高中数学易错题举例解析
- 格式:doc
- 大小:709.00 KB
- 文档页数:17
ʏ江苏省无锡市第六高级中学 陈 敏ʏ江苏省无锡市青山高级中学 张启兆解析几何是高中数学的重要内容,但有些同学由于对某些知识点理解不透彻,或考虑不周等原因,导致在解题过程中出现这样和那样的错误,下面对高考解析几何解答题的易错题型进行归类剖析,希望对同学们的复习备考能有所帮助㊂一、忽略直线斜率不存在的情形例1 已知F (2,0)为椭圆x 2a 2+y 2b2=1(a >b >0)的焦点,且点P 2,55在椭圆上㊂(1)求椭圆的方程㊂(2)已知直线l 与椭圆交于M ,N 两点,且坐标原点O 到直线l 的距离为306,试问:øM O N 的大小是否为定值若是,求出该定值;若不是,请说明理由㊂错解:(1)由椭圆的定义得2a =(2-2)2+552+(2+2)2+552=25,解得a =5㊂因为c =2,所以b =1㊂故椭圆的方程为x 25+y 2=1㊂(2)设点M (x 1,y 1),N (x 2,y 2)㊂设直线l 的方程为y =k x +m ,由点到直线的距离公式得|m |k 2+1=306,则m 2=56(k 2+1)㊂联立y =k x +m ,x 2+5y 2=5,消去y 整理得(5k 2+1)x 2+10k m x +5m 2-5=0,Δ=100k 2m 2-20(m 2-1)(5k 2+1)=20(5k 2+1-m 2)>0,即m 2<5k 2+1㊂由韦达定理得x 1+x 2=-10k m5k 2+1,x 1x 2=5(m 2-1)5k 2+1,所以O M ң㊃O N ң=x 1x 2+y 1y 2=x 1x 2+(k x 1+m )(k x 2+m )=(k 2+1)㊃x 1x 2+k m(x 1+x 2)+m2=5(k 2+1)(m 2-1)-10k 2m25k 2+1+m2=6m 2-5(k 2+1)5k 2+1=0,所以O M ңʅO N ң,即øM O N =π2㊂剖析:第(1)问的解答正确,第(2)问的解答中忽略直线斜率不存在的情形㊂正解:(2)当直线l 的斜率存在时,同错解㊂当直线l 的斜率不存在时,则直线l 的方程为x =ʃ306,结合对称性不妨设直线l 的方程为x =306,联立x =306,x25+y 2=1,解得x =306,y =306,或x =306,y =-306,即得点M306,306,N 306,-306,此时O M ң㊃O N ң=0,故øM O N =π2㊂综上所述,øM O N =π2㊂易错提醒:本题的易错点有两个:一是忽略对直线斜率不存在的情形的讨论;二是øM O N =π2不是显性的,比较隐晦,识别出来有困难,但我们可以从特殊情况,即直线l 的斜率不存在入手,求出对应的定值,再利用82 解题篇 易错题归类剖析 高考数学 2023年4月Copyright ©博看网. All Rights Reserved.向量的数量积证明这个值与变量无关㊂二㊁盲目应用判别式例2 若圆(x -a )2+y 2=4与抛物线y 2=6x 没有公共点,求a 的取值范围㊂错解:由于圆(x -a )2+y 2=4与抛物线y 2=6x 没有公共点,所以联立方程组(x -a )2+y 2=4,y2=6x ,消去y 得方程x 2-(2a -6)x +a 2-4=0无解,所以Δ=(2a -6)2-4a 2-4<0,解得a >136,故a 的取值范围为136,+ɕ ㊂剖析:这属于知识性错误,产生错误的原因是没有理解判别式Δ只适用于直线与二次曲线的位置关系的判断,而不适用于两个二次曲线之间的位置关系的判断㊂正解:由于圆的半径为2,当圆与抛物线外切时,a =-2,于是当a <-2时,圆与抛物线没有公共点㊂当圆与抛物线内切时,联立(x -a )2+y 2=4,y 2=6x ,消去y 整理得x 2-(2a -6)x +a 2-4=0㊂①Δ=(2a -6)2-4a 2-4=0,解得a =136,代入方程①得3x 2+5x +2512=0,解得x =-56,是负根,显然圆与抛物线不能内切,所以当x ȡ0时,问题等价于圆心(a ,0)到抛物线的距离d 的最小值大于2,求a 的取值范围㊂设P (x ,y )为抛物线上一点,则d 2=(x -a )2+y 2=(x -a )2+6x =[x -(a -3)]2+6a -9㊂设f (x )=[x -(a -3)]2+6a -9(x ȡ0),当a -3>0,即a >3时,f (a -3)最小,所以d m i n =6a -9>2,解得a >136,又a >3,所以a >3;当a -3ɤ0,即a ɤ3时,f (0)最小,所以d m i n =a >2,此时2<a ɤ3㊂综上可得,a >2㊂故a 的取值范围为a <-2或a >2㊂易错提醒:二次曲线与二次曲线的交点问题不能完全类比直线与二次曲线位置关系的探讨,仅用判别式法是不够的,这是因为二次曲线是有范围限制的,并且一般情况下具有对称性,要结合起来一起讨论㊂由于我们研究的是曲线与曲线之间的位置关系,图形未必能把细微处的走向描述清楚,必须与代数运算结合起来,即以数助形,数形结合㊂三㊁求取值范围时,未考虑直线与圆锥曲线的公共点的个数例3 已知双曲线C :x 2a2-y 2b2=1与椭圆x 24+y23=1的离心率互为倒数,且双曲线的右焦点到C 的一条渐近线的距离为3㊂(1)求双曲线C 的方程;(2)直线y =2x +m 与双曲线C 交于A ,B 两点,点M 在双曲线C 上,且O M ң=2O Aң+λO B ң,求λ的取值范围㊂错解:(1)因为椭圆x 24+y 23=1的离心率为12,所以a 2+b 2a =2,即a 2=b 23㊂因为双曲线的右焦点到C 的一条渐近线的距离为3,所以b =3,所以a =1,故双曲线C 的方程为x 2-y 23=1㊂(2)设A (x 1,y 1),B (x 2,y 2),M (x 0,y 0),联立方程y =2x +m ,3x 2-y 2=3,消去y 整理得x 2+4m x +m 2+3=0,则x 1+x 2=-4m ,x 1x 2=m 2+3㊂因为O M ң=2O A ң+λO B ң,所以x 0=2x 1+λx 2,y 0=2y 1+λy 2㊂因为点M 在双曲线C 上,所以2x 1+λx 22-2y 1+λy 223=1,即4㊃x 21-y 213+λ2x 22-y 223+4λx 1x 2-43㊃λy 1y 2=1,所以4λx 1x 2-43λy 1y 2+λ2+3=4λx 1x 2-43λ(2x 1+m )(2x 2+m )+λ2+3=0,即λ2-4λ+3+8m 2λ=0,显然λʂ0,于是8m 2=-λ2-4λ+3λȡ0 (*),所以λ(λ2-92解题篇 易错题归类剖析 高考数学 2023年4月Copyright ©博看网. All Rights Reserved.4λ+3)ɤ0,λʂ0,解得λ<0,或1<λ<3㊂综上所述,λ的取值范围为-ɕ,0 ɣ1,3㊂剖析:第(1)问的解答正确,第(2)问的解答中未考虑直线与圆锥曲线的公共点的个数对m 的限制,故最后求λ的取值范围时出现错误㊂正解:(2)前面同错解㊂考虑Δ=16m 2-4(m 2+3)>0⇒m 2>1,将(*)式改为8m 2=-λ2-4λ+3λ>8㊂当λ>0时,得λ2+4λ+3<0,解得-3<λ<-1,与λ>0矛盾;当λ<0时,得λ2+4λ+3>0,解得λ>-1,或λ<-3,所以λ<-3,或-1<λ<0㊂综上所述,λ的取值范围为-ɕ,-3 ɣ-1,0㊂易错提醒:审题不仔细,马虎大意,忽视条件 直线与双曲线有两个交点 隐含着判别式Δ=16m 2-4m 2+3>0㊂四、恒成立意义不明导致定点问题错误例4 如图1,M 是圆A :x +32+y 2=16上的动点,点B 3,0,线段M B 的垂直平分线交半径A M 于点P ㊂图1(1)求点P 的轨迹E 的方程㊂(2)N 为轨迹E 与y 轴负半轴的交点,不过点N 且不垂直于坐标轴的直线l 交轨迹E 于S ,T 两点,直线N S ,N T 分别与x 轴交于C ,D 两点㊂若C ,D 的横坐标之积是2,试问:直线l 是否过定点?