两边的长,满足(x-2)2+|(y-2)(y-3)|=0,则第三边的长为_________________.14.如图,在长方形纸片ABCD 中,12AB =,5BC =,点E 在AB 上,将DAE ∆沿DE 折叠,使点A 落在对角线BD 上的点A '处,则AE 的长为_______.15.我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”,它是用八个全等的直角三角形拼接而成,记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为S 1,S 2,S 3.若S 1+S 2+S 3=15,则S2的值是_____.三、解答题(共8题,共75分) 16.(每题4分,共16分)计算:(1)(3+)(3﹣)(2)(3()0221( 3.14().2π-+---⨯(4)17.(每题5分,共10分)(1)先化简,后求值:(a+√5)(a﹣√5)﹣a(a﹣2),其中a=√2+12.(2)化简:(√2+√3+√5)2+(√2+√3−√5)2+(√2−√3+√5)2+(−√2+√3+√5)2.18.(63=,31a b+-的平方根是4±,c的整数部分,求2a b c++的平方根.19.(6分)已知实数a,b,c所对应的点在数轴上的位置如图所示.||a b+20.(8分)如图,点D是ΔABC内一点,把ΔABD绕点B顺时针旋转60°得到ΔCBE,且AD=4,BD=3,CD=5.(1)判断ΔDEC的形状,并说明理由;(2)求∠ADB的度数.21.(8分)有一辆装满货物的卡车,高2.5米,宽1.6米,要开进如图所示的上边是半圆,下边是长方形的桥洞,已知半圆的直径为2米,长方形的另一条边长是2.3米.(1)这辆卡车能否通过此桥洞?试说明你的理由.(2)为了适应车流量的增加,想把桥洞改为双行道,并且要使宽1.2米,高为2.8米的卡车能安全通过,那么此桥洞的宽至少应增加到多少米?22.(9分)细心观察图,认真分析下列各式,然后解答问题.(√1)2+1=2,S1=√12;(√2)2+1=3,S2=√22;(√3)2+1=4,S3=√32;....(1)请用含有n(n是正整数)的等式表示上述变化规律.(2)推算出OA10的长.(3)求S12+S22+⋯+S102的值.23.(12分)如图1,Rt△ABC中,∠ACB=90.,直角边AC在射线OP上,直角顶点C与射线端点0重合,AC=b,BC=a,30a-=.(1)求a,b的值;(2)如图2,向右匀速移动Rt△ABC,在移动的过程中Rt△ABC的直角边AC在射线OP上匀速向右运动,移动的速度为1个单位/秒,移动的时间为t秒,连接OB.①若△OAB为等腰三角形,求t的值;②Rt△ABC在移动的过程中,能否使△OAB为直角三角形?若能,求出t的值:若不能,说明理由.()()3228324-+-+--()()41643433323332+----。
2019-2020年八年级数学上学期第一次月考试题参考答案1.A2.C3.B4.C5.A6.C7.A8.B9.D 10.D11.1<x<6 12.120° 13.-a+3b-c 14.八 15.416.解:由三角形三边关系得AB-AC<BC<AB+AC 即7<BC<11 ....................(2分)∵BC的长为偶数∴BC=8或BC=10......(6分)∴△ABC的周长为AB+AC+BC=9+2+8=19或AB+AC+BC=9+2+10=21 ......(8分)∴△ABC的周长为19或21......(9分)17.解:∵∠A:∠B:∠C=3:5:7 ∴设∠A=3x,∠B=5x,∠C=7x∵∠A+∠B+∠C=180°∴3x+5x+7x=180°...........(4分)解得 x=12°...........(5分)∴3x=36°,5x=60°,7x=84°.....(6分)即∠A为36°,∠B为60°,∠C为84°....(8分)18.解:∵AD=AB,AD=5cm,∴AB=8cm.......(3分)又∵△ABD的周长是18cm,∴BD=5cm.又∵D是BC的中点,∴BC=2BD=10cm........(6分)又∵△ABC的周长为24cm,∴AC=24-8-10=6cm.........(8分)19.解:设∠1=∠2=x,则∠3=∠4=2x.∵∠BAC=66°,∴∠2+∠4=114°,即x+2x=114°,...(4分)解得x=38°..........(6分)∴∠DAC=∠BAC﹣∠1=28°............(8分)20.解:∵AB∥CD,∴∠C=180°﹣∠B=80°,.........(2分)∵五边形ABCDE内角和为(5﹣2)×180°=540°,....(5分)∴在五边形ABCDE中,∠AED=540°-∠A-∠B-∠C-∠D=540°﹣130°﹣100°﹣80°﹣150°=80°.......(8分)21.解:(1)∵∠A=100°,∠B=50°,∴∠ACB=180°﹣∠A﹣∠B=30°.....(3分)∵△ABC≌△DEF,AB=6,∴∠F=∠ACB=30°,DE=AB=6 .........(5分)∵EH=2.5∴DH=DE-EH=6﹣2.5=3.5 ...........(8分)(2)∵△ABC≌△DEF,∴∠DEF=∠B=50°∴∠DHC=∠DEF+∠ACB=50°+30°=80°....(10分)22.解:∵点D是BC的中点∴S△ABD=S△ABC ........(2分)又∵点E是AD中点∴S△BED=S△ABD=S△ABC S△CDE=S△ACD=S△ABC∴S△BEC=S△ABD+S△ACD=S△ABC+S△ABC=S△ABC .....(8分)∵点F为CE的中点∴S△BEF=S△BEC=S△ABC=×8=2 即阴影部分的面积为2cm²...(12分)23.解:(1)∵AE平分∠BAC ∴∠EAC=∠BAC ∵∠BAC=180°-∠B-∠C ∵AD⊥BC∴∠DAC+∠C=90°∴∠EAD=∠EAC-∠DAC =∠BAC-(90°-∠C) =(180°-∠B-∠C)-(90°-∠C)=(∠C-∠B)………………(4分)(2)∠EFD=(∠C-∠B)……(5分)理由如下:过点A作AG∥DF ∴∠EFD=∠EAG同(1)可知,∠EAG=(∠C-∠B)∴∠EFD=(∠C-∠B)……(8分)(3)∠EFD=(∠C-∠B)………(9分)理由如下:过点A作AG∥DF交BC于点G∴∠EFD=∠EAG 同(1)可知,∠EAG=(∠C-∠B)即∠EFD=(∠C-∠B)…………(12分)。
