工程光学习题参考答案第四章 光学系统中的光束限制
- 格式:doc
- 大小:190.50 KB
- 文档页数:5
第一章习题1、已知真空中的光速c=3 m/s,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。
解:则当光在水中,n=1.333时,v=2.25 m/s,当光在冕牌玻璃中,n=1.51时,v=1.99 m/s,当光在火石玻璃中,n=1.65时,v=1.82 m/s,当光在加拿大树胶中,n=1.526时,v=1.97 m/s,当光在金刚石中,n=2.417时,v=1.24 m/s。
2、一物体经针孔相机在屏上成一60mm大小的像,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离。
解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x,则可以根据三角形相似得出:所以x=300mm即屏到针孔的初始距离为300mm。
3、一厚度为200mm的平行平板玻璃(设n=1.5),下面放一直径为1mm的金属片。
若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少?解:令纸片最小半径为x,则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。
而全反射临界角求取方法为:(1)其中n2=1, n1=1.5,同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为:(2)联立(1)式和(2)式可以求出纸片最小直径x=179.385mm,所以纸片最小直径为358.77mm。
4、光纤芯的折射率为n1、包层的折射率为n2,光纤所在介质的折射率为n0,求光纤的数值孔径(即n0sinI1,其中I1为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。
解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有:n0sinI1=n2sinI2 (1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n0 sinI1 .5、一束平行细光束入射到一半径r=30mm、折射率n=1.5的玻璃球上,求其会聚点的位置。
第一章 几何光学基本定律1. 已知真空中的光速c =3810⨯m/s ,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。
解:则当光在水中,n=1.333时,v=2.25 m/s, 当光在冕牌玻璃中,n=1.51时,v=1.99 m/s, 当光在火石玻璃中,n =1.65时,v=1.82 m/s , 当光在加拿大树胶中,n=1.526时,v=1.97 m/s ,当光在金刚石中,n=2.417时,v=1.24 m/s 。
2. 一物体经针孔相机在 屏上成一60mm 大小的像,若将屏拉远50mm ,则像的大小变为70mm,求屏到针孔的初始距离。
解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x ,则可以根据三角形相似得出:,所以x=300mm即屏到针孔的初始距离为300mm 。
3. 一厚度为200mm 的平行平板玻璃(设n =1.5),下面放一直径为1mm 的金属片。
若在玻璃板上盖一圆形的纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片的最小直径应为多少?2211sin sin I n I n = 66666.01sin 22==n I745356.066666.01cos 22=-=I1mm I 1=90︒n 1 n 2200mmL I 2 x88.178745356.066666.0*200*2002===tgI xmm x L 77.35812=+=4.光纤芯的折射率为1n ,包层的折射率为2n ,光纤所在介质的折射率为0n ,求光纤的数值孔径(即10sin I n ,其中1I 为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。
解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有: n 0sinI 1=n 2sinI 2 (1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n 0 .5. 一束平行细光束入射到一半径r=30mm 、折射率n=1.5的玻璃球上,求其会聚点的位置。
第四章光学系统中的光束限制1.设照相物镜的焦距等于75mm,底片尺寸为55×55㎜2,求该照相物镜的最大视场角等于多少?解:2.略。
3. 在本章第二节中的双目望远镜系统中,假定物镜的口径为30mm,目镜的通光口径为20mm,如果系统中没有视场光阑,问该望远镜最大的极限视场角等于多少?渐晕系数k =0.5的视场角等于多少?解:(1)151018108=++x xmm x 252=1081825218252108181815+++=+++=x x y714286.10=y︒=33.112目ω(2) 0793651.0181081021=+=+=’目‘物目f f D tg ω ︒︒==∴08.932492‘’‘ω答:极限视场角等于11.33︒渐晕系数为0.5的视场角为9.08︒。
总黄酮生物总黄酮是指黄酮类化合物,是一大类天然产物,广泛存在于植物界,是许多中草药的有效成分。
在自然界中最常见的是黄酮和黄酮醇,其它包括双氢黄(醇)、异黄酮、双黄酮、黄烷醇、查尔酮、橙酮、花色苷及新黄酮类等。
简介近年来,由于自由基生命科学的进展,使具有很强的抗氧化和消除自由基作用的类黄酮受到空前的重视。
