高一第一次月考测试
- 格式:doc
- 大小:83.09 KB
- 文档页数:4
2023-2024学年河南省高一上册第一次月考数学试题一、单选题1.已知集合{}220A x x x =-≤,{}1,0,3B =-,则()R A B ⋂=ð()A .∅B .{}0,1C .{}1,0,3-D .{}1,3-【正确答案】D【分析】先由一元二次不等式的解法求得集合A ,再由集合的补集和交集运算可求得答案.【详解】因为{}{}22002A x x x x x =-≤=≤≤,所以{R |0A x x =<ð或}2x >,又{}1,0,3B =-,所以(){}1,3R A B ⋂=-ð,故选:D .2.已知函数()f x =()()3y f x f x =+-的定义域是()A .[-5,4]B .[-2,7]C .[-2,1]D .[1,4]【正确答案】D【分析】由函数解析式可得2820x x +-≥,解不等式可得24x -≤≤,再由24234x x -≤≤⎧⎨-≤-≤⎩即可求解.【详解】由()f x =2820x x +-≥,解得24x -≤≤,所以函数()()3y f x f x =+-的定义域满足24234x x -≤≤⎧⎨-≤-≤⎩,解得14x ≤≤,所以函数的定义域为[1,4].故选:D 3.不等式3112x x-≥-的解集是()A .3{|2}4x x ≤≤B .3{|2}4x x ≤<C .{>2x x 或3}4x ≤D .3{|}4x x ≥【正确答案】B【分析】把原不等式的右边移项到左边,通分计算后,然后转化为()()432020x x x ⎧--⎨-≠⎩,求出不等式组的解集即为原不等式的解集.【详解】解:不等式3112x x --可转化为31102x x ---,即4302x x --,即4302x x --,所以不等式等价于()()432020x x x ⎧--⎨-≠⎩,解得:324x <,所以原不等式的解集是3{|2}4x x <.故选:B .4.命题“∀x ∈R ,∃n ∈N+,使n ≥2x+1”的否定形式是()A .∀x ∈R ,∃n ∈N+,有n<2x+1B .∀x ∈R ,∀n ∈N+,有n<2x+1C .∃x ∈R ,∃n ∈N+,使n<2x+1D .∃x ∈R ,∀n ∈N+,使n<2x+1【正确答案】D【分析】根据全称命题、特称命题的否定表述:条件中的∀→∃、∃→∀,然后把结论否定,即可确定答案【详解】条件中的∀→∃、∃→∀,把结论否定∴“∀x ∈R ,∃n ∈N+,使n ≥2x+1”的否定形式为“∃x ∈R ,∀n ∈N+,使n<2x+1”故选:D本题考查了全称命题、特称命题的否定形式,其原则是将原命题条件中的∀→∃、∃→∀且否定原结论5.已知12a b ≤-≤,24a b ≤+≤,则32a b -的取值范围是()A .3,92⎡⎤⎢⎥⎣⎦B .5,82⎡⎤⎢⎥⎣⎦C .5,92⎡⎤⎢⎥⎣⎦D .7,72⎡⎤⎢⎥⎣⎦【正确答案】D【分析】令32()()a b m a b n a b -=-++求,m n ,再利用不等式的性质求32a b -的取值范围.【详解】令32()()()()a b m a b n a b m n a n m b -=-++=++-,∴32m n n m +=⎧⎨-=-⎩,即51,22m n ==,∴55()5,121()222a b a b ≤-≤≤+≤,故73272a b ≤-≤.故选:D6.如图,ABC 中,90ACB ∠=︒,30A ∠=︒,16AB =,点P 是斜边AB 上任意一点,过点P 作PQ AB ⊥,垂足为P ,交边AC (或边CB )于点Q ,设AP x =,APQ △的面积为y ,则y 与x 之间的函数图象大致是()A .B .C .D .【正确答案】D【分析】首先过点C 作CD AB ⊥于点D ,由ABC 中,90ACB ∠= ,30A ∠= ,可求得B ∠的度数与AD 的长度,再分别从当012AD ≤≤与当1216x <≤时,去分析求解即可求得y 与x 之间的函数关系式,进一步选出图象.【详解】过点C 作CD AB ⊥于点D ,因为90ACB ∠= ,30A ∠= ,16AB =,所以60B ∠= ,142BD BC ==,12AD AB BD =-=.如图1,当012AD ≤≤时,AP x =,tan 30PQ AP x =⋅ ,所以21236y x x x ==,如图2:当1216x <≤时,16BP AB AP x =-=-,所以)tan 6016PQ BP x =⋅=-,所以)211622y x x x =-=-+,故选:D此题考查了动点问题,注意掌握含30 直角三角形的性质与二次函数的性质;注意掌握分类讨论的思想.属于中档题.7.已知函数221111x xf x x --⎛⎫= ⎪++⎝⎭,则()f x 的解析式为()A .()()2211x f x x x =≠-+B .()()2211xf x x x =-≠-+C .()()211xf x x x =≠-+D .()()211xf x x x =-≠-+【正确答案】A 【分析】令11x t x -=+,则11tx t-=+,代入已知解析式可得()f t 的表达式,再将t 换成x 即可求解.【详解】令11x t x -=+,则11tx t-=+,所以()()222112111111t t t f t t t t t -⎛⎫- ⎪+⎝⎭==≠-+-⎛⎫+ ⎪+⎝⎭,所以()()2211xf x x x=≠-+,故选:A.8.已知0x >,0y >,且2121x y+=+,若2231x y m m +>--恒成立,则实数m 的取值范围是()A .1m ≤-或4m ≥B .4m ≤-或m 1≥C .14-<<mD .41m -<<【正确答案】C 由2121x y +=+得121y x=+,利用基本不等式求出2x y +的最小值,再将不等式恒成立转化为最值,解不等式可得结果.【详解】由2121x y +=+得212(1)y x x y ++=+,所以12x xy +=,所以121y x=+,所以121x y x x +=++13≥=,当且仅当1,1x y ==时,等号成立,所以()min 23x y +=,所以2231x y m m +>--恒成立,可化为2331m m >--,即2340m m --<,解得14-<<m .故选:C结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化:①若()k f x ≥在[,]a b 上恒成立,则max ()k f x ≥;②若()k f x ≤在[,]a b 上恒成立,则min ()k f x ≤;③若()k f x ≥在[,]a b 上有解,则min ()k f x ≥;④若()k f x ≤在[,]a b 上有解,则max ()k f x ≤;二、多选题9.有以下判断,其中是正确判断的有().A .()xf x x =与()1,01,0x g x x ≥⎧=⎨-<⎩表示同一函数B .函数()22122x f x x =+++的最小值为2C .函数()y f x =的图象与直线1x =的交点最多有1个D .若()1f x x x =--,则112f f ⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭【正确答案】CD【分析】根据函数的定义域可判断A 的正误,根据基本不等式可判断B 的正误,根据函数的定义可判断C 的正误,根据函数解析式计算对应的函数值可判断D 的正误.【详解】对于A ,()xf x x=的定义域为()(),00,∞-+∞U ,而()1,01,0x g x x ≥⎧=⎨-<⎩的定义域为R ,两个函数的定义域不同,故两者不是同一函数.对于B ,由基本不等式可得()221222f x x x =++≥+,但221x +=无解,故前者等号不成立,故()2f x >,故B 错误.对于C ,由函数定义可得函数()y f x =的图象与直线1x =的交点最多有1个,故C 正确.对于D ,()1012f f f ⎛⎫⎛⎫== ⎪⎪⎝⎭⎝⎭,故D 正确.故选:CD.10.下面命题正确的是()A .“3x >”是“5x >"的必要不充分条件B .“0ac <”是“一元二次方程20ax bx c ++=有一正一负两个实根”的充要条件C .“1x ≠”是“2430x x -+≠”的必要不充分条件D .设,R x y ∈,则“4x y +≥”是“2x ≥且2y ≥”的充分不必要条件【正确答案】ABC【分析】利用充分条件,必要条件的定义逐项判断作答.【详解】对于A ,3x >不能推出5x >,而5x >,必有3x >,“3x >”是“5x >"的必要不充分条件,A 正确;对于B ,若0ac <,一元二次方程20ax bx c ++=判别式240b ac ∆=->,方程有二根12,x x ,120cx x a=<,即12,x x 一正一负,反之,一元二次方程20ax bx c ++=有一正一负两个实根12,x x ,则120cx x a=<,有0ac <,所以“0ac <”是“一元二次方程20ax bx c ++=有一正一负两个实根”的充要条件,B 正确;对于C ,当1x ≠时,若3x =,有2430x x -+=,当2430x x -+≠时,1x ≠且3x ≠,因此“1x ≠”是“2430x x -+≠”的必要不充分条件,C 正确;对于D ,,R x y ∈,若4x y +≥,取1,4x y ==,显然“2x ≥且2y ≥”不成立,而2x ≥且2y ≥,必有4x y +≥,设,R x y ∈,则“4x y +≥”是“2x ≥且2y ≥”的必要不充分条件,D 不正确.故选:ABC11.函数()1,Q0,Qx D x x ∈⎧=⎨∉⎩被称为狄利克雷函数,则下列结论成立的是()A .函数()D x 的值域为[]0,1B .若()01D x =,则()011D x +=C .若()()120D x D x -=,则12x x -∈Q D .x ∃∈R ,(1D x =【正确答案】BD【分析】求得函数()D x 的值域判断选项A ;推理证明判断选项B ;举反例否定选项C ;举例证明x ∃∈R ,(1D x =.判断选项D.【详解】选项A :函数()D x 的值域为{}0,1.判断错误;选项B :若()01D x =,则0Q x ∈,01Q x +∈,则()011D x +=.判断正确;选项C :()()2ππ000D D -=-=,但2ππ=πQ -∉.判断错误;选项D :当x =时,((()01D x D D ===.则x ∃∈R ,(1D x =.判断正确.故选:BD12.已知集合{}20,0x x ax b a ++=>有且仅有两个子集,则下面正确的是()A .224a b -≤B .214a b+≥C .