2019-2020学年八年级上学期月考数学试题
一、选择题(每题3分,共30分)
1.如图,如图,已知OA=OB,点C在OA上,点D在OB上,OC=OD,AD与BC相交于点E,那么图中全等的三角形共有()
A.2对 B.3对 C.4对 D.5对
2.下列说法:①有两条直角边对应相等的两个直角三角形全等;②有斜边对应相等的两个等腰直角三角形全等;③有一条直角边和斜边上的高对应相等的两个直角三角形全等;④有一条边相等的两个等腰直角三角形全等.其中正确的有()A.1个 B.2个 C.3个 D.4个
3.等腰三角形中的一个外角等于100°,则这个三角形的三个内角分别为()A.50°,50°,80° B.80°,80°,20°
C.100°,100°,20° D.50°,50°,80°或80°,80°,20°
4.如图,已知CD⊥AB于D,现有四个条件:①AD=ED;②∠A=∠BED;
③∠C=∠B;④AC=EB,那么不能得出△ADC≌△EDB的条件是()
A.②③ B.②④ C.①④ D.①③
5.如图,在△ABC中,∠A=30°,∠ABC=50°,∠ACB=100°.若△EDC≌△ABC,且A、C、D在同一条直线上,则∠BCE=()
A.20° B.30° C.40° D.50°
C D
E
第
1题图
第4题图第5题图
6.用直尺和圆规作一个角等于已知角的示意图,则说明∠A′O′B′=∠AOB的依据是()A. SSS B. SAS C. ASA D. AAS
7.如图所示,D,E分别是△ABC的边AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为()A. 20° B. 25° C. 28° D.30°
第6题图第7题图
8.下列各图中,为轴对称图形的是()
9.如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,DE⊥AB于点E,则下列结论:①AD 平分∠CDE;②∠BAC=∠BDE;③DE平分∠ADB;④若AC=4BE,则S△ABC=8S△BDE.其中正确的有()
A.1个B.2个C.3个D.4个
A.B.C.D.
10.如图,把一个正方形三次对折后沿虚线剪下,则所得图形大致是()
第9题图
二、填空题(每题3分,共18分)
11.已知点(2,y)和点(x,3)关于y轴对称,则x + y =_______________。
12.等腰三角形的两边的长为4、6,则它的周长是________________________。
13.如图,在凸四边形ABCD中,AB=BC=BD,∠ABC=80°,则∠ADC等于______°.
14.如图,DE是AB的垂直平分线,D是垂足,DE交BC于E,若BC=32cm,AC=18cm,则△AEC的周长为_______cm.
15.如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E.若∠E=35°,则∠BAC的度数为________度。
16.如图,已知∠AOB=40°,点P关于OA、OB的对称点分别为C、D,CD交OA、OB于M、N两点,则∠MPN的度数是___________。
第13题图第14题图第15题图第16题图
三、解答题(17—21每题6分,22、23每题7分,24题8分,共52分)17.如图,AC∥FE,点F、C在BD上,AC=DF,BC=EF.求证:AB=DE.
18.如图:AC⊥BC,BD⊥AD,BD与AC交于E,AD=BC,求证:AE=BE.
19.已知:如图所示,在△ABC中,BD=DC,∠1=∠2,求证:AD平分∠BA C.
20.作图题(用直尺与圆规作图,画图用铅笔,保留痕迹,不写作法):
(1)如图1,用尺规作图的方法,在BC 边上找一点D ,使AD=BD.
(2)如图2,用尺规作图的方法,在△ABC 内部找一点E ,使点E 到AB 、AC 、BC 三边的距离相等。
图1 图2
21.如图,在△ABC 中,D 是BC 边上一点,AD=CD ,AB=AC=BD ,求∠BAC 的度数.
A
B
C
A
B
C
22.如图,在△ABC中,∠A=100°,∠ABC=40°,BD是△ABC的角平分线.延长BD至E,使DE=AD,连接EC
(1)直接写出∠CDE的度数:∠CDE= _____;
(2)猜想线段BC与AB+CE的数量关系为 ________________,并给出证明.
A
B C
23.阅读下面材料:小军遇到这样一个问题:如图1,△ABC中,AB=6,AC=4,点D为BC的中点,求AD的取值范围.
(1)小军发现老师讲过的“倍长中线法”可以解决这个问题.他的做法是:如图2,延长AD到E,使DE=AD,连接BE,构造△BED≌△CAD,经过推理和计算使问题得到解决.
请回答:AD的取值范围是____________________.
(2)参考小军思考问题的方法,解决问题:已知,如图,AD为△ABC的中线,F为AC上一点,连接BF交AD于E,且AF=FE,求证:BE=AC
F
E
B C
D
24.如图,在△ABC中,∠C=2∠B.
(1)AD是△ABC的角平分线,求证:AB=AC+CD.
(2)若AD是△ABC的外角平分线交BC的延长线于D,其它条件不变,线段AB,AC,CD之间有什么确定的数量关系?画图并证明你的结论.
(1)
A
C
B
(2)
A
C
B。