类黄酮参与了磷酸与花生四烯酸的代谢、蛋白质的磷酸化、钙离子的转移、自由基的清除、抗氧化活力的增强、氧化还原作用、螯合作用和基因的表达。
它们对健康的好处有:( 1 )抗炎症( 2 )抗过敏( 3 )抑制细菌( 4 )抑制寄生虫( 5 )抑制病毒( 6 )防治肝病(7 )防治血管疾病(8 )防治血管栓塞(9 )防治心与脑血管疾病(10 )抗肿瘤(11 )抗化学毒物等。
天然来源的生物黄酮分子量小,能被人体迅速吸收,能通过血脑屏障,能时入脂肪组织,进而体现出如下功能:消除疲劳、保护血管、防动脉硬化、扩张毛细血管、疏通微循环、活化大脑及其他脏器细胞的功能、抗脂肪氧化、抗衰老。
近年来国内外对茶多酚、银杏类黄酮等的药理和营养性的广泛深入的研究和临床试验,证实类黄酮既是药理因子,又是重要的营养因子为一种新发现的营养素,对人体具有重要的生理保健功效。
工程光学第二章理想光学系统1、一个折射率为1.52的双凸薄透镜,其中一个折射面的曲率半径是另一个折射面的2倍,且其焦距为5cm,则这两个折射面的曲率半径分别是〔7.8〕cm和〔-3.9〕cm。
2、一个薄透镜折射率为1.5,光焦度500D。
将它浸入某液体,光焦度变成-1.00D,则此液体的折射率为〔1.502〕。
3、反远距型光组由〔一个负透镜和一个正透镜〕组成,其特点是〔工作距大于组合焦距〕。
4、远摄型光组由一个〔正透镜〕和一个〔负透镜〕组成,其主要特点是〔焦距大于筒长〕,因此该组合系统常用在〔长焦距镜头〕的设计中。
第三章平面与平面系统1、反射棱镜在光学系统中的主要作用有〔折叠光路〕、〔转折光路〕和转像、倒像等,在光路中可等效为平行平板加〔平面反射镜〕。
2、某种波长的光入射到顶角为60°的折射棱镜,测得最小偏向角为42°15′,则该种玻璃对于入射波长的折射率为〔1.557〕。
3、唯一能完善成像的光学元器件是〔平面反射镜〕,利用其旋转特性可制作光学杠杆进行放大测量;利用双光楔也可以实现〔微小角度和微小位移〕的测量,主要有〔双光楔旋转测微〕和〔双光楔移动测微〕两种形式。
4、用于制作光学元件的光学材料包括光学玻璃,〔光学晶体〕和〔光学塑料〕三类。
选用光学玻璃时的两个重要参数是〔折射率〕和〔阿贝常数〕。
5、一个右手坐标的虚物,经一个直角屋脊棱镜反射后,成〔右手〕坐标的〔虚〕像。
第四章光学系统中的光束限制1、限制轴上物点成像光束宽度的光阑是〔孔径光阑〕,而〔渐晕光阑〕在其基础上进一步限制轴外物点的成像光束宽度。
2、为减少测量误差,测量仪器一般采用〔物方远心〕光路。
3、测量显微镜的孔径光阑放置在〔物镜后焦平面上〕,视场光阑放置在〔一次实像面处〕,如果用1/2″的CCD接收图像并用14″的监视器观察图像,要求系统放大倍率为140倍,则显微镜的放大倍率是〔5倍〕。
第五章光线的光路计算及像差理论1、实际像与〔理想像〕之间的差异称为像差,包括单色像差和色差两大类。
第四章 光学系统中的光束限制
1、设照相物镜的焦距等于75mm ,底片尺寸为55×55㎜2,求该照相物镜的最大视场角等于多少?
解:
3、假定显微镜目镜的视角放大率Γ目=15⨯,物镜的倍率β=2、5⨯,求物镜的焦距与要求的通光口径。
如该显微镜用于测量,问物镜的通光口径需要多大(u =-︒3.42y =8mm 显微镜物镜的物平面到像平面的距离为180mm )? 解: (1)
5.2'
-==l
l β mm l 428.51-=
180'
=-l l mm l 57.128'
=
‘物
f l l 111'=- mm f 73.36=‘物 在此情况下,物镜即为显微镜的孔径光阑
︒-=3.4u mm tg ltgu D 734.73.4428.5122=⨯⨯==︒
物
(2)
用于测量时,系统中加入了孔径光阑,目镜就是视场光阑 由于u 已知,根据u 可确定孔径光阑的大小 mm tg tgu L OM A 8668.33.4428.51=︒⨯=⋅=
O
A P
A OM D A ’‘孔
=2
mm OM L f L D A 52.58668.357
.12873
.3657.12822'=⨯-⨯
=⨯-⨯
=∴’
‘物
孔
L 目
-目f
L ‘
Z
在中M M B B '∆ O
A P A
B A O M B A D B ‘
‘
’‘’‘孔=++21 mm y 1045.2'
=⨯= mm O M B 863.7=∴ mm D 726.15=物
答:物镜的焦距为36、73mm ,物镜的孔径为7、734mm ,用于测量时物镜孔径为
15、726mm 。
4、 在本章第二节中的双目望远镜系统中,假定物镜的口径为30mm ,目镜的通光口径为20mm ,
如果系统中没有视场光阑,问该望远镜最大的极限视场角等于多少?渐晕系数k =0、5的视场角等于多少? 解:(1)
15
10
18108=++x x
mm x 252=
108
1825218252108181815+++=+++=x x y 714286.10=y
︒=33.112目ω (2)
0793651.0181081021=+=+=’
目
‘
物目
f f D t
g ω ︒
︒==∴08.932492‘’
‘
ω
答:极限视场角等于11、33︒渐晕系数为0、5的视场角为9、08︒。
5、 如果要求上述系统的出射瞳孔离开目镜像方主面的距离为15mm,求在物镜焦面上加入的
场镜焦距。
解
:
D 物对场镜成像,位置为mm f l 1081-=-=’
物 对目镜有
’目
f l l 1112'2=- l mm l Z 15'
'2== mm f 18=‘
目 可得 mm l 902=
21l l d -=’Θ mm l d l 108901821=+=+‘
对场镜
‘场
f l l 1111'1=- mm l 108'1= mm l 1081-= mm f 54=∴‘场
答:场镜焦距为54mm 。
6、思考题:当物点在垂直光轴方向上下移动时,系统的孔径光阑就是否改变?
答:当物点在垂直光轴方向上下移动时,孔径光阑对来自不同点的成像光束 口径限制最大,所以系统的孔径光阑不变。