若不等式20x ax b +-<的解集为()12,x x ,则120x x >D .若不等式2x ax b c ++<的解集为()12,x x ,且124x x -=,则4c =【正确答案】ABD【分析】根据集合{}20,0x x ax b a ++=>子集的个数列方程,求得,a b 的关系式,对A ,利用二次函数性质可判断;对B ,利用基本不等式可判断;对CD ,利用不等式的解集及韦达定理可判断.【详解】由于集合{}20,0x x ax b a ++=>有且仅有两个子集,所以2240,4a b a b ∆=-==,由于0a >,所以0b >.A ,()22224244a b b b b -=-=--+≤,当2,b a ==时等号成立,故A 正确.B ,21144a b b b +=+≥=,当且仅当114,,2b b a b ===时等号成立,故B 正确.C ,不等式20x ax b +-<的解集为()12,x x ,120x x b =-<,故C 错误.D ,不等式2x ax b c ++<的解集为()12,x x ,即不等式20x ax b c ++-<的解集为()12,x x ,且124x x -=,则1212,x x a x x b c +=-=-,则()()22212121244416x x x x x x a b c c -=+-=--==,4c ∴=,故D 正确,故选:ABD三、填空题13.已知21,0()2,0x x f x x x ⎧+≥=⎨-<⎩,求()1f f -=⎡⎤⎣⎦________.【正确答案】5【分析】先求()1f -,再根据()1f -值代入对应解析式得()1.f f ⎡⎤-⎣⎦【详解】因为()()1212,f -=-⨯-=所以()[]1241 5.f f f ⎡⎤-==+=⎣⎦求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现(())f f a 的形式时,应从内到外依次求值.14.已知正实数a 、b 满足131a b+=,则()()12a b ++的最小值是___________.【正确答案】13+13+【分析】由已知可得出3ba b =-且3b >,化简代数式()()12a b ++,利用基本不等式可求得结果.【详解】因为正实数a 、b 满足131a b +=,则03b a b =>-,由0b >可得3b >,所以,()()()()()()32312122222333b b a b b b b b b b +⎛⎫⎛⎫++=++=++=++⎪ ⎪---⎝⎭⎝⎭()()()33515222313131333b b b b b -+=++=-++≥+=+--当且仅当62b =时,等号成立.因此,()()12a b ++的最小值是13+.故答案为.13+15.对于[]1,1a ∈-,()2210x a x a +-+->恒成立的x 取值________.【正确答案】()(),02,-∞+∞ 【分析】设()()()2221121f a x a x a x a x x =+-+-=-+-+关于a 的一次函数,只需()()1010f f ⎧>⎪⎨->⎪⎩即可求解.【详解】令()()()2221121f a x a x a x a x x =+-+-=-+-+,因为对于[]11a ∈-,,不等式()2210x a x a +-+->恒成立,所以()()1010f f ⎧>⎪⎨->⎪⎩即220320x x x x ⎧->⎨-+>⎩解得:0x <或2x >.故答案为.()()02-∞⋃+∞,,方法点睛:求不等式恒成立问题的方法(1)分离参数法若不等式(),0f x λ≥()x D ∈(λ是实参数)恒成立,将(),0f x λ≥转化为()g x λ≥或()()g x x D λ≤∈恒成立,进而转化为()max g x λ≥或()()min g x x D λ≤∈,求()g x 的最值即可.(2)数形结合法结合函数图象将问题转化为函数图象的对称轴、区间端点的函数值或函数图象的位置关系(相对于x 轴)求解.此外,若涉及的不等式转化为一元二次不等式,可结合相应一元二次方程根的分布解决问题.(3)主参换位法把变元与参数变换位置,构造以参数为变量的函数,根据原变量的取值范围列式求解,一般情况下条件给出谁的范围,就看成关于谁的函数,利用函数的单调性求解.16.若函数2()2f x x x =+,()2(0)g x ax a =+>,对于1x ∀∈[]1,2-,[]21,2x ∃∈-,使12()()g x f x =,则a 的取值范围是_____________.【正确答案】(]0,3【分析】由题意可知函数()g x 在区间[]1,2-的值域是函数()f x 在区间[]1,2-的值域的子集,转化为子集问题求a 的取值范围.【详解】()()20g x ax a =+>在定义域上是单调递增函数,所以函数在区间[]1,2-的值域是[]2,22a a -+函数()22f x x x =+在区间[]1,2-是单调递增函数,所以函数()f x 的值域是[]1,8-,由题意可知[][]2,221,8a a -+⊆-,所以21228a a -≥-⎧⎨+≤⎩,解得.3a ≤故答案为.(]0,3本题考查双变量等式中任意,存在问题求参数的取值范围,重点考查函数的值域,转化与化归的思想,属于中档题型.四、解答题17.已知{|13}A x x =-<≤,{|13}B x m x m =≤<+(1)若1m =时,求A B ⋃;(2)若R B A ⊆ð,求实数m 的取值范围.【正确答案】(1)(1,4)A B =-U ;(2)()1,3,2m ⎛⎤∈-∞-+∞ ⎥⎝⎦ .(1)利用集合的并集定义代入计算即可;(2)求出集合R A ð,利用集合包含关系,分类讨论B =∅和B ≠∅两种情况,列出关于m 的不等式,求解可得答案.【详解】(1)当1m =时,{|14}B x x =≤<,则{|14}A B x x ⋃=-<<即(1,4)A B =-U .(2){|1R A x x =≤-ð或}(]()3,13,x >=-∞-⋃+∞,由R B A ⊆ð,可分以下两种情况:①当B =∅时,13m m ≥+,解得:12m ≤-②当B ≠∅时,利用数轴表示集合,如图由图可知13131m m m <+⎧⎨+≤-⎩或133m m m <+⎧⎨>⎩,解得3m >;综上所述,实数m 的取值范围是:12m ≤-或3m >,即()1,3,2m ⎛⎤∈-∞-+∞ ⎥⎝⎦ 易错点睛:本题考查利用集合子集关系确定参数问题,易错点是要注意:∅是任何集合的子集,所以要分集合B =∅和集合B ≠∅两种情况讨论,考查学生的逻辑推理能力,属于中档题.18.(1)已知a b c <<,且0a b c ++=,证明:a a a c b c<--.(2213a a a a ---(3)a ≥【正确答案】(1)证明见解析;(2)证明见解析【分析】(1)利用不等式的性质证明即可;(2)a 3a -<1a -2a -,对不等式两边同时平方后只需证明()3a a -<()()12a a --.【详解】证明:(1)由a b c <<,且0a b c ++=,所以0a <,且0,a cbc -<-<所以()()0a c b c -->,所以()()a c a c b c -<--()()b c a c b c ---,即1b c -<1a c -;所以a b c ->a a c -,即a a c -<a b c-.(2213a a a a ---,(3)a ≥a 3a -<1-a 2a -,即证(3)(3)(1)(2)2(1)(2)a a a a a a a a +-+--+-+--()3a a -<()()12a a --即证(3)(1)(2)a a a a -<--;即证02<,显然成立;213a a a a ---19.已知二次函数y =ax 2+bx ﹣a +2.(1)若关于x 的不等式ax 2+bx ﹣a +2>0的解集是{x |﹣1<x <3},求实数a ,b 的值;(2)若b =2,a >0,解关于x 的不等式ax 2+bx ﹣a +2>0.【正确答案】(1)a =﹣1,b =2(2)见解析【分析】(1)根据一元二次不等式的解集性质进行求解即可;(2)根据一元二次不等式的解法进行求解即可.【详解】(1)由题意知,﹣1和3是方程ax 2+bx ﹣a +2=0的两根,所以132(1)3b a a a ⎧-+=-⎪⎪⎨-+⎪-⨯=⎪⎩,解得a =﹣1,b =2;(2)当b =2时,不等式ax 2+bx ﹣a +2>0为ax 2+2x ﹣a +2>0,即(ax ﹣a +2)(x +1)>0,所以()210a x x a -⎛⎫-+> ⎪⎝⎭,当21a a-=-即1a =时,解集为{}1x x ≠-;当21a a -<-即01a <<时,解集为2a x x a -⎧<⎨⎩或}1x >-;当21a a ->-即1a >时,解集为2a x x a -⎧>⎨⎩或}1x <-.20.(1)求函数()3f x x 在区间[]2,4上的值域.(2)已知二次函数2()1(R)f x x mx m m =-+-∈.函数在区间[]1,1-上的最小值记为()g m ,求()g m 的值域;【正确答案】(1)12,4⎤-⎦;(2)(]0-∞,【分析】(1)t =,可得函数()22()36318g t t tt t =--=+-,讨论其值域即可求解;(2)分类讨论二次函数的对称轴与给定区间[]1,1-的关系,分别表示出函数的最小值,表示为分段函数形式,作出图象即可求解.【详解】(1)函数()3f x x =,t =,则26x t =-∵[]2,4x ∈2t ≤≤那么函数()f x 转化为()22()36318g t t t t t =--=+-其对称轴16t =-,2t ≤≤时()g t 单调递增,∴()(2)g g t g ≤≤,12()4g t -≤≤-,故得()f x的值域为12,4⎤--⎦.(2)2()1f x x mx m =-+-,二次函数对称轴为2m x =,开口向上①若12m <-,即2m <-,此时函数()f x 在区间[]1,1-上单调递增,所以最小值()(1)2g m f m =-=.②若112m -≤≤,即22m -≤≤,此时当2m x =时,函数()f x 最小,最小值2()124m m g m f m ⎛⎫==-+- ⎪⎝⎭.③若12m >,即m>2,此时函数()f x 在区间[]1,1-上单调递减,所以最小值()(1)0g m f ==.综上22,2()1,2240,2m m m g m m m m <-⎧⎪⎪=-+--≤≤⎨⎪>⎪⎩,作出分段函数的图像如下,所以当2m <-时,()(,4);g m ∈-∞-当22m -≤≤时,[]4,0;g(m)∈-当m>2时,()0g m =,综上知()g m 的值域为(]0.,-∞21.