如果是,求出定点坐标;如果不是,请说明理由㊂易错分析:本题易错点有三个:一是在用参数表示直线S N 的方程时计算错误;二是不会利用 同构 的方法直接写出点D 的横坐标;三是在得到直线系S T 的方程后,对直线恒过定点的意义不明,找错方程的常数解㊂正解:(1)由题意可知|A P |+|P M |=|A M |=4,所以|P A |+|P B |=4>23=|A B |,所以点P 的轨迹是以A ,B 为焦点,长轴为4的椭圆㊂所以2a =4,c =3,所以b =a 2-c 2=1,所以椭圆的方程为x 24+y 2=1,即点P 的轨迹E 的方程为x 24+y 2=1㊂(2)由题意可知点N (0,-1),设直线S T 的方程为y =k x +m (m ʂ-1),设S (x 1,y 1),T (x 2,y 2),联立y =k x +m ,x 2+4y 2=4,消去y 整理得(1+4k 2)x 2+8k m x +4m 2-4=0,所以x 1+x 2=-8k m 1+4k 2,x 1x 2=4m 2-41+4k2,由Δ>0,得4k 2-m 2+1>0㊂所以直线S N 的方程为y +1=y 1+1x 1(x -0),令y =0,得x C =x 1y 1+1㊂同理x D =x 2y 2+1㊂因为x C x D =x 1y 1+1ˑx 2y 2+1=2,所以x 1x 2=2(y 1+y 2+y 1y 2+1)=2[k x 1+m +k x 2+m +(k x 1+m )(k x 2+m )+1]=2[k (x 1+x 2)(m +1)+k 2x 1x 2+(m +1)2],所以4m 2-41+4k 2=2k ˑ-8k m1+4k2(m +1)+ k 2ˑ4m 2-41+4k2+(m +1)2㊂因为m ʂ-1,所以m +1ʂ0,则4(m -1)=-16k 2m +8k 2(m -1)+2(1+4k 2)㊃(m +1),解得m =3,所以直线S T 的方程为y =k x +3㊂所以直线S T 过定点(0,3)㊂规律与方法:(1)若确定动直线l 过定点问题,可设动直线方程(斜率存在)为y =k x +t ,由题设条件将t 用k 表示为t =m k ,得到y =k (x +m ),即可说明动直线过定点(-m ,0)㊂(2)若确定动曲线C 过定点问题,可引入参变量建立曲线C 的方程,再根据其对参变量恒成立,令其系数等于零,得出对应的定点㊂(3)先通过特定位置猜测结论后进行一般性证明㊂对于客观题,通过特殊值法探求定点能取得事半功倍的效果㊂(责任编辑 王福华)3 解题篇 易错题归类剖析 高考数学 2023年4月Copyright ©博看网. All Rights Reserved.。
高中数学中的易错题分类及解析高中数学中的易错题分类及解析成都玉林中学成都玉林中学 周先华周先华周先华关键词:高考关键词:高考 数学数学 易错题易错题全文摘要:“会而不对,对而不全”严重影响考生成绩“会而不对,对而不全”严重影响考生成绩..易错题的特征:心理因素、易错点的隐蔽性、形式多样性、可控性理因素、易错点的隐蔽性、形式多样性、可控性..易错题的分类解析易错题的分类解析::分为五大类即审题不严、运算失误、概念模糊、公式记忆不准确、思维不严,每类再分为若干小类,列举高中数学中的典型易错题进行误解与正解和错因分析为若干小类,列举高中数学中的典型易错题进行误解与正解和错因分析..本文既是对高考中的易错题目的分类解析,同时又是第一轮复习中的一本易错题集是对高考中的易错题目的分类解析,同时又是第一轮复习中的一本易错题集..下表是易错题分类表:表是易错题分类表:正 文数学学习的过程,从本质上说是一种认识过程,其间包含了一系列复杂的心理活动数学学习的过程,从本质上说是一种认识过程,其间包含了一系列复杂的心理活动..从数学学习的认知结构上讲,数学学习的过程就是学生头脑里的数学知识按照他自己理解的深度与广度,结合自己的感觉、知觉、记忆、思维与联想,组合成的一个整体结构知觉、记忆、思维与联想,组合成的一个整体结构..所以,数学中有许多题目,求解的思路并不繁杂,但解题时,由于读题不仔细,或者对某些知识点的理解不透彻,或者运算过程中没有注意转化的等价性,或者忽略了对某些特殊情形的讨论……等等原因,都会导致错误的出现.“会而不对,对而不全”,一直以来都是严重影响考生数学成绩的重要因素都是严重影响考生数学成绩的重要因素. .一.易错题的典型特征解题出错是数学答题过程中的正常现象,它既与数学学习环境有关它既与数学学习环境有关,,又与试题的难易程度有关又与试题的难易程度有关..同时也与考生的数学水平、身体与心理状况有关与考生的数学水平、身体与心理状况有关. .1.考生自我心理素质:数学认知结构是数学知识的逻辑结构与学生的心理结构相互作用的产物:数学认知结构是数学知识的逻辑结构与学生的心理结构相互作用的产物..而数学解题是考生主体感受并处理数学信息的创造性的心理过程题是考生主体感受并处理数学信息的创造性的心理过程..部分考生题意尚未明确,加之考试求胜心切,仅凭经验盲目做题,以至于出现主观认识错误或陷入主观思维定势,造成主观盲动性错误和解题思维障碍凭经验盲目做题,以至于出现主观认识错误或陷入主观思维定势,造成主观盲动性错误和解题思维障碍. . 2.易错点的隐蔽性:数学知识的逻辑结构是由数学知识之间的内在的联系联结而成的整体,而其心理结构是指智力因素及其结构,即观察力、记忆力、想象力、注意力和思维力等五个因素组成构是指智力因素及其结构,即观察力、记忆力、想象力、注意力和思维力等五个因素组成..数学解题是考生借助特定“数学语言”进行数学思维的过程,在这个过程中考生的数学知识结构和数学思维习惯起着决定性的作用个体思维的跳跃性是产生思维漏洞的根本原因,这种思维漏洞一旦产生,考生自己是很难发现的,因此易错点的隐蔽性很强现的,因此易错点的隐蔽性很强. .3.易错点形式多样性:根据数学学习的一般过程及数学认知结构的特点,数学易错点一般有知识性错误和心理性错误两种等形式:而知识性错误主要包括数学概念的理解不透彻、数学公式记忆不准确两方面;心理性错误包括审题不严、运算失误、数学思维不严谨等心理性错误包括审题不严、运算失误、数学思维不严谨等. .4.易错题的可控性:学生的认识结构有其个性特点:学生的认识结构有其个性特点..在知识总量大体相当的情况下,有的学生对知识不仅理解深刻,而且组织得很有条理,便于储存与撮;相反,有的学生不仅对知识理解肤浅,而且支离破碎,杂乱无章,这就不利于储存,也不容易提取杂乱无章,这就不利于储存,也不容易提取..