今年,我国某企业为了进一步增加市场竞争力,计划在2023年利用新技术生产某款新手机.通过市场分析,生产此款手机全年需投入固定成本250万,每生产x (千部)手机,需另投入成本()R x 万元,且()2101001000,040100007018450,40x x x R x x x x ⎧++<<⎪=⎨+-≥⎪⎩,由市场调研知,每部手机售价0.7万元,且全年内生产的手机当年能全部销售完.(1)求2023年的利润()W x (万元)关于年产量x (千部)的函数关系式;(2)2023年产量为多少(千部)时,企业所获利润最大?最大利润是多少?【正确答案】(1)()2106001250,040100008200,40x x x W x x x x ⎧-+-<<⎪=⎨⎛⎫-++≥ ⎪⎪⎝⎭⎩(2)2023年产量为100(千部)时,企业所或利润最大,最大利润是8000万元【分析】(1)根据已知条件求得分段函数()W x 的解析式.(2)结合二次函数的性质、基本不等式求得()W x 的最大值以及此时的产量.【详解】(1)当040x <<时,()()22700101001000250106001250W x x x x x x =-++-=-+-;当40x ≥时,()100001000070070184502508200W x x x x x x ⎛⎫⎛⎫=-+--=-++ ⎪ ⎪⎝⎭⎝⎭;∴()2106001250,040100008200,40x x x W x x x x ⎧-+-<<⎪=⎨⎛⎫-++≥ ⎪⎪⎝⎭⎩;(2)若040x <<,()()210307750W x x =--+,当30x =时,()max 7750W x =万元;若40x ≥,()10000820082008000W x x x ⎛⎫=-++≤-= ⎪⎝⎭,当且仅当10000x x=即100x =时,()max 8000W x =万元.答:2023年产量为100(千部)时,企业所或利润最大,最大利润是8000万元.22.已知()11282,0,11f x f x x x x x ⎛⎫+=+-≠≠ ⎪-⎝⎭,(1)求()f x 的解析式;(2)已知()()()22,22g x mx mx g x x f x m =--<-+在()1,3上有解,求m 的取值范围.【正确答案】(1)1()2f x x=+,0,1x x ≠≠;(2)3m <.【分析】(1)根据给定条件,用11,1x x x--依次替换x ,再消元求解作答.(2)由(1)结合已知,变形不等式,分离参数构造函数,求出函数在()1,3的最大值作答.【详解】(1)0,1x x ≠≠,11()2()821f x f x x x +=+--,用11x-替换x 得:11()2912()1x f f x x x x -+=-+--,则有1114()4()8222(9)1011x f x f x x x x x x x --=+---+=-+---,用1x x-替换x 得:1112()2()82(1)711x f f x x x x x x x -+=+--=++--,于是得99()18f x x =+,则1()2f x x=+,所以()f x 的解析式为1()2f x x=+,0,1x x ≠≠.(2)(1,3)x ∈,2221()()22(2)22g x x f x m mx mx x m x-<-+⇔--+<-+,即22(2)22m x x x x -+<++,于是得22222x x m x x ++<-+,令2222(),132x x h x x x x ++=<<-+,依题意,(1,3)x ∈,()m h x <有解,当(1,3)x ∈时,222223()22323()22222222[()][()]23333x x x x h x x x x x x x -++-==+=+-+-+-+--++322316219(2333x x =+≤+-++-,当且仅当1629233x x -=-,即2x =时取等号,因此当2x =时,max ()(2)3h x h ==,则3m <,所以m 的取值范围是3m <.。
2024-2025学年高一上学期第一次月考数学试卷(基础篇)【人教A版(2019)】(考试时间:120分钟试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上;2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效;3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效;4.测试范围:必修第一册第一章、第二章;5.考试结束后,将本试卷和答题卡一并交回.第I卷(选择题)一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合要求的。
1.(5分)(24-25高一上·河北廊坊·开学考试)下列各组对象能构成集合的是()A.2023年参加“两会”的代表B.北京冬奥会上受欢迎的运动项目C.π的近似值D.我校跑步速度快的学生2.(5分)(23-24高一上·北京·期中)命题pp:∀xx>2,xx2−1>0,则¬pp是()A.∀xx>2,xx2−1≤0B.∀xx≤2,xx2−1>0C.∃xx>2,xx2−1≤0D.∃xx≤2,xx2−1≤03.(5分)(23-24高二下·福建龙岩·阶段练习)下列不等式中,可以作为xx<2的一个必要不充分条件的是()A.1<xx<3B.xx<3C.xx<1D.0<xx<14.(5分)(24-25高三上·山西晋中·阶段练习)下列关系中:①0∈{0},②∅ {0},③{0,1}⊆{(0,1)},④{(aa,bb)}= {(bb,aa)}正确的个数为()A.1 B.2 C.3 D.45.(5分)(24-25高三上·江苏南通·阶段练习)若变量x,y满足约束条件3≤2xx+yy≤9,6≤xx−yy≤9,则zz=xx+2yy的最小值为()A.-7 B.-6 C.-5 D.-46.(5分)(23-24高二下·云南曲靖·期末)已知全集UU={1,3,5,7,9},MM=�xx|xx>4且xx∈UU},NN={3,7,9},则MM∩(∁UU NN)=()A.{1,5}B.{5}C.{1,3,5}D.{3,5}7.(5分)(23-24高一上·陕西渭南·期末)已知不等式aaxx2+bbxx+2>0的解集为{xx∣xx<−2或xx>−1},则不等式2xx2+bbxx+aa<0的解集为()A.�xx�−1<xx<12�B.{xx∣xx<−1或xx>12}C.�xx�−1<xx<−12�D.{xx∣xx<−2或xx>1}8.(5分)(24-25高三上·江苏徐州·开学考试)已知aa>bb≥0且6aa+bb+2aa−bb=1,则2aa+bb的最小值为()A.12 B.8√3C.16 D.8√6二、多项选择题:本题共3小题,每小题6分,共18分,在每小题给出的四个选项中,有多项符合题目的要求,全部选对的得6分,部分选对的得部分分,有选错的得0分。
郑州一中27届(高一)第一次模拟测试数学试题卷第I 卷(选择题)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设全集,,则如图中阴影部分表示的集合为( )A. B. C. D. 2. 命题“,”的否定是( )A. , B. ,C. , D. ,3. 已知函数的值为( )A. B. 0 C. 2 D. 44. 已知,若,,,且,,,则的值( )A. 大于0B. 等于0C. 小于0D. 不能确定5. 函数的部分图象大致为( )A.B.U R =(){}{}30,1M x x x N x x =+<=<-{|1}x x ≥-{|30}-<<x x {|3}x x ≤-{|10}x x -≤<x ∃∈R 310x x +>x ∃∈R 310x x +≥x ∃∈R 310x x+≤x ∀∈R 310x x+≤x ∀∈R 310x x +>()()2,1,2,1x x f x f x x -≤⎧=⎨>⎩2-3()2f x x x =+a b c ∈R 0a b +>0a c +>0b c +>()()()f a f b f c ++()22111x f x x +=-+C. D.6. 已知,则下列不等式一定成立的是( )A. B. C D. 7. 已知,关于的一元二次不等式的解集中有且仅有3个整数,则的值不可能是( )A 13 B. 14 C. 15 D. 168. 已知函数,若的值域为,则实数的取值范围是( )A. B. C. D. 二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 下列函数中,既是奇函数,又在上单调递增的是( )A. B. C. D. 10. 命题“,”为真命题的一个充分不必要条件可以是( )A. B. C. D. 11. 设为实数,不超过的最大整数称为的整数部分,记作.例如,.称函数为取整函数,下列关于取整函数的结论中正确的是( )A. 在上是单调递增函数B. 对任意,都有C. 对任意,,都有..0a b >>22a b a b +>+2()4a b ab+≤2b a a b +<22b b a a +<+Z a ∈x 280x x a -+≤a 212,()23,3x c f x x x x c x ⎧-+<⎪=⎨⎪-+≤≤⎩()f x [2,6]c 11,4⎡⎤--⎢⎥⎣⎦1,04⎡⎫-⎪⎢⎣⎭[1,0)-11,2⎡⎤--⎢⎥⎣⎦(0,)+∞()f x =()||f x x x =2()1x x f x x -=-3()f x x =[1,2)x ∀∈20x a -≤4a ≥5a >6a ≥7a >x x x []x [1.2]1=[ 1.4]2-=-()[]f x x =()f x ()f x R x ∈R ()1f x x >-x ∈R k ∈Z ()()f x k f x k+=+D 对任意,,都有第II 卷(非选择题)三、填空题:本题共3小题,每小题5分,共15分.12. 用列举法表示______.13. 函数是上的偶函数, 且当时,函数的解析式为,则______;当时,函数的解析式为___________.14. 已知,为非负实数,且,则的最小值为______.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或验算步骤.15. 已知全集,集合,.(1)求;(2)求.16. 设命题,使得不等式恒成立;命题,不等式成立.(1)若为真命题,求实数取值范围;(2)若命题、有且只有一个是真命题,求实数取值范围.17. 设函数为定义在上的奇函数.(1)求实数的值;(2)判断函数的单调性,并用定义法证明在(0,+∞)上的单调性.18. 已知某园林部门计划对公园内一块如图所示的空地进行绿化,用栅栏围4个面积相同的小矩形花池,一面可利用公园内原有绿化带,四个花池内种植不同颜色的花,呈现“爱我中华”字样.(1)若用48米长的栅栏围成小矩形花池(不考虑用料损耗),则每个小矩形花池的长、宽各为多少米时,才能使得每个小矩形花池的面积最大?.的的x y ∈R ()()()f xy f x f y =6N N 1a a ⎧⎫∈∈=⎨⎬-⎩⎭∣()f x R 0x >2()1f x x=-(1)f -=0x <a b 21a b +=22211a b a b+++R U ={}2|560A x x x =-+>{|230}B x x =->A B ⋂()()U U A B ðð[]:1,1p x ∀∈-2230x x m --+<[]:0,1q x ∃∈2223x m m -≥-p m p q m ()22a f x x a x+=-+(,0)(0,)-∞+∞ a ()f x ()f x(2)若每个小矩形的面积为平方米,则当每个小矩形花池的长、宽各为多少米时,才能使得围成4个小矩形花池所用栅栏总长度最小?19. 已知集合中含有三个元素,同时满足①;②;③为偶数,那么称集合具有性质.已知集合,对于集合的非空子集,若中存在三个互不相同的元素,使得均属于,则称集合是集合的“期待子集”.(1)试判断集合是否具有性质,并说明理由;(2)若集合具有性质,证明:集合是集合的“期待子集”;(3)证明:集合具有性质的充要条件是集合是集合的“期待子集”.983A ,,x y z x y z <<x y z +>x y z ++A P {}1,2,3,,2n S n = *(N ,4)n n ∈≥n SB n S ,,a b c ,,+++a b b c c a B B n S {}1,2,3,5,7,9A =P {}3,4,B a =P B 4S M P M n S郑州一中27届(高一)第一次模拟测试数学试题卷第I卷(选择题)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.【1题答案】【答案】D【2题答案】【答案】C【3题答案】【答案】D【4题答案】【答案】A【5题答案】【答案】A【6题答案】【答案】D【7题答案】【答案】D【8题答案】【答案】A二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.【9题答案】【答案】BD【10题答案】【答案】BCD【11题答案】【答案】BC第II卷(非选择题)三、填空题:本题共3小题,每小题5分,共15分.【12题答案】【答案】【13题答案】【答案】 ①. ②. 【14题答案】【答案】2四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或验算步骤.【15题答案】【答案】(1)或 (2)【16题答案】【答案】(1)(2)【17题答案】【答案】(1)(2)在上单调递减,在(0,+∞)上单调递减,证明见解析【18题答案】【答案】(1)长为6米、宽为4米(2)长为7米、宽为米【19题答案】【答案】(1)不具有,理由见解析(2)证明见解析 (3)证明见解析{}1,2,3,61()21f x x=--{3|22x x <<3}x >3|232x x x ⎧⎫≤≤≤⎨⎬⎩⎭或(,0)-∞(,3]-∞0a =(,0)-∞143。
高一物理第一次月考模拟测试(基础卷)(考试时间:90分钟试卷满分:100分)测试范围:必修一第1~2章第Ⅰ卷选择题(46分)一、单项选择题(本题共7小题,每小题4分,共28分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.(2025·浙江·一模)下列说法正确的是( )A.分析铅球运动的距离,可以把铅球视为为质点B.分析竞技体操男子双杠运动,可以把运动员视为质点C.分析跳台跳水运动的技术动作,可以把运动员视为质点D.分析竞技体操吊环运动,可以把运动员视为质点【答案】A【解析】A A正确;B.分析竞技体操男子双杠运动,运动员的形状大小不可以忽略不计,不可以把运动员视为质点,故B错误;C.分析跳台跳水运动的技术动作,运动员的形状大小不可以忽略不计,不可以把运动员视为质点,故C错误;D.分析竞技体操吊环运动,运动员的形状大小不可以忽略不计,不可以把运动员视为质点,故D错误。
故选A。
2.(24-25高一上·辽宁沈阳·开学考试)智能手机上装载的众多app软件改变着我们的生活。
如图所示为某软件的一张截图,表示了某次导航的具体路径,其推荐路线中有两个数据,10分钟,5.4公里,下列说法正确的是( )A .10分钟表示的是某个时刻B .研究汽车在导航图中的位置时,可以把汽车看作质点C .5.4公里表示了此次行程的位移的大小D .根据这两个数据,我们可以算出此次行程的平均速度的大小【答案】B【解析】A .10分钟是一段时间,因此是时间间隔,A 错误;B .在研究汽车在导航图中的位置时,汽车自身大小和形状与所研究问题无关可以忽略,因此可以把汽车看作质点,B 正确;C .5.4公里是实际走的距离,是路程,C 错误;D .根据这两个数据,用路程除以时间,我们可以算出此次行程的平均速率,D 错误。
故选B 。
3.(23-24高一上·吉林·阶段练习)2008年8月18日,何雯娜在国家体育馆结束的奥运女子蹦床决赛中以37.80分为中国蹦床队夺得,成中国蹦床史上首枚金牌。
2024-2025学年高一物理上学期第一次月考卷(新高考通用)01注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:第一、二章(人教版2019必修第一册)。
5.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷选择题一.选择题(本题共10小题,共46分,在每小题给出的四个选项中,1~7题只有一项符合题目要求,每小题4分,8~10题有多项符合题目要求,全部选对得6分,选对但不全的得3分,有选错或不答得0分。
)1.(22-23高一上·福建福州·期中)伽利略在《两种新科学的对话》一书中,提出自由落体运动是匀变速运动,并设计如图所示的实验方案证实了其猜想。
该实验方案中的科学研究方法的核心是( )A.把实验研究和逻辑推理结合起来B.把提出问题和实验研究结合起来C.把提出问题和大胆猜想结合起来D.把实验研究和大胆猜想结合起来【答案】A【详解】伽利略研究自由落体运动时,其科学研究方法的核心是把实验研究和逻辑推理结合起来。
故选A。
2.(23-24高一上·安徽安庆·期末)为进一步推动学生阳光体育运动的广泛开展,培养学生的健康体魄、健全人格,11月4日至8日,2023年安庆市中学生田径运动会(田径联赛)如期举行。
下列说法中正确的是( )A.百米赛跑中,一名运动员发现自己在“后退”,他是以大地为参考系B.广播通知径赛检录于9:30开始,此处9:30指的是时间间隔C.运动员跑完1000m比赛,这个1000m指的是路程D.研究跳高比赛起跳动作时,可以把运动员看作质点【答案】C【详解】A.百米赛跑中,一名运动员发现自己在“后退”,他是以比他快的运动员为参考系,故A错误;B.广播通知径赛检录于9:30开始,此处9:30指的是时刻,故B错误;C.运动员跑完1000m比赛,这个1000m指的是路程,故C正确;D.研究跳高比赛起跳动作时,运动员的形状大小不能忽略不计,不可以把运动员看作质点,故D错误。
高一初次月考试卷一、语文(共60分)1. 阅读理解(共30分)(1)阅读下文,回答问题(每题5分,共20分)文章:《荷塘月色》朱自清问题:- 文章中作者对荷塘的描写运用了哪些修辞手法?- 作者在文中表达了怎样的情感?(2)文言文阅读(10分)文言文选段:《岳阳楼记》范仲淹问题:- 解释文中“先天下之忧而忧,后天下之乐而乐”的含义。
2. 作文(共30分)题目:《我眼中的高中生活》要求:不少于800字,结合自身经历,描述你对高中生活的初步感受和期待。
二、数学(共40分)1. 选择题(每题3分,共15分)- 根据题目所给的数学问题,选择正确答案。
2. 填空题(每题2分,共10分)- 根据题目所给的数学问题,填写空缺处。
3. 解答题(每题5分,共15分)- 根据题目要求,给出详细的解答过程。
三、英语(共50分)1. 阅读理解(共20分)(1)阅读理解A(10分)- 阅读短文,回答相关问题。
(2)阅读理解B(10分)- 阅读短文,回答问题。
2. 完形填空(共10分)- 阅读短文,从选项中选择最合适的词填入空白处。
3. 语法填空(共10分)- 根据句子的语法结构,填写正确的单词或词组。
4. 书面表达(共10分)题目:《我的高中第一天》要求:不少于100词,描述你的高中第一天的经历和感受。
四、物理(共30分)1. 选择题(每题3分,共15分)- 根据题目所给的物理问题,选择正确答案。
2. 计算题(每题5分,共15分)- 根据题目要求,进行物理量的计算。
五、化学(共30分)1. 选择题(每题3分,共15分)- 根据题目所给的化学问题,选择正确答案。
2. 实验题(共15分)- 描述一个简单的化学实验过程,包括实验目的、原理、步骤和结果分析。
六、生物(共30分)1. 选择题(每题3分,共15分)- 根据题目所给的生物问题,选择正确答案。
2. 简答题(共15分)- 根据题目要求,简述生物学的基本概念或原理。
七、政治(共30分)1. 选择题(每题3分,共15分)- 根据题目所给的政治问题,选择正确答案。
2023-2024学年永安三中高中校高一(上)第一次月考英语试卷(考试时间:120分钟满分:100分)第Ⅰ卷第一部分听力(共两节,满分20分)第一节(共5小题;每小题1分,满分5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1. What does the woman recycle?A. Plastic.B. Paper.C. Glass.2. Where does the conversation take place?A. On the phone.B. In a restaurant.C. At home.3. What has the woman been doing during the holiday?A. Traveling.B. Doing exercise.C. Relaxing at home.4. How does Susan find walking?A. Tiring.B. Boring.C. Enjoyable.5. What does the woman mean?A. She doesn’t like opera.B. She would like to go with the man.C. She prefers to see the opera another day.第二节(共15小题)请听下面5段对话或独白,选出最佳选项。