在学生形成了一定的数学认知结构后,一旦遇到新的信息,就会利用相应的认知结构对新信息进行处理和加工,随着认识活动的进行,学生的认知结构不断分化和重组,并逐渐变得更加精确和完善,所谓“吃一堑长一智”组,并逐渐变得更加精确和完善,所谓“吃一堑长一智”..只要我们在容易出错的地方提高警戒意识,建立建全解题的“警戒点”立建全解题的“警戒点”,,养成严谨的数学思维好习惯,易错点就会逐渐减少养成严谨的数学思维好习惯,易错点就会逐渐减少. .二、易错题的分类解析1.数学概念的理解不透数学概念所能反映的数学对象的属性,不仅是不分精粗的笼统的属性,它已经是抓住了数学对象的根本的、最重要的本质属性本的、最重要的本质属性..每一个概念都有一定的外延与内涵每一个概念都有一定的外延与内涵..而平时学习中对概念本质的不透彻,对其外延与内涵的掌握不准确,都会在解题中反映出来,导致解题出错延与内涵的掌握不准确,都会在解题中反映出来,导致解题出错. . 例1.若不等式ax 2+x+a +x+a<<0的解集为的解集为 Φ,则实数a 的取值范围(的取值范围( )) A.a A.a≤≤-21或a ≥21 B.a B.a<<21 C.-21≤a ≤21 D.a D.a≥≥21【错解】选A.A.由题意,方程由题意,方程ax 2+x+a=0的根的判别式20140a D <Û-<Û a a≤≤-21或a ≥21,所以选A.【错因分析】对一元二次不等式与二次函数的图象之间的关系还不能掌握,忽视了开口方向对题目的影响忽视了开口方向对题目的影响. .【正确解析】【正确解析】D D .不等式ax 2+x+a +x+a<<0的解集为的解集为 Φ,若a=0,a=0,则不等式为则不等式为x<0解集不合已知条件,则a 0¹;要不等式ax 2+x+a +x+a<<0的解集为的解集为 Φ,则需二次函数y=ax 2+x+a 的开口向上且与x 轴无交点,所以a>0且20140120a a a ìD £Û-£Û³í>î.例 2. 命题“若△ABC 有一内角为3p,则△ABC 的三内角成等差数列”的逆命题是(的三内角成等差数列”的逆命题是( ) A .与原命题真值相异.与原命题真值相异 B .与原命题的否命题真值相异.与原命题的否命题真值相异 C .与原命题的逆否命题的真值不同.与原命题的逆否命题的真值不同 D .与原命题真值相同.与原命题真值相同 【错解】选A.A.因为原命题正确,其逆命题不正确因为原命题正确,其逆命题不正确因为原命题正确,其逆命题不正确. .【错因分析】本题容易出现的错误是对几个概念的理解失误:逆命题——将原命题的题设和结论交换、否命题——将原命题的题设和结论同时否定,逆否命题——将原命题的题设和结论交换后再同时否定,原命题与逆命题、否命题与逆命题是两对互为逆否的命题,互为逆否的命题是等价的题与逆命题、否命题与逆命题是两对互为逆否的命题,互为逆否的命题是等价的..【正确解析】选D.D.显然,原命题正确;其逆命题为:显然,原命题正确;其逆命题为:“若△ABC 的三内角成等差数列,则△ABC 有一内角为3p”.也正确,所以选D. 例3.判断函数f(x)=(x -1)xx-+11的奇偶性为____________________ 【错解】偶函数.f(x)=221(1)(1)(1)(1)(1)111x x x x x x x xx++--==+-=---,所以22()1()1()f x x x f x -=--=-=,所以f (x )为偶函数. 【错因分析】上述解法有两个错误:【错因分析】上述解法有两个错误:11未考虑函数的定义域;未考虑函数的定义域;2.x-1<02.x-1<02.x-1<0,放入根号内后根号前应添负号,放入根号内后根号前应添负号,放入根号内后根号前应添负号. .【正确解析】非奇非偶函数【正确解析】非奇非偶函数.y=f(x).y=f(x).y=f(x)的定义域为:的定义域为:(1)(1)01011101x x xx x x +-³ì+³ÛÛ-£<í-¹-î,定义域不关于原点对称,所以此函数为非奇非偶函数关于原点对称,所以此函数为非奇非偶函数. .例4.(2011四川四川))1l ,2l ,3l 是空间三条不同的直线,则下列命题正确的是(是空间三条不同的直线,则下列命题正确的是( ))(A)12l l ^,23l l ^13//l l Þ (B )12l l ^,3//l l Þ13l l ^ (C)123////l l l Þ 1l ,2l ,3l 共面共面 (D )1l ,2l ,3l 共点Þ1l ,2l ,3l 共面共面【错解】错解一:选A.A.根据垂直的传递性命题根据垂直的传递性命题A 正确;正确;错解二:选C.C.平行就共面;平行就共面;平行就共面;【错因分析】错解一、二都是因为对空间的线线平行、线线垂直、共面等概念的理解不透彻所致【错因分析】错解一、二都是因为对空间的线线平行、线线垂直、共面等概念的理解不透彻所致. .【正确解答】选B.命题A 中两直线还有异面或者相交的位置关系;命题C 中这三条直线可以是三棱柱的三条棱,因此它们不一定共面;命题D 中的三条线可以构成三个两两相交的平面,所以它们不一定共面. 例5.x=ab 是a 、x 、b 成等比数列的( ) A.充分非必要条件充分非必要条件 B.必要非充分条件必要非充分条件 C.充要条件充要条件 D.既非充分又非必要条件既非充分又非必要条件【错解】【错解】C.C.C.当当.x=ab 时,a 、x 、b 成等比数列成立;当a 、x 、b 成等比数列时,x=ab 成立成立 . 【错因分析】对等比数列的定义理解不透【错因分析】对等比数列的定义理解不透. .【正确解析】选D.D.若若x=a=0x=a=0,,x=ab 成立,但a 、x 、b 不成等比数列,不成等比数列, 所以充分性不成立;反之,若a 、x 、b 成等比数列,则2x ab x ab =Û=±,所以x=ab 不一定成立,必要性不成立所以选D. 例6.(1)(1)把三枚硬币一起掷出,求出现两枚正面向上,一枚反面向上的概率把三枚硬币一起掷出,求出现两枚正面向上,一枚反面向上的概率. (2)(2)某种产品某种产品100件,其中有次品5件,现从中任抽取6件,求恰有一件次品的概率. 分析: (1)【错解】三枚硬币掷出所有可能结果有2×2×2=8种,而出现两正一反是一种结果,故所求概率P=.81【正解】在所有的8种结果中,两正一反并不是一种结果,而是有三种结果:正、正、反,正、反、正,反、正、正,因此所求概率,83=P 上述错解在于对于等可能性事件的概念理解不清,所有8种结果的出现是等可能性的,如果把上述三种结果看作一种结果就不是等可能性事件了,应用求概率的基本公式n mP =自然就是错误的. (2) 【错解】由题意知,这种产品的次品率为5%,且每次抽取相互独立,由独立重复实验概率公式,得:6件产品中恰有1件次品的概率为:23210)10051(1005)1(5166=-=C P . 【正解】在上题的解法中有两个错误:第一,100件产品,件产品,其中有其中有5件次品与次品率为5%是两个不同的概念;第二,该实验不是独立重复实验,从100件产品中任抽6件,可当作抽了6次,每次抽1个,但每次抽到次品还是正品,显然直接影响到下一次抽到次品还是正品,显然直接影响到下一次抽到次品或正品的概率,具体地说,如果第一次抽出的是次品,那么次品就少了一个,第二次再抽到次品的概率就小了…这就是说各次实验之间并非独立的,错用了独立重复实验概率公式,正确解法应为:2430.0610059515==CC C P . 