请听第6段材料,回答第6、7题。
6. Who is John?A. Edgar’s classmate.B. Edgar’s roommate.C. Edgar’s secretary.7. When will Edgar hand in the paper?A. Before 1:00.B. After 3:00.C. Sometime between 2:00 and 3:00.听第7段材料,回答第8至10题。
2023-2024学年吉林省吉林市吉林高一上册第一次月考数学试题一、单选题1.下列说法正确的是()A .0∈∅B .πQ∈C .∅⊆∅D .A ⋃∅=∅【正确答案】C【分析】根据元素与集合、集合与集合之间的关系,以及空集的定义,逐项分析判断即可.【详解】对于A :0∉∅,选项A 错误;对于B :π是无理数,πQ ∉,选项B 错误;对于C :∅是它本身的子集,即∅⊆∅,选项C 正确;对于D :仅当A 为空集时,A ⋃∅=∅成立,否则不成立,选项D 错误.故选:C .2.设集合{|03}A x x =<<,1{|4}2B x x =≤≤,则A B = ()A .1{|0}2x x <≤B .1{|3}2x x ≤<C .{|34}x x <≤D .{|04}x x <≤【正确答案】B【分析】利用交集定义直接求解.【详解】因为集合{|03}A x x =<<,1{|4}2B x x =≤≤,则1{|3}2A B x x ⋂=≤<.故选:B .3.已知{}{}1,21,2,3,4,5A ⊆⊆,则满足条件的集合A 的个数为()A .5B .6C .7D .8【正确答案】D【分析】由条件分析集合A 的元素的特征,确定满足条件的结合A 即可.【详解】因为{}{}1,21,2,3,4,5A ⊆⊆,所以{}1,2A =或{}1,2,3或{}1,2,4或{}1,2,5或{}1,2,3,4或{}1,2,3,5或{}1,2,4,5或{}1,2,3,4,5,即满足条件的集合A 的个数为8,故选:D .4.设x ∈R ,则“01x <<”成立是“1x <”成立的()条件A .充分不必要B .必要不充分C .充要D .既不充分也不必要【正确答案】A【分析】利用充分条件和必要条件的定义判断即可.【详解】由01x <<成立可推出1x <成立,所以“01x <<”成立是“1x <”成立充分条件当0x =时,1x <,但{}01x x x ∉<<,即由1x <成立不能推出01x <<成立,所以“01x <<”成立不是“1x <”成立必要条件所以01x <<成立是1x <成立的充分不必要条件,故选:A .5.已知a b >,则下列不等关系中一定成立的是()A .2ab b <B .22a b >C .11a b<D .33a b >【正确答案】D【分析】举反例可判断ABC ,利用函数3y x =在R 上单调递增,可判断D .【详解】对于A 选项,取2a =,1b =,满足a b >,但是221ab b =>=,故A 错误,对于BC 选项,取1a =,2b =-,满足a b >,但是2214a b =<=,11112a b =>=-,故BC 错误,对于D 选项,因为函数3y x =在R 上单调递增,所以由a b >可得33a b >,故D 正确,故选:D .6.若不等式组232x a x a ⎧>⎨<-⎩有解,则实数a 的取值范围为()A .12a <<B .1a <或2a >C .12a ≤≤D .1a ≤或2a ≥【正确答案】A【分析】由题意可知232a a <-,从而求出a 的取值范围即可.【详解】 不等式组232x a x a ⎧>⎨<-⎩有解,232a a ∴<-,解得12a <<,即实数a 的取值范围为(1,2).故选:A .7.已知正数,x y 满足1x y +=,则14x y+的最小值为()A .5B .143C .92D .9【正确答案】D【分析】由已知利用乘1法,结合基本不等式即可求解.【详解】因为正数,x y 满足1x y +=,则14144()()559y x x y x y x y x y +=++=++≥+=,当且仅当4y x x y =,即13x =,23y =时取等号,故选:D .8.已知命题236:1,1x x p x a x ++∃>-<+,若命题p 是假命题,则实数a 的取值范围为()A .5a >B .6a >C .5a ≤D .6a ≤【正确答案】C【分析】由题意可知236:1,1x x p x a x ++⌝∀>-≥+为真命题,问题转化为只需2min 36()1x x a x ++≤+,然后利用基本不等式求出最小值,进而可以求解.【详解】若命题p 是假命题,则236:1,1x x p x a x ++⌝∀>-≥+为真命题,即2361x x a x ++≤+在(1,)∈-+∞x 上恒成立,只需2min 36()1x x a x ++≤+,又2236(1)1441115111x x x x x x x x ++++++==+++≥=+++,当且仅当411x x +=+,即1x =时取得最小值为5,所以5a ≤,故选:C .二、多选题9.已知集合{}{}1,4,,1,2,3A a B ==,若{}1,2,3,4A B = ,则a 的取值可以是()A .2B .3C .4D .5【正确答案】AB【分析】根据并集的结果可得{}1,4,a {}1,2,3,4,即可得到a 的取值;【详解】解:因为{}1,2,3,4A B = ,所以{}1,4,a {}1,2,3,4,所以2a =或3a =;故选:AB10.若a ,b ,c ∈R ,则下列命题正确的是()A .若0ab ≠且a b <,则11a b>B .若01a <<,则2a a<C .若0a b >>且0c >,则b c ba c a+>+D .()221222a b a b ++≥--【正确答案】BCD【分析】由不等式的性质逐一判断即可.【详解】解:对于A ,当0a b <<时,结论不成立,故A 错误;对于B ,2a a <等价于()10a a -<,又01a <<,故成立,故B 正确;对于C ,因为0a b >>且0c >,所以b c ba c a+>+等价于ab ac ab bc +>+,即()0a b c ->,成立,故C 正确;对于D ,()221222a b a b ++≥--等价于()()22120a b -++≥,成立,故D 正确.故选:BCD.11.已知关于x 的不等式20ax bx c ++≥的解集为{3x x ≤-或}4x ≥,则下列说法正确的是()A .0a >B .不等式0bx c +>的解集为{}4x x <-C .不等式20cx bx a -+<的解集为14x x ⎧<-⎨⎩或13x ⎫>⎬⎭D .0a b c ++>【正确答案】AC【分析】由题知二次函数2y ax bx c =++的开口方向向上且3434bac a⎧-=-+⎪⎪⎨⎪=-⨯⎪⎩,再依次分析各选项即可.【详解】解:关于x 的不等式20ax bx c ++≥的解集为][(),34,-∞-⋃+∞,所以二次函数2y ax bx c =++的开口方向向上,即0a >,故A 正确;方程20ax bx c ++=的两根为3-、4,由韦达定理得3434bac a⎧-=-+⎪⎪⎨⎪=-⨯⎪⎩,解得12b a c a =-⎧⎨=-⎩.对于B ,0120bx c ax a +>⇔-->,由于0a >,所以12x <-,所以不等式0bx c +>的解集为{}12x x <-,故B 不正确;对于C ,由B 的分析过程可知12b ac a=-⎧⎨=-⎩所以220120cx bx a ax ax a -+<⇔-++<2112104x x x ⇔-->⇔<-或13x >,所以不等式20cx bx a -+<的解集为14x x ⎧<-⎨⎩或13x ⎫>⎬⎭,故C 正确;对于D ,12120a b c a a a a ++=--=-<,故D 不正确.故选:AC .12.[]x 表示不超过x 的最大整数,则满足不等式[][]25140x x --≤的x 的值可以为()A . 2.5-B .3C .7.5D .8【正确答案】BC【分析】由一元二次不等式得[]27x -≤≤【详解】解:因为[][][]()[]()2514720x x x x --=-+≤,所以[]27x -≤≤,所以28x -≤<.所以x 的值可以为[)2,8-内的任何实数.故选:BC三、填空题13.不等式210-+≥x kx 的解集为R ,则实数k 的取值集合为__.【正确答案】[]22-,【分析】根据二次不等式的解法即得.【详解】因为不等式210-+≥x kx 的解集为R ,所以240k ∆=-≤,所以22k -≤≤,即实数k 的取值集合为[]22-,.故答案为.[]22-,14.已知102x <<,函数(12)y x x =-的最大值是__.【正确答案】18##0.125【分析】由基本不等式22a b ab +⎛⎫≤ ⎪⎝⎭,得()221212(12)24x x x x +-⎡⎤-≤=⎢⎥⎣⎦,由此即可求出函数(12)y x x =-的最大值.【详解】 102x <<,∴()()()2212111122122228x x x x x x +-⎡⎤-=⋅-≤⋅=⎢⎥⎣⎦,当且仅当212x x =-时,即14x =时等号成立,因此,函数(12)y x x =-的最大值为18.故答案为:18.15.若实数x ,y 满足1201x y x y <+<⎧⎨<-<⎩,则3x y +的取值范围为__.【正确答案】(2,5)【分析】将3x y +表示成关于()x y +和()x y -的表达式进行求解即可.【详解】由不等式的性质求解即可.解:32()()+=++-x y x y x y ,因为实数x ,y 满足1201x y x y <+<⎧⎨<-<⎩,所以()()225x y x y <++-<,即3x y +的取值范围为(2,5).故(2,5).四、双空题16.《几何原本》中的几何代数法(用几何方法研究代数问题)成了后世西方数学家处理问题的重要依据,通过这一方法,很多代数公理、定理都能够通过图形实现证明,并称之为“无字证明”.设0a >,0b >,称2aba b+为a ,b 的调和平均数.如图,C 为线段AB 上的点,且AC a =,CB b =,O 为AB 中点,以AB 为直径作半圆.过点C 作AB 的垂线,交半圆于D ,连结OD ,AD ,BD .