2.公式理解与记忆不准数学公式众多,学生在应用公式解决数学问题时,由于理解不准确(例如公式成立的条件未考虑)或记忆不准确,极易导致运算失误.例如公式2(0,0,a b ab a b +³>>当且仅当a=b 时“=”成立)中极易忽略数a,b 均为正和取等号的条件,还有学生把我们常用的一些公式记成下面的一系列错误公式:x x =2,111>Þ<x x,2)(v vu v u v u¢+¢=¢,y x y x a a a log log )(log ×=+等等. 例7.若1,0,0=+>>y x y x ,则yx41+的最小值为___________. 【错解】 yx41+8)2(14422=+³³y x xy,错解原因是忽略等号成立条件. 【正解】 yx41+=945)(4³++=+++yxx y y y x x y x 例8.8. 函数y=sin 4x+cos 4x -43的相位____________,初相为__________ .周期为周期为_________,单调递增区间为____________. 【错解】y=sin 4x+cos 4x -43=1cos 44x ,所以相位为4x ,初相为0,周期为2p,增区间为…. 【错因分析】应先把函数转化为正弦型函数【错因分析】应先把函数转化为正弦型函数..教材中关于相位、初相……的定义是在正弦型函数的基础上.【正确解析】y=sin 4x+cos 4x -43=11cos 4sin(4)442x x p =+.相位为42x p+,初相为2p ,周期为2p,单调递增区间为21[,]()42k k k Z p p -Î.3.审题不严审题,是解题的第一步,考生在审题过程中可能发生读题不清楚、未发现隐含条件及字母的意义含混审题,是解题的第一步,考生在审题过程中可能发生读题不清楚、未发现隐含条件及字母的意义含混不清等错误不清等错误. . (1)读题不清例9.(2011四川四川))已知()f x 是R 上的奇函数,且当0x >时,1()()12xf x =+,则()f x 的反函数的图像大致是大致是【错解】选B.B.因为因为1()2xy =在0x >内递减,且1()()12x f x =+过点(过点(00,2),所以选B. 【错因分析】考生未看清楚题目是求()f x 的反函数的图像的反函数的图像. .【正确解答】A .根据函数与其反函数的性质,原函数的定义域与值域同其反函数的值域、定义域相同.当10,0()1,122x x y ><<Þ<<,所以选A.或者首先由原函数过点(0,2),则其反函数过点(2,0),排除B 、C ;又根据原函数在0x >时递减,所以选A.例10.编号为1,2,3,4,5的五个人,分别坐在编号为1,2,3,4,5的座位上,则至多有两个号码一致的坐法种数为(致的坐法种数为( )A .120 B.119 C.110 D.109 【错解】“至多有两个号码一致”的对立事件是“三个或四个(即五个)号码一致”, 三个号码一致有3252C A 种,四个号码一致仅一种,所以所求的坐法种数为553322552199A C A --=,无选项.多有一盒次品的概率是 . 多有一盒次品的概率是(2)忽视隐含条件1)))y =1, =1, 求828x=-- -∞, , ].+ y =1 y 的取值范围是[1, [1, ].(3)字母意义含混不清x y5 4.运算错误(1)数字与代数式运算出错2211k k ++2211k k ++(2)运算方法(如公式、运算程序或运算方向等)选择不当导致运算繁杂或不可能得解而出错OQ OP 为 . 2265,2x x OP OP 的值为的值为 22331()3-36【正确解析】666(3)忽视数学运算的精确性,凭经验猜想得结果而出错 AB (4)计量单位缺乏量纲意识x 53300003-x 300003]x -].31006000),3000053-x ]310030000-x )].3100200003=Þt .时y 最大,此时对甲商品资金投入量为9999999775.29999)200003(300002=-=x 元,对乙商品资金投入量为0.0000000225元.,此时甲商品获得利润60000000.000045元.(不管怎样分配,甲商品都赚了投入资金的1999倍的钞票!)【错解三】设对甲种商品投入金额x 元,则乙种商品投资为30000-x 元,获得利润总额为y 元. 由于利润总额单位为万元,故)300005351(100001x x y -+=,令]3100,0[,300000,300002Î-==-t t x t x 则t t y 500003)30000(5000012+--=].3100,0[],2096000)23[(5000012Î+--=t t (元)元)25.230000,(75.2999723=-=Þ=Þx x t . 【错因分析】量纲不统一,对经验公式x Q x P 53,51==的单位理解不清.从量纲角度看,长度立方为体积、长度平方为面积(正如体积的立方根为长度、面积的算术平方根长度一样),x Q 53=的单位由经验公式给出的前提是变量x 的单位万元确定,因此,的单位万元确定,因此,【正解一】设对甲种商品投入金额x 万元,是乙种商品投资为(3-x )万元,获得的利润总额为y 万元. 由题意,得]3,0[,35351Î-+=x x x y ,设]3,0[,3,32Î-==-t t x t x 则,则,则t t y 53)3(512+-=].3,0[,2021)23(512Î+--=t t2021,]3,0[23m ax =Î=\y t 时当,即43493=-=x ,494333=-=-x . 因此,为获取最大利润,对甲、乙两种商品的的资金投入应分别为0.75万元和2.25万 元,获得的最大利润为1.05万元. 【正解二】设对甲种商品投入金额x 元,则目标函数应该为元,则目标函数应该为 100003531000051xxy -+×==x x -+300005003500001 令]3100,0[,300000,300002Î-==-t t x t x 则则2021)150(5000015003)30000(50000122+--=+-=t t t y 7500300002=-=Þt x (余与解一同)(余与解一同) 5.数学思维不严谨(1)数学公式或结论的条件不充分例23.已知:已知:a>0 , b>0 , a+b=1,a>0 , b>0 , a+b=1,a>0 , b>0 , a+b=1,求求(a+ 1a )2+(b+ 1b)2的最小值的最小值. .【错解】【错解】 (a+ (a+a 1)2+(b+b 1)2=a 2+b 2+21a +21b +4+4≥≥2ab+ab 2+4+4≥≥4abab 1·+4=8.∴(a+a 1)2+(b+b1)2的最小值是8. 【错因分析】上面的解答中,两次用到了基本不等式a 2+b 2≥2ab 2ab,第一次等号成立的条件是,第一次等号成立的条件是a=b=21,第二次等号成立的条件是ab=ab1,显然,这两个条件是不能同时成立的,显然,这两个条件是不能同时成立的..因此,因此,88不是最小值不是最小值. . 【正确解析】原式【正确解析】原式= a = a 2+b 2+21a +21b +4=( a 2+b 2)+(21a +21b )+4=[(a+b)2-2ab]+[(a 1+b 1)-ab2]+4= (1]+4= (1--2ab)(1+221b a )+4)+4,由,由ab ab≤≤(2ba +)2=41 得:得:11-2ab 2ab≥≥1-21=21, , 且且221b a ≥1616,,1+221b a ≥1717,∴原式,∴原式≥21×17+4=225 ( (当且仅当当且仅当a=b=21时,等号成立时,等号成立)), ∴(a + a 1)2 + (b + b1)2的最小值是252 .例24.已知两正数x,y x,y 满足满足x+y=1,x+y=1,则则z=11()()x y x y++的最小值为的最小值为 . .【错解一】因为对a>0,a>0,恒有恒有12a a+³,从而z=11()()x y x y++³4,4,所以所以z 的最小值是 4. 【错解二】222222()22x y xy z xy xy xy xy xy +-==+-³22(21)-=-,所以z 的最小值是2(21)-. 【错因分析】解法一中,等号成立的条件是11,11,1x y x y x y xy====+=且即且与相矛盾;解法二中,等号成立的条件是2,2xy xy xy ==即,与104xy <£相矛盾相矛盾.. 【正解】z=11()()x y x y ++=1y x xy xy x y +++=21()222x y xy xy xy xy xy xy+-++=+-,令t=xy, 则210()24x yt xy +<=£=,由2()f t t t =+在10,4æùçúèû上单调递减上单调递减,,故当t=14时 2()f t t t =+有最小值334,所以当12x y ==时z 有最小值334.(2)以偏概全,重视一般性而忽视特殊情况以偏概全是指思考不全面,遗漏特殊情况,致使解答不完全,不能给出问题的全部答案,从而表现出思维的不严密性思维的不严密性. .例25.(1)(1)不等式不等式不等式|x+1|(2x |x+1|(2x |x+1|(2x--1)1)≥≥0的解集为的解集为____________ ____________ (2)(2)函数函数11xy x+=-的定义域为的定义域为 . . 解析:解析:(1)【错解】1[,)2+¥.因为因为|x+1||x+1|³0恒成立,所以原不等式转化为2x-1³0,所以1[,)2x Î+¥ 【错因分析】忽略了当x=x=--1时|x+1|=0原不等式也成立,即x=-1为不等式的解为不等式的解. .【正确解析】}1{),21[-È+¥.原不等式等价于原不等式等价于|x+1|=0|x+1|=0或2x-1³0,所以解集为1[,){1}2x Î+¥È-. (2) (2) 【错解】【错解】10(1)(1)011xx x x x+³Þ+-³Þ³-或1x £-.【错因分析】两个错误:一是解分式不等式(方程)时未考虑分母不能为0;二是解二次不等式时没有把二次项系数变为正再考虑两根之外或两根之间,从而导致解集出错二次项系数变为正再考虑两根之外或两根之间,从而导致解集出错. .【正解】(1)(1)0(1)(1)010111011x x x x xx x x x +-³+-£ìì+³ÞÞÞ-£<íí-¹¹-îî例26.过点过点(0,1)(0,1)(0,1)作直线,使它与抛物线作直线,使它与抛物线x y 42=仅有一个公共点,这样的直线有(仅有一个公共点,这样的直线有( )A.1条B.2条C. 3条D. 0条【错解】设直线的方程为1+=kx y ,联立îíì+==142kx y xy ,得()x kx 412=+,即:01)42(22=+-+x k x k ,再由Δ=0,0,得得k=1,k=1,得答案得答案A.【错因分析】本题的解法有两个问题,一是将斜率不存在的情况考虑漏掉了,另外又将斜率k=0的情形丢掉了,故本题应有三解,即直线有三条掉了,故本题应有三解,即直线有三条. .【正确解析】C.C.由上述分析,由上述分析,y 轴本身即为一切线,满足题意;解方程01)42(22=+-+x k x k 时,若k=0k=0,,即直线y=1也与抛物线x y 42=仅有一个公共点,又k=1时也合题意,所以有三条直线合题意,选C. (3)解题时忽视等价性变形导致出错 例27.27. (1)已知f(x) = a x +bx,若,6)2(3,0)1(3££££-f f 求)3(f 的范围的范围. . (2)已知集合}1|||{£-=a x x A ,}0330|{2³---=x xx x B ,且F =B A ,求实数a 的取值范围的取值范围.. 解析:(1)【错解】由条件得ïîïíì£+££+£-622303b a b a ②①由②×由②×22-①-① 156££a ③ ①×①×22-②得-②得 32338-££-b ④ ③+④得 .343)3(310,34333310£££+£f b a 即【错因分析】采用这种解法,忽视了这样一个事实:作为满足条件的函数f(x) f(x) = = a x +bx,其值是同时受b a 和制约的制约的..当a 取最大(小)值时,b 不一定取最大(小)值,因而整个解题思路是错误的不一定取最大(小)值,因而整个解题思路是错误的. .【正确解析】由题意有ïîïíì+=+=22)2()1(b a f b a f , , 解得:解得:解得:)],2()1(2[32)],1()2(2[31f f b f f a -=-=).1(95)2(91633)3(f f ba f -=+=\ 把把)1(f 和)2(f 的范围代入得的范围代入得 .337)3(316££f(2)【错解】由题意,【错解】由题意,A A :11a x a -££+B :2300(6)(5)(3)0{|63x x x x x x x x --³Û-+-³Û³-或53}x -££……(后面略后面略)) 【错因分析】求集合B 时,未考虑分式不等式中分母为零这一条件(若B 中不等式为()0f x >或()0f x <形式而不是()0f x ³或()0f x £则不需要考虑此问题)则不需要考虑此问题). . 【正确解析】由题意,【正确解析】由题意,A=A={|11}x a x a -££+B :2(6)(5)(3)0300{|6303x x x x x x x x x -+-³ì--³ÛÛ³í-¹-î或53}x -£<由F =B A 则(,6)[4,5)a Î-¥- . 例28.已知数列{}n a 的前n 项和12+=n nS,求.n a【错解】【错解】 .222)12()12(1111----=-=+-+=-=n n n n n n nnS S a【错因分析】【错因分析】 显然,当1=n 时,1231111=¹==-S a ,不满足上述公式,不满足上述公式. .没有注意公式1--=n n n S S a 成立的条件是n 2³.【正确解析】当1=n 时,113a S ==,n 2³时,时,1111(21)(21)222n n n n n n n n a S S ----=-=+-+=-=.所以13(1)2(2)n n n a n -ì=ï=í³ïî.