过点C 作OD 的垂线,垂足为E .则图中线段OD 的长度是a ,b 的算术平均数2a b+,线段CD 的长度是a ,b__的长度是a ,b 的调和平均数2aba b+,该图形可以完美证明三者的大小关系为__.【正确答案】DE22ab a ba b +≤≤+【分析】根据圆的性质、勾股定理、三角形三边大小关系以及基本不等式的性质判断即可.【详解】由题意得:2a bOD +=,CD =,由于CD OC ⊥,CE OD ⊥,所以ΔΔOCD CED ∽,则OD CDCD ED=a bED +=,解得2abED a b=+,利用直角三角形的边的关系,所以OD CD DE >>.当O 和C 重合时,OD CD DE ==,所以22ab a ba b +≤≤+.故DE;22ab a ba b +≤≤+五、解答题17.已知集合{}2,1,0,1,2A =--,{}0,1B =,{}1,2C =.(1)求B C ⋃;(2)求()A B C ð.【正确答案】(1){0,1,2}(2){2,1,0,2}--【分析】(1)利用并集的概念即可求解;(2)利用交集及补集的运算即可求解.【详解】(1){}0,1B = ,{}1,2C =,{0,1,2}B C ∴= (2)∵{}0,1B =,{}1,2C =,∴{1}B C = ,又{}2,1,0,1,2A =--故(){2,1,0,2}A B C =-- ð.18.已知集合U 为全体实数集,{1M x x =≤-或6}x ≥,{}131N x a x a =+≤≤-.(1)若3a =,求()U M N ðI ;(2)若M N N ⋂=,求实数a 的取值范围.【正确答案】(1){}46x x ≤<(2)1a <或5a ≥【分析】(1)利用集合的交、补运算即可求解.(2)讨论N =∅或N ≠∅,根据集合的包含关系列不等式即可求解.【详解】(1)解:由题知{1M x x =≤-或6}x ≥,{}131N x a x a =+≤≤-,所以{}16U M x x =-<<ð,当3a =时,{}48N x x =≤≤,所以(){}46U M N x x ⋂=≤<ð;(2)由题知M N N ⋂=,即N M ⊂,①当N =∅时,即131a a +>-,解得:1a <;②当N ≠∅,即1a ≥时,因为N M ⊂,所以311a -≤-或16a +≥,解得:0a ≤(舍)或5a ≥,综上:1a <或5a ≥.19.全国文明城市,简称文明城市,是指在全面建设小康社会中市民整体素质和城市文明程度较高的城市.全国文明城市称号是反映中国城市整体文明水平的最高荣誉称号.连云港市黄海路社区响应号召,在全面开展“创文”的基础上,对一块空闲地进行改造,计划建一面积为24000m 矩形市民休闲广场.全国文明城市是中国所有城市品牌中含金量最高、创建难度最大的一个,是反映城市整体文明水平的综合性荣誉称号,是目前国内城市综合类评比中的最高荣誉,也是最具有价值的城市品牌.为此社区党委开会讨论确定方针:既要占地最少,又要美观实用.初步决定在休闲广场的东西边缘都留有宽为2m 的草坪,南北边缘都留有5m 的空地栽植花木.(1)设占用空地的面积为S (单位:2m ),矩形休闲广场东西距离为x (单位:m ,0x >),试用x 表示为S 的函数;(2)当x 为多少时,用占用空地的面积最少?并求最小值.【正确答案】(1)()()40004100S x x x ⎛⎫=++> ⎪⎝⎭(2)休闲广场东西距离为40m 时,用地最小值为24840m 【分析】(1)根据面积公示列关系式即可.(2)代入第一问求出的解析式结合基本不等式求最值即可即可.【详解】(1)因为广场面积须为24000m ,所以矩形广场的南北距离为4000m x,所以()()40004100S x x x ⎛⎫=++> ⎪⎝⎭;(2)由(1)知16000404010404040408004840S x x =++≥+=+=,当且仅当x =40时,等号成立.答:当休闲广场东西距离为40m 时,用地最小值为24840m .20.集合A ={}|()(3)0,0x x a x a a --<>,B =2|01x x x -⎧⎫<⎨⎬-⎩⎭.(1)若1a =,求()R A C B I ;(2)已知命题:p x A ∈,命题:q x B ∈,若命题p 的充分不必要条件是命题q ,求实数a 的取值范围.【正确答案】(1)[)()2,3R A C B =I (2)213a ≤≤【分析】(1)a =1时,A =(1,3),B =(1,2),可得∁R B =(﹣∞,1]∪[2,+∞).即可得出A ∩(∁R B ).(2)由a >0,可得A =(a ,3a ),B =(1,2).根据q 是p 的充分不必要条件,即可得出B ⊊A .【详解】解:(1)a =1时,A =(1,3),B =(1,2),(][)=,12,R C B -∞+∞U ∴[)()2,3R A C B =I ;(2)∵a >0,∴A =(a ,3a ),B =(1,2).∵q 是p 的充分不必要条件,∴B ⊊A .由B ⊆A 得132a a ≤⎧⎨≥⎩,解得213a ≤≤,又a =1及23a =符合题意.∴213a ≤≤.本题考查了集合的交并补运算、不等式的解法、充要条件的判定方法,考查了推理能力与计算能力,属于中档题.21.已知a ,b ,c 为正数,且a +b +c =1,证明:(1-a )(1-b )(1-c )≥8abc .【正确答案】证明见解析.【分析】根据已知对不等式左边的式子进行变形,结合基本不等式进行证明即可.【详解】证明:(1-a )(1-b )(1-c )=(b +c )(a +c )(a +b ),(b +c )(a +c )(a +b8abc .当且仅当b =c =a =13时,等号成立.本题考查了基本不等式的应用,考查了推理论证能力.22.已知关于x 的不等式()2110ax a x a R ++<∈-,.(1)若不等式的解集为112x x ⎧⎫<<⎨⎬⎩⎭,求a ;(2)当a R ∈时,解此不等式.【正确答案】(1)2(2)0a =时,(1,)x ∈+∞,01a <<时,1(1,x a∈,1a =时,不等式的解集为空集,1a >时,1(,1)x a∈,a<0时,1(,(1,)x a ∈-∞+∞ .【分析】(1)根据不等式的解集和韦达定理,可列出关于a 的方程组,解得a ;(2)不等式化为(1)(1)0ax x --<,讨论a 的取值,从而求得不等式的解集。
高一入学月考试卷一、语文(共60分)1. 阅读理解(共20分)阅读下列文章,回答下列问题:[文章内容略](1)请概括文章的主旨。
(5分)(2)分析文中的主要人物特点。
(5分)(3)根据文章内容,回答以下问题。
(10分)2. 古文翻译(共10分)将以下古文翻译成现代汉语:[古文内容略]3. 作文(共30分)题目:《我的高中生活》要求:不少于800字,内容真实,情感真挚,结构清晰。
二、数学(共40分)1. 选择题(共10分)[选择题题目略]2. 填空题(共10分)[填空题题目略]3. 解答题(共20分)(1)解一元二次方程。
(5分)(2)证明几何定理。
(5分)(3)应用题:根据题目所给条件,求解实际问题。
(10分)三、英语(共50分)1. 阅读理解(共20分)[阅读理解材料略](1)选择正确答案。
(10分)(2)回答问题。
(10分)2. 完形填空(共10分)[完形填空材料略]3. 语法填空(共10分)[语法填空材料略]4. 写作(共10分)题目:《My First Day at High School》要求:不少于120词,内容连贯,语法正确。
四、物理(共40分)1. 选择题(共10分)[选择题题目略]2. 填空题(共10分)[填空题题目略]3. 计算题(共20分)(1)根据题目所给条件,计算物体的运动速度。
(5分)(2)应用牛顿第二定律,解决实际问题。
(5分)(3)分析电路问题,计算电流和电压。
(10分)五、化学(共40分)1. 选择题(共10分)[选择题题目略]2. 填空题(共10分)[填空题题目略]3. 实验题(共20分)(1)描述实验过程。
(5分)(2)分析实验结果。
(5分)(3)根据实验结果,回答问题。
(10分)六、生物(共40分)1. 选择题(共10分)[选择题题目略]2. 填空题(共10分)[填空题题目略]3. 简答题(共20分)(1)简述细胞的基本结构。
(5分)(2)解释光合作用的过程。
2024-2025学年高一数学上学期第一次月考卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:集合与常用逻辑用语+不等式。
5.难度系数:0.65。
第Ⅰ卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U =Z ,集合A =x ∈Z x ≤-3或x >3 ,B =0,3 ,则∁U A ∩B =()A.1,2B.1,2,3C.0,1,3D.1,2【答案】D【详解】由已知可得∁U A =-2,-1,0,1,2,3 ,又B =0,3 ,∴∁U A ∩B =1,2 .故选:D .2.在R 上定义运算“⊙”:a ⊙b =ab +2a +b ,则满足x ⊙(x -2)<0的实数x 的取值范围是()A.(0,2)B.(-2,1)C.(-∞,-2)∪(1,+∞)D.(-1,2)【答案】B【详解】根据给出在R 上定义运算x ⊙(x -2)=x (x -2)+2x +(x -2)=x 2+x -2=(x +2)(x -1),由x ⊙(x -2)<0得(x +2)(x -1)<0,解之得-2<x <1,故该不等式的解集是(-2,1).故选:B3.若两个正实数x ,y 满足4x +y =xy ,且存在这样的x ,y 使不等式x +y4<m 2+3m 有解,则实数m 的取值范围是()A.-1,4B.-4,1C.-∞,-4 ∪1,+∞D.-∞,-3 ∪0,+∞【答案】C【详解】由4x +y =xy ,x ,y >0,可得4y +1x=1,所以x +y 4=x +y 4 ⋅4y +1x=2+4xy +y 4x≥2+24x y ⋅y 4x =4,当且仅当4x y =y 4x,即y =4x =8时等号成立.所以m 2+3m >4,m 2+3m -4=m +4 m -1 >0,解得m <-4或m >1,所以实数m 的取值范围是-∞,-4 ∪1,+∞ .故选:C .4.对于∀x ∈R ,用x 表示不大于x 的最大整数,例如:π =3,-2.1 =-3,则“x >y ”是“x >y ”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【详解】当x >y 时,如x =3.2,y =3.1,不能得到x >y ,由x >y ,则x >y ≥y ,又x ≥x ,所以一定能得到x >y ,所以“x >y ”是“x >y ”成立的充分不必要条件.