例29.实数a 为何值时,圆012222=-+-+a ax y x 与抛物线x y 212=有两个公共点有两个公共点. . 【错解】【错解】 将圆012222=-+-+a ax y x 与抛物线与抛物线 x y 212=联立,消去y , 得 ).0(01)212(22³=-+--x a x a x ①①因为有两个公共点,所以方程①有两个相等正根,得ïïîïïíì>->-=D .01021202a a ,, 解之得.817=a 【错因分析】如下图(【错因分析】如下图(11)(2).显然,当0=a 时,圆与抛物线有两个公共点时,圆与抛物线有两个公共点. .11143q q q qq q 43x y O 图1x y O 图2(4)空间识图不准数学运算能力包括空间想象能力数学运算能力包括空间想象能力数学运算能力包括空间想象能力..空间想象能力是指能根据条件作出正确的图形,根据图形想象出直观形象;能正确地分析出图形中基本元素及其相互关系;能对图形进行分解、组合与变换;会运用图形与图表等手段形象地揭示问题的本质.表等手段形象地揭示问题的本质.对图形的想象主要包括有图想图和无图想图两种,是空间想象能力高层次的标志.而空间识图不准导致的立何几何题目出错情况很多. 例31.直二面角α-l -β的棱l 上有一点A ,在平面α、β内各有一条射线AB ,AC 与l 成450,AB b a ÌÌAC ,,则∠BAC= . 【错解】如右图由最小角定理,12221cos cos cos 2223BAC BAC pq q Ð=×=´=ÞÐ=【错因分析】错解中忽视了AC 的另一位置OD OD,此时,此时23BAD p Ð=.【正确解析】3p或23p .如下图.当6CAF pÐ=时,由最小角定理,12221cos cos cos 2223BAC BAC p q q Ð=×=´=ÞÐ=;当AC 在另一边DA 位置时,23BAC pÐ=.(5)推理方向的盲目性根据题的已知条件及所求的特征,有时直接从已知出发,运用公式、定理等得结论,这是综合法;有时需要从结论出发,分析它的必要条件,直到得到一个明显成立的命题,时需要从结论出发,分析它的必要条件,直到得到一个明显成立的命题,这是分析法这是分析法.这是两种不同的推理方向,如果解题时失主理方向不正确,可能导致解题思路受阻或出错. 例32.32. 设f f ( ( ( x x x ) ) ) = = = x x 3-21x 2-2x +5,当]2,1[-Îx 时,f f ( ( ( x x x ) ) ) < < < m m 恒成立,则实数m 的取值范围为 . 【错解】m>72.令2'()320f x x x =-->,得f(x)的增区间为2(,),(1),(1,,)3-¥-+¥,f(-1)=112(区间左端点),7(1)2f =(极小值点),所以]2,1[-Îx 时min 7()2f x =所以m>72.【错因分析】推理方向的不正确,f ( x ) < m 恒成立应理解为max ()m f x >而不是min ()m f x >. 【正确解析】m>7.由题意,f f ( ( ( x x x ) ) ) < < < m m 恒成立即max ()m f x >.令2'()320f x x x =-->,得f(x)的增区间为2(,),(1),(1,,)3-¥-+¥,且f(2)=7,2()73f -<,结合f(x)的草图知,max()7f x =,所以m>7.(6)限域求值端点取值不正确例33.若31<<-x ,则_____________;__________112ÎÎ-x x()])的取值范围是的取值范围是 . .1,3,sin,sin 426636232£Þ£Þ£+£==)36p +£.【错因分析】当2663£+£时,根据正弦函数的图象,)6+[,1]23[,]222,42663p p p p p £Þ£Þ£+£)6p+1[,1]2n (6+(7)说一套做一套,粗枝大叶,心里想的和手上写的不一致tan tan 1=-+=BA 4=. 。
高一上学期易错陷阱总结1、 对数型函数中,(易忽略真数位置大于0)5.已知y =log a (2-ax )在[0,1]上为减函数,则a 的取值范围为( ) A .(0,1) B .(1,2) C .(0,2) D .[2,+∞) 2、 集合中,空集的特殊性(易忘记讨论空集)13.已知集合A ={x |2a +1≤x ≤3a -5},B ={x |x <-1,或x >16},分别根据下列条件求实数a 的取值范围. (1)A ∩B =∅; (2)A ⊆(A ∩B ). 3、集合中,元素的互异性(易忽略导致取值错误)[例2] 已知集合⎩⎨⎧⎭⎬⎫1,a ,b a ={0,a 2,a +b },求a 2 019+b 2 020的值.跟踪探究 2.已知集合A ={2,x ,y },B ={2x,2,y 2}且A =B ,求x ,y 的值.4、集合中,元素的特殊要求(比如:易忽略x等条件)跟踪探究 1.若集合A ={x |1≤x ≤3,x ∈N },B ={x |x ≤2,x ∈N },则A ∩B =( )A.{x |1≤x ≤2} B .{x |x ≥1} C .{2,3}D .{1,2}5、抽象函数的定义域问题(定义域仅代表x ,括号内取值范围一致)14、函数的定义域为,则的定义域是___;函数的定义域为___.6、 区间中默认a<b14.已知函数f (x )=, x是偶函数,则a+b=7、 换元法求值域类问题(易忽略换元后,t 的取值范围)(1)f (x +1)=x +2x ,求f (x )的值域;8、动轴定区间类问题(分类讨论不重不漏)典型案例:求函数y =x 2-2ax -1在[0,2]上的最值.9同增异减求单调区间问题(对数型时不能忽略真数位置大于0)(多个区间,隔开)跟踪探究 2.求函数y =log 2(x 2-5x +6)的单调区间.10、分段函数单调性问题。
(易忽略结点处)13.已知函数f (x )=⎩⎪⎨⎪⎧x 2-ax +4,(x ≤1),-ax +3a -4,(x >1)且f (x )在R 上递减,则实数a 的取值范围________.11.解分式不等式。
【目录】一、导言二、易错题汇总及解析1. 二次函数的基本性质及应用2. 数列与数学归纳法3. 平面向量的运算及应用4. 不定积分与定积分5. 空间几何与三视图6. 概率统计及应用三、总结与展望【正文】一、导言数学作为一门基础学科,对培养学生的逻辑思维能力、数学建模能力和问题解决能力有着举足轻重的作用。
而在高中阶段,数学的难度也相应提升,很多学生容易在一些常见的易错题上犯错。
本文将对高中数学易错题进行大汇总,并给出详细的解析,希望能够帮助同学们更好地理解和掌握这些知识点。
二、易错题汇总及解析1. 二次函数的基本性质及应用(1)易错题案例:已知二次函数f(x)=ax²+bx+c的图象经过点(1,2),且在点(2,1)处的切线斜率为3,求a、b、c的值。
解析:首先利用已知条件列方程,得到三元一次方程组。
然后利用切线的斜率性质,得到关于a和b的关系式。
最后代入已知条件解方程组即可求得a、b、c的值。
(2)易错题案例:已知函数f(x)=ax²+bx+c的图象经过点a、b、c,求a、b、c的值。
解析:利用函数过定点的性质列方程,再利用函数在定点处的斜率为求得a、b、c的值。
2. 数列与数学归纳法(1)易错题案例:已知等差数列{an}的前n项和为Sn=n²,求an。
解析:利用等差数列的前n项和公式列方程,然后利用数学归纳法求得an的表达式。
(2)易错题案例:已知{an}是等比数列,且a₁=2,a₃=18,求通项公式。
解析:利用等比数列的通项公式列方程,再利用已知条件求出通项公式的值。
3. 平面向量的运算及应用(1)易错题案例:已知向量a=3i+4j,b=5i-2j,求a与b的夹角。
解析:利用向量的夹角公式求出a与b的夹角。
(2)易错题案例:已知平面向量a=2i+j,b=i-2j,求2a-3b的模。
解析:利用向量的运算规则,先求出2a和3b,然后再求它们的差向量,最后求出差向量的模。
高三数学错题整理与解析在高三数学学习过程中,学生经常会遇到各种错题。
对于这些错题,我们需要进行仔细的整理与解析,以提高学生的数学水平。
本文将对高三数学错题进行整理分类,并给出详细的解答和解析。
一、代数与函数1. 题目:已知函数$f(x) = \frac{1}{x}$,求函数$f(f(x))$的表达式。
解析:将$f(x) = \frac{1}{x}$代入$f(f(x))$中,得到$f(f(x)) =\frac{1}{f(x)} = \frac{1}{\frac{1}{x}} = x$。
2. 题目:已知二次函数$f(x) = ax^2 + bx + c$的图像关于$x$轴对称,且顶点在直线$y = 2x + 1$上。
求$a$、$b$、$c$的值。
解析:由于图像关于$x$轴对称,所以顶点的纵坐标为0。
将顶点的横坐标代入直线方程$y = 2x + 1$中,得到$0 = 2x_0 + 1$,解得$x_0 = -\frac{1}{2}$。
将$x_0 = -\frac{1}{2}$代入二次函数$f(x)$中的横坐标,得到$a\left(-\frac{1}{2}\right)^2 + b\left(-\frac{1}{2}\right) + c = 0$。
根据顶点坐标的性质,我们知道顶点的横坐标为$-\frac{b}{2a}$,因此$-\frac{b}{2a} = -\frac{1}{2}$,解得$b = a$。
将$b = a$代入上述方程,得到$a\left(-\frac{1}{2}\right)^2 + a\left(-\frac{1}{2}\right) + c = 0$,整理得$c = \frac{1}{4}$。
综上所述,$a = b$,$c = \frac{1}{4}$。
二、几何与三角学1. 题目:已知$\triangle ABC$中,$AB = 7$,$AC = 9$,$BC = 5$,$D$为边$BC$上一点,且$\angle BAD = \angle CAD$。
高一数学错题集锦与讲解1. 周长与面积题目:一个正方形的周长为16cm,求它的面积。
解析:设正方形的边长为a,则周长可以表示为4a,根据题目可得4a=16cm,解方程得到a=4cm。
正方形的面积可以表示为a²,代入已知的边长得到面积为4²=16cm²。
所以,这个正方形的面积为16平方厘米。
2. 相似三角形题目:两个三角形的两个内角分别为45°和90°,它们的两边分别成比例,则这两个三角形相似吗?解析:根据三角形的内角和定理可知,三角形的内角和为180°。
已知其中一个三角形的两个内角分别为45°和90°,则第三个内角为180°-45°-90°=45°。
另一个三角形的两个内角分别为45°和90°,则第三个内角也为45°。
因此,这两个三角形的内角完全相同,所以它们是相似三角形。
3. 平行线与相交线题目:如图,AB//CD,AD是两平行线AB和CD的相交线段。
已知∠ABC=80°,求∠CDA的度数。
解析:根据平行线的性质,平行线AB和CD之间的对应角是相等的。
所以∠ABC=∠CDA。
已知∠ABC=80°,代入已知条件可得∠CDA=80°。
4. 三角函数的计算题目:已知cosθ=1/2,求sinθ的值。
解析:根据三角函数的定义可知,sinθ=√(1-cos²θ)。
已知cosθ=1/2,代入公式可得sinθ=√(1-(1/2)²)=√(1-1/4)=√(3/4)=√3/2。
所以,sinθ的值为√3/2。
5. 数列的求和题目:求等差数列1, 4, 7, 10, …, 100的前n项和Sn。
解析:已知第一项a₁=1,公差d=3(等差数列的公差是指相邻两项之间的差值)。
根据等差数列的求和公式,Sn=n(a₁+an)/2。
高中数学易错题分类解析姓名:*** 教师:*** 授课时间:*** 课题:易错题分类解析考点12排列、组合、二项式定理►正确运用两个基本原理►排列组合►二项式定理►在等可能性事件的概率中考查排列、组合►利用二项式定理解决三项以上的展开式问题►利用二项式定理证明不等式经典易错题会诊教学反馈教师评价本周作业建议经典易错题会诊预测(十二)考点12排列、组合、二项式定理►正确运用两个基本原理►排列组合►二项式定理►在等可能性事件的概率中考查排列、组合►利用二项式定理解决三项以上的展开式问题►利用二项式定理证明不等式经典易错题会诊命题角度1正确运用两个基本原理1.(典型例题)已知集合A=B={1,2,3,4,5,6,7},映射f:A→B满足f(1)<f(2)<f(3)<f(4),则这样的映射f的个数为()A.C47A33B.C47C.77D.C7473[考场错解] ∵f(1)<f(2)<f(3)<f(4),且f(1)<f(2)<f(3)<f(4)的值为{1,2,3,4,5,6,7}中的某4个,∴这样的映射有C47个,∴选B[专家把脉] C47中的任何一种方法都没有完成组成映射这件事情,因为只找到1、2、3、4的象,而5、6、7的象还没有确定。
[对症下药] 由映射的定义f(1) f(2) f(3) f(4)的值应为{1,2,3,4,5,6,7}中的某4个,又f(1)<f(2)<f(3)<f(4) ∴f(1) f(2) f(3) f(4)的大小已定,∴1、2、3、4的象的可能为C47,5、6、7三个元素的象每一个都有7种可能,∴有73种可能。
根据分肯计数原理,这样的映射共有C47·73个。
∴选D。
2.(典型例题)8人进行乒乓球单打比赛,水平高的总能胜水平低的,欲选出水平最高的两人,至少需要比赛的场数为__________(用数字作答)[考场错解] 每两人之间比赛一场,需要比赛C28=28场,填28场;或第一轮分成4对进行比赛,负者被淘汰,胜者进入第二轮,需4场比赛;第二轮分成2对进行比赛,胜者为水平最高的两人,需2场比赛。
数学必修一易错题、好题、难题前言:本人为衡水中学毕业生,高中三年记了很多错题本、积累本,高考之后不会再看了,但扔了可惜,所以现将当年积累的错题一点点整理出来,希望对各位学弟学妹有帮助。
如有错误,望告知。
⒈ 已知a ∈Z ,A={(x ,y ) | ax -y ≤3}且(2,1)∈A ,(1,-4)∉A ,则满足条件的a 的值为0或1或2. 解:∵(2,1)∈A ,∴2a -1≤3,∴a ≤2;∵(1,-4)∉A ,∴a +4>3,a >-1。