故选:A .5.已知全集为U ,集合M ,N 满足M ÜN ÜU ,则下列运算结果为U 的是( ).A.M ∪NB.∁U N ∪∁U MC.M ∪∁U ND.N ∪∁U M【答案】D 【详解】如图,因为M ÜN ÜU ,所以M ∪N =N ≠U ,故A 错误;因为∁U N ∪∁U M =∁U M ∩N =∁U M ≠U ,故B 错误;因为M ÜN ÜU ,所以M ∪∁U N ≠U ,故C 错误;因为M ÜN ÜU ,所以N ∪∁U M =U ,故D 正确.故选:D6.关于x 的一元二次方程x 2+x +m =0有实数解的一个必要不充分条件的是()A.m <12B.m ≤14C.m <-12D.m <14【答案】A【详解】因为一元二次方程x 2+x +m =0有实根,所以Δ=1-4m ≥0,解得m ≤14.又-∞,14 是-∞,12的真子集,所以“-∞,12 ”是“-∞,14”的必要不充分条件.故选:A7.不等式ax +1x +b >1的解集为x x <-1 或x >4 ,则x +abx -1≥0的解集为()A.x -6≤x <-14B.x -1≤x <1C.x -6≤x ≤-14D.x -14≤x ≤1 【答案】A 【详解】不等式ax +1x +b>1可转化为a -1 x -b +1 x +b >0,其解集为x x <-1 或x >4 ,所以a >1,且方程ax -x -b +1 x +b =0的两个根为x 1=-1,x 2=4,则-a +1-b +1=04+b =0或4a -4-b +1=0-1+b =0 ,解得a =6b =-4 或a =1b =1 (舍去),即有x +6-4x -1≥0,即x +6 -4x -1 ≥0-4x -1≠0 ,解得-6≤x <-14.所以不等式的解集为x -6≤x <-14.故选:A .8.已知x +y =1x +4y+8(x ,y >0),则x +y 的最小值为()A.53B.9C.4+26D.10【答案】B【详解】x +y =1x +4y +8⇒x +y -8=1x +4y,两边同时乘以“x +y ”得:(x +y -8)(x +y )=1x +4y(x +y ),所以(x +y -8)(x +y )=1x +4y(x +y )=5+y x +4xy ≥9,当且仅当y =2x 时等号成立,令t =x +y ,所以(t -8)⋅t ≥9,解得t ≤-1或t ≥9,因为x +y >0,所以x +y ≥9,即(x +y )min =9,故选:B .二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下面命题正确的是()A.若x ,y ∈R 且x +y >2,则x ,y 至少有一个大于1B.“任意x <1,则x ²<1”的否定是“存在x <1,则x 2≥1”C.设x ,y ∈R ,则“x ≥2且y ≥2”是x ²+y ²≥4的必要而不充分条件D.设a ,b ∈R ,则“a ≠0”是“ab ≠0”的必要不充分条件【答案】ABD【详解】对于A ,假设x ,y 都不大于1,即x ≤1,y ≤1,则x +y ≤2与已知矛盾,假设是错的,原命题为真命题,A 正确;对于B ,“任意x <1,则x 2<1”的否定为“存在x <1,则x 2≥1”,B 正确;对于C ,x ≥2则x 2≥4,y ≥2则y 2≥4,x 2+y 2≥8,则x 2+y 2≥4成立,满足充分性,C 错误;对于D ,当a ≠0时,ab 可能为零,当ab ≠0时,a 一定不等于零,则“a ≠0”是“ab ≠0”的必要不充分条件,D 正确.故选:ABD .10.若a >b >0,则下列不等式成立的是()A.b a >abB.ab >b 2C.b a <b +1a +1D.a +1b>b +1a 【答案】BCD【解析】对A ,若a >b >0,则a 2>b 2,两边同时除以ab ,所以a b>ba ,A 错误;对B ,由a >b >0可得ab >b 2,B 正确;对C ,因为a (b +1)-b (a +1)=a -b >0,所以a (b +1)>b (a +1)>0,即b +1a +1>ba,C 正确;对D ,由a >b >0可得,1b >1a >0,所以a +1b>b +1a ,D 正确.故选:BCD .11.已知关于x 的一元二次不等式ax 2+bx +c >0的解集为M ,则下列说法正确的是()A.若M =∅,则a <0且b 2-4ac ≤0B.若a a =b b =c c,则关于x 的不等式a x 2+b x +c>0的解集也为M C.若M ={x |-1<x <2},则关于x 的不等式a (x 2+1)+b (x -1)+c <2ax 的解集为N ={x |x <0,或x >3}D.若M ={x |x ≠x 0,x 0为常数},且a <b ,则a +3b +4cb -a的最小值为5+25【答案】ACD【详解】A 选项,若M =∅,即一元二次不等式ax 2+bx +c >0无解,则一元二次不等式ax 2+bx +c ≤0恒成立,∴a <0且b 2-4ac ≤0,故A 正确;B 选项,令a a =b b =c c=t (t ≠0),则a =a t 、b =b t 、c =ct ,∴a x 2+b x +c >0可化为1t(ax 2+bx +c )>0,当t <0时,1t(ax 2+bx +c )>0可化为ax 2+bx +c <0,其解集不等于M ,故B 错误;C 选项,若M ={x |-1<x <2},则a <0,且-1和2是一元二次方程ax 2+bx +c =0的两根,∴-1+2=-b a ,且-1×2=ca,∴b =-a ,c =-2a ,∴关于x 的不等式a (x 2+1)+b (x -1)+c <2ax 可化为a (x 2+1)-a (x -1)-2a <2ax ,可化为a (x 2-3x )<0,∵a <0,∴x 2-3x >0,解得x <0或x >3,即不等式a (x 2+1)+b (x -1)+c <2ax 的解集为N ={x |x <0,或x >3},故C 正确;D 选项,∵M ={x |x ≠x 0,x 0为常数},∴a>0且b2-4ac=0,∴a+3b+4cb-a =a+3b+b2ab-a,∵b>a>0,∴b-a>0,令b-a=t>0,则b=a+t,∴a+3b+b2ab-a=a+3(a+t)+(a+t)2at=5at+ta+5≥25a t⋅t a+5=25+5,当且仅当t=5a,则b=(1+5)a,c=3+5a2,且a为正数时,等号成立,所以a+3b+4cb-a的最小值为5+25,故D正确.故选:ACD.第Ⅱ卷三、填空题:本题共3小题,每小题5分,共15分.12.已知1≤a+b≤4,-1≤a-b≤2,则4a-2b的取值范围为.【答案】-2,10【详解】解:设4a-2b=x a+b+y a-b=x+ya+x-yb,所以x+y=4x-y=-2,解得x=1y=3,因为1≤a+b≤4,-1≤a-b≤2,则-3≤3a-b≤6,因此,-2≤4a-2b≤10.故答案为:-2,10.13.已知关于x的不等式组-x2+4x+5<02x2+5x<-2x+5k的解集中存在整数解且只有一个整数解,则k的取值范围为.【答案】-6,2∪3,4【详解】由x2-4x-5=x-5x+1>0,得x<-1或x>5,所以2x2+2k+5x+5k=2x+5x+k<0的解集与{x∣x<-1或x>5}的交集中存在整数解,且只有一个整数解.当k<52时,2x2+2k+5x+5k<0的解集为x-52<x<-k,此时-2<-k≤6,即-6≤k<2,满足要求;当k=52时,2x2+2k+5x+5k<0的解集为∅,此时不满足题设;当k>52时,2x2+2k+5x+5k<0的解集为x-k<x<-52,此时-4≤-k<-3,即3<k≤4,满足要求.综上,k的取值范围为-6,2∪3,4.故答案为:-6,2∪3,414.定义集合P={x|a≤x≤b}的“长度”是b-a,其中a,b∈R.已如集合M={x m≤x≤m+12,N={x n-35≤x≤n,且M,N都是集合{x|1≤x≤2}的子集,则集合M∩N的“长度”的最小值是;若m =65,集合M ∪N 的“长度”大于35,则n 的取值范围是.【答案】110/0.185,1710 ∪95,2【详解】集合M ={x m ≤x ≤m +12,N ={x n -35≤x ≤n ,且M ,N 都是集合{x |1≤x ≤2}的子集,由m ≥1m +12≤2 ,可得1≤m ≤32,由n -35≥1n ≤2,可得85≤n ≤2.要使M ∩N 的“长度”最小,只有当m 取最小值、n 取最大或m 取最大、n 取最小时才成立.当m =1,n =2,M ∩N =x 75≤x ≤32 ,“长度”为32-75=110,当m =32,n =85,M ∩N =x 32≤x ≤85 ,“长度”为85-32=110,故集合M ∩N 的“长度”的最小值是110;若m =65,M =x 65≤x ≤1710,要使集合M ∪N 的“长度”大于35,故n -35<1710-35或n >65+35,即n <1710或n >95,又85≤n ≤2,故n ∈85,1710 ∪95,2.故答案为:110;85,1710 ∪95,2.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知集合A ={x |-2≤x -1≤5}、集合B ={x |m +1≤x ≤2m -1}(m ∈R ).(1)若A ∩B =∅,求实数m 的取值范围;(2)设命题p :x ∈A ;命题q :x ∈B ,若命题p 是命题q 的必要不充分条件,求实数m 的取值范围.【详解】(1)由题意可知A ={x |-2≤x -1≤5}={x |-1≤x ≤6},又A ∩B =∅,当B =∅时,m +1>2m -1,解得m <2,当B ≠∅时,m +1≤2m -1,m +1>6或2m -1<-1,解得m >5,综上所述,实数m 的取值范围为-∞,2 ∪5,+∞ ;............................6分(2)∵命题p 是命题q 的必要不充分条件,∴集合B 是集合A 的真子集,当B =∅时,m +1>2m -1,解得m <2,当B ≠∅时,m +1≤2m -1m +1≥-12m -1≤6(等号不能同时成立),解得2≤m ≤72,综上所述,实数m 的取值范围为-∞,72.............................13分16.(15分)甲、乙两位同学参加一个游戏,规则如下:每人在A 、B 、C 、D 四个长方体容器中取两个盛满水,盛水体积多者为胜.甲先取两个容器,余下的两个容器给乙.已知A 、B 的底面积均为x 2,高分别为x 、y ;C 、D 的底面积均为y 2,高分别为x 、y (其中x ≠y ).