∵a ∈Z ,∴a 为0,1,2. ⒉ 已知集合A={x ∈R | ax 2-3x +2=0}.⑴若A=∅,求实数a 的取值范围;⑵若A 是单元素集,求a 得值及集合A ;⑶求集合P={a ∈R | a 使得A≠∅ }.解:⑴∵A=∅ ∴{a ≠0∆=9−8a <0,解得a >98. ⑵ ①当a =0时,-3x +2=0,解得x =23,∴A={23}.②{a ≠0∆=9−8a =0,解得a =89,∴A={43}. 综上所述,当a =0时,A={23};当a =98时,A={43}.⑶由⑴可知,a ≤98.⒊ 已知集合A={x ∈R|mx 2−2x +3=0,m ∈R },若A 重元素至多有一个,求m 的取值范围.解:①当m =0时,-2x +3=0,∴x =32. ②{m ≠0∆=4−12m ≤0,解得m ≥13. 综上所述,m 的取值范围为m ≥13或m =0. ⒋ 用列举法表示集合B={a 9−x ∈N|x ∈N}.解:B={1,3,9}.⒌ 设B={1,2},A={x|x ⊆B },则A 与B 的关系是 B ∈A .解析:∵x ⊆B ,∴x ={{1},{2},{1,2},∅},∴B ∈A.⒍ 已知集合A={x|x 2−2x −3=0},B={x|ax −1=0},若B ⊆A ,则实数a 的值构成的集合是{-1,0,13}.解析:此题容易落掉B=∅的情况,当B=∅时,a =0.7 若{x|2x −a =0,a ∈N }⊆{x|−1<x <3},则a 的所有取值组成的集合为{0,1,2,3,4,5}. 解析:x =a 2,∴-1<a 2<3,即-2<a <6,又∵a ∈N ,∴a =0,1,2,3,4,5.⒏ 设集合A={1,a,b },B={a,a 2,ab },且A=B ,实数a 的值为 -1 .解析:①{a 2=1ab =b,解得a =±1,∵a ≠1,∴a =-1,此时b =0. ②{a 2=b ab =1,此种情况不成立. ⒐ 已知集合A={x|0<x <3},B={x|m <x <4−m },且B ⊆A ,则实数m 满足的条件是 m ≥1.解析:当B=∅时,m ≥4-m ,m ≥2;当B ≠∅时{m ≥04−m ≤3m <4−m ,解得{m ≥0m ≥1m <2,综上所述,m ≥1.⒑ 设集合A={−1,1},试用列举法写出下列集合.⑴ B={(x,y )|x,y ∈A } ⑵ C={x|x ⊆A }解:B={(−1,−1),(1,1),(−1,1),(1,−1)}. C={∅,{−1},{1},{(−1,1)}}.⒒ 已知三元素集合A={x,xy,x −y },B={0,|x |,y },且A=B ,求x 与y 的值.解:∵x ≠0,y ≠0,∴xy ≠0,∴x -y =0,∴{x =yx −y =0xy =|x|,解得x =y =±1. 当x =1时,A={1,1,0}(舍去);当x =-1时,A={-1,1,0},B={0,1,-1}.综上所述,x 与y 的值均为-1.⒓ A={x|x 2+4x =0},B={x|x 2+2(a +1)x +a 2−1=0}.⑴ 若A ⊆B ,求a 的值; ⑵ 若B ⊆A ,求a 的值.解:A={0,-4}.⑴ ∵A ⊆B ,∴B={0,-4},∴{−4=−2(a +1)0=a 2−1,解得a =1. ⑵ ∵B ⊆A ,∴①若B=∅,∆=8a +8<0,∴a <-1.②若B 为单元素集,即B={0}或{-4},∴∆=8a +8=0,a =-1,∴x 2=0,x =0,B={0}.③若A=B ,则a =1.综上所述,a ≤-1或a =1.⒔ 已知集合A={x|−2≤x ≤5},非空集合B={x|m +1≤x ≤2m −1},且B ⊆A ,求m 的取值集合.解:∵B ⊆A 且B 为非空集合,∴{m +1≥−22m −1≤5m +1≤2m −1,解得2≤m ≤3,即m 的取值集合为{m|2≤m ≤3}.⒕ 已知集合A={x|ax 2−3x −4=0,x ∈R }.⑴若A 中有两个元素,求实数a 的取值范围;⑵若A 中至多有一个元素,求实数a 的取值范围.解:⑴∵A 中有两个元素,∴{a ≠0∆=9+16a >0,∴a >-916且a ≠0. ⑵当a =0时,-3x -4=0,∴x =-43;当a ≠0时,∆=9+16a ≤0,∴a ≤-916.综上所述,a 的取值范围为a ≤-916或a =0.⒖ 设集合A={2, a },B={a 2-2, 2},若A=B ,则实数a 的取值范围为{-1}.解析:∵A=B ,∴a 2-2=a ,∴a 1=-1,a 2=2. ∵a ≠2,∴a =-1.⒗ 已知A ⊆B ,其中A={x|ax −1=0,a ∈R },若A=B ,则实数a 的取值集合为{-1,0,1}. 解析:因为A ⊆B ,∴①当A=∅时,a =0;②当A ≠∅时,a =±1. ∴a 为{-1,0,1}.⒘ 已知全集U=R ,A={x|−2≤x ≤3},B={x|x −a >0},A ⊆B ,求a 的取值范围. 解:a <-2.⒙ 设全集I={(x,y )|x,y ∈R },集合M={(x,y )|y−3x−2=1},N={(x,y )|y ≠x +1},那么(∁I M )∩(∁I N)等于{(2,3)}.解析:M={(x,y )|y =x +1,x ≠2,y ≠3},∴M ∪ N={(x,y )|x ≠2,y ≠3},∴∁I (M ∪N )={(2,3)}.⒚ 设数集M={x|m ≤x ≤m +34},N={x|n −13≤x ≤n},且M ,N 都是集合{x|0≤x ≤1}的子集,如果把b -a 叫做集合{x|a ≤x ≤b }的“长度”,那么集合M ∩N 的“长度”的最小值是(112). 解析:∵M ⊆{x|0≤x ≤1},∴0≤m ≤34,∵N ⊆{x|0≤x ≤1},∴23≤n ≤1,∴M ∩N={x|23≤x ≤34},∴长度为112.⒛ 若{x ∈R|x 2+2(a +1)x +a 2−1=0}⊆{x|x 2=0},则实数a 的取值范围是a ≤−1. 解析:① ∆=4(a 2+2a +1)-4(a 2-1)<0,∴a <-1;② ∆=4(a 2+2a +1)-4(a 2-1)=0,∴a =-1.综上所述,a ≤-1.。
高中数学典型易错题大集分析与解答大全(12个易错点)
高中数学不仅仅是要从基础打好,要有效的提高成绩,还得不断的汇总起来自己的错题本!
错题本是提高学习成绩的最有效办法。
从错题入手,不断的培养良好学习态度和习惯,当然,最大的作用是不断的帮助这类题型,这类基础查漏补缺,深入完善自己欠缺点!尤其是学习基础差、成绩差的同学就更适用!
下面以函数的定义域及值域这个知识点为例
这类题型很普遍,但是考生很容易丢分!
易错点1没有理解掌握已知原函数求复合函数的定义域的方法
易错点2没有理解掌握已知复合函数的定义域求原函数的定义域的方法
易错点3根式化简错误导致同一函数判断出错
易错点4求复合函数的定义域时漏掉了对数函数的限制条件
易错点5误认为函数的最值总是在函数图像的端点取得
易错点6求函数的最值时忽略了函数的定义域
易错点7讨论对数函数的最值没有对底数分类讨论
易错点8消元时忽略了等式中的隐含条件
易错点9当二次函数的对称轴与函数的定义域的端点位置不确定时没有分类讨论
易错点10数形结合分析时忽略了对函数定义域的研究考虑
易错点11审题粗心大意没有看清部分小条件
易错点12数形结合分析数学问题时没有进行动态的分析。