在未能确定x 与y 大小的情况下,请给出一个让甲必胜的方案(即指出甲取哪两个容器可以获胜),并说明此方案必胜的理由.【详解】设A,B,C,D的体积分别为V A,V B,V C,V D,则V A=x3,V B=x2y,V C=xy2,V D=y3,甲从A,B,C,D中任选2个,有AB,AC,AD,BC,BD,CD,共6种可能,............................4分当x>y时,则x3>x2y>xy2>y3,即V A>V B>V C>V D,则V A+V B>V C+V D,V A+V C>V B+V D,即甲取BD,CD均不能够稳操胜券;..........................7分当x<y时,则y3>y2x>yx2>x3,即V D>V C>V B>V A,则V D+V C>V B+V A,V D+V B>V C+V A,即甲取AC,AB均不能够稳操胜券;............................10分若甲先取AD,则V A+V D-V B+V C=x3+y3-xy2+x2y=(x-y)2(x+y)>0,即V A+V D>V B+V C,即甲先取AD能够稳操胜券,选BC不能够稳操胜券;综上所述:甲必胜的方案:甲选AD.............................15分17.(15分)已知实数a、b满足:9a2+b2+4ab=10.(1)求ab和3a+b的最大值;(2)求9a2+b2的最小值和最大值.【详解】(1)∵9a2+b2+4ab=10,∴9a2+b2=10-4ab,∵9a2+b2≥6ab,∴10-4ab≥6ab,∴ab≤1,当且仅当a=33、b=3或a=-33、b=-3时等号成立,∴ab的最大值为1,∵9a2+b2+4ab=10,∴(3a+b)2-10=2ab,∵2ab=23×3a×b≤23×3a+b22=(3a+b)26,∴(3a+b)2-10≤(3a+b)26,∴(3a+b)2≤12,∴3a+b≤23,当且仅当a=33、b=3时等号成立,∴3a+b的最大值为23;............7分(2)∵9a2+b2+4ab=10,∴ab=10-9a2-b24,∵9a2+b2≥6ab,∴9a2+b2≥6×10-9a2-b24,即9a2+b2≥6,当且仅当a=33、b=3或a=-33、b=-3时等号成立,∴9a2+b2的最小值为6,又9a2+b2≥-6ab,∴9a2+b2≥-6×10-9a2-b24,即9a2+b2≤30,当且仅当a=153、b=-15或a=-153、b=15时等号成立,∴9a2+b2的最大值为30.............................15分18.(17分)已知函数y=m+1x2-m-1x+m-1.(1)若不等式m+1x2-m-1x+m-1<1的解集为R,求m的取值范围;(2)解关于x的不等式m+1x2-2mx+m-1≥0;(3)若不等式m+1x2-m-1x+m-1≥0对一切x∈x-12≤x≤12恒成立,求m的取值范围.【详解】(1)由题意,当m +1=0,即m =-1时,2x -2<1,解集不为R ,不合题意;当m +1≠0,即m ≠-1时,(m +1)x 2-(m -1)x +m -2<0的解集为R ,∴m +1<0Δ=(m -1)2-4(m +1)(m -2)<0 ,即m <-13m 2-2m -9>0故m <-1时,m <1-273.综上,m <1-273.............................6分(2)由题意得,在(m +1)x 2-2mx +m -1≥0,即[(m +1)x -(m -1)](x -1)≥0,当m +1=0,即m =-1时,解集为x x ≥1 ;当m +1>0,即m >-1时,x -m -1m +1(x -1)≥0,即m -1m +1=1-2m +1<1,解集为x x ≤m -1m +1或x ≥1 ;当m +1<0,即m <-1时,x -m -1m +1(x -1)≤0,∵m -1m +1=1-2m +1>1,∴解集为x 1≤x ≤m -1m +1.综上,当m <-1时,解集为x 1≤x ≤m -1m +1;当m =-1时,解集为x x ≥1 ;当m >-1时,解集为x x ≤m -1m +1或x ≥1 .............................11分(3)由题意,(m +1)x 2-(m -1)x +m -1≥0,即m x 2-x +1 ≥-x 2-x +1,∵x 2-x +1>0恒成立,∴m ≥-x 2-x +1x 2-x +1=-1+2(1-x )x 2-x +1,设1-x =t ,则12≤t ≤32,x =1-t∴1-x x 2-x +1=t (1-t )2-(1-t )+1=t t 2-t +1=1t +1t -1,∵t +1t ≥2,当且仅当t =1时取等号,∴1-x x 2-x +1≤1,当且仅当x =0时取等号,∴当x =0时,-x 2-x +1x 2-x +1max=1,∴m ≥1,∴m 的取值范围为1,+∞ ...........................17分19.(17分)已知S n =1,2,⋯,n n ≥3 ,A =a 1,a 2,⋯,a k k ≥2 是S n 的子集,定义集合A *=a i -a j a i ,a j ∈A 且a i >a j ,若A *∪n =S n ,则称集合A 是S n 的恰当子集.用X 表示有限集合X 的元素个数.(1)若n =5,A =1,2,3,5 ,求A *并判断集合A 是否为S 5的恰当子集;(2)已知A =1,a ,b ,7 a <b 是S 7的恰当子集,求a ,b 的值并说明理由;(3)若存在A 是S n 的恰当子集,并且A =5,求n 的最大值.【解析】(1)若n =5,有S 5=1,2,3,4,5 ,由A =1,2,3,5 ,则A *=1,2,3,4 ,满足A *∪5 =S 5,集合A 是S 5的恰当子集;-------------------------3分(2)A =1,a ,b ,7 a <b 是S 7的恰当子集,则A *=1,2,3,4,5,6 ,7-1=6∈A *,由5∈A *则7-a =5或b -1=5,7-a =5时,a =2,此时b =5,A =1,2,5,7 ,满足题意;b -1=5时,b =6,此时a =3,A =1,3,6,7 ,满足题意;a =2,b =5或a =3,b =6.-------------------8分(3)若存在A 是S n 的恰当子集,并且A =5,当n =10时,A =1,2,3,7,10 ,有A *=1,2,3,4,5,6,7,8,9 ,满足A *∪10 =S 10,所以A =1,2,3,7,10 是S 10的恰当子集,---------------------11分当n =11时,若存在A 是S 11的恰当子集,并且A =5,则需满足A *=1,2,3,4,5,6,7,8,9,10 ,由10∈A *,则有1∈A 且11∈A ;由9∈A *,则有2∈A 或10∈A ,-----------------------13分2∈A 时,设A =1,2,a ,b ,11 3≤a <b ≤10 ,经检验没有这样的a ,b 满足A *=1,2,3,4,5,6,7,8,9,10 ;当10∈A 时,设A =1,a ,b ,10,11 2≤a <b ≤9 ,经检验没有这样的a ,b 满足A *=1,2,3,4,5,6,7,8,9,10 ,----------------------------16分因此不存在A 是S 11的恰当子集,并且A =5,所以存在A 是S n 的恰当子集,并且A =5的n 的最大值为10.-------------17分。
集合与函数测试
一、填空题
1、设全集U ={a ,b ,c ,d},A ={a ,b},B ={b ,c ,d},则∁U A ∪∁U B =________
2、设集合A ={0,1,2,3,4,5,7},B ={1,3,6,8,9},C ={3,7,8},那么集合(A∩B)∪C 是________.
3、集合P ={x |y =x +1},集合Q ={y |y =x -1},则P 与Q 的关系是________.
4、下列各组中的两个集合M 和N ,表示同一集合的是________.(填序号) ①M ={π},N ={3.141 59}; ②M ={2,3},N ={(2,3)};
③M ={x |-1<x ≤1,x ∈N },N ={1}; ④M ={1,3,π},N ={π,1,|-3|}.
5、函数y =1-x +x 的定义域为________.
6、函数y =x +1的值域为________.
7、已知二次函数f (x )的图象开口向上,关于直线x =1对称,则满足不等式f (a )>f (3)的实数a 的取值范围是 。
8、若函数)1(2-x f 的定义域为]2,1[-,则函数)1(+x f 的定义域为
9、若实数0x >,则224x x x
++的最小值是 . 10、若函数42)(2+-=x ax x f 在[]4,0∈x 上的最大值为4,则实数a 的取值范围是_______________
11、若f(x)=2x+3,g(x+2)=f(x),则g(x)= .
12、若3f(x)+2f(1/x)=4x ,则f(x)= .
13、若函数)12(-x f =6x +1,则)1(f =_______
14、请写出一个函数,满足以下条件:a.图像过点(1,2),b.x>0时函数是减函数:______________
二、解答题
15、求下列函数的定义域
(1)1
31-=x y (2)122++-=x x y
16、求下列函数的值域
41y x x =+-
313-+=x x y
17、已知集合A={x|a≤x≤a+3},B={x|x<-1或x>5}.
(1) 若A∩B=Φ,求a的取值范围;(2) 若A∪B=B,求a的取值范围.
18、已知集合A={x|-1≤x<3},B={x|2x-4≥x-2}.
(1)求A∩B;(2)若集合C={x|2x+a>0},满足B∪C=C,求实数a的取值范围.
19、已知函数862++-=m mx mx y 的定义域为R ,求实数m 的取值范围。
20、设函数()f x 的定义域为R +,且有:①112f ⎛⎫= ⎪⎝⎭
,②对如人意正实数x 、y ,都有()()()f x y f x f y ⋅=+,③()f x 为减函数.
(1)求()()()11,,1,2,448f f f f f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭
的值; (2)求证:当[)1,x ∈+∞时,()0f x ≤;。