(新高考地区新教材)2020-2021学年上学期高一第一次月考备考金卷 数学(B卷)(3)
- 格式:doc
- 大小:435.00 KB
- 文档页数:8
河北省大名县一中2020-2021学年高一上学期第一次月考数学试题含答案2020届高一第一次月考数学试卷考试时间:90分钟一.单项选择题:每题5分,共计40分.1。
已知集合M={-1,0,1},N={0,1,2},则M∪N=()A.{-1,0,1}B.{-1,0,1,2}C.{-1,0,2} D.{0,1}2.设A是方程2x2+ax+2=0的解集,且2∈A,则实数a的值为()A.-5 B.-4C.4 D.53。
不等式(x+1)(x-2)≤0的解集为()A.{x|-1≤x≤2} B.{x|-1<x<2}C.{x|x≥2或x≤-1}D。
{x|x>2或x<-1}4。
集合{y|y=-x2+6,x,y∈N}的真子集的个数是()A.9 B.8C.7 D.65.函数y=错误!(x〉1)的最小值是()A.2错误!+2 B.2错误!-2C.2错误!D.26.如图,已知全集U=R,集合A={x|x<-1或x>4},B={x|-2≤x≤3},那么阴影部分表示的集合为()A.{x|-2≤x<4}B.{x|x≤3或x≥4}C.{x|-2≤x≤-1}D.{x|-1≤x≤3}7.若-1<α<β<1,则下列各式中恒成立的是()A.-2<α-β<0 B。
-2<α-β<-1C.-1<α-β<0 D.-1<α-β<18。
已知正实数a,b满足a+b=3,则错误!+错误!的最小值为()A.1 B。
错误!C.98 D.2二.多项选择题:全部选对得5分,部分选对得3分,有选错的得0分.共计20分9.(多选)下列说法错误的是()A.在直角坐标平面内,第一、三象限的点的集合为{(x,y)|xy>0}B.方程x-2+|y+2|=0的解集为{-2,2}C.集合{(x,y)|y=1-x}与{x|y=1-x}是相等的D.若A={x∈Z|-1≤x≤1},则-1.1∈A10。
(多选)满足M⊆{a1,a2,a3,a4},且M∩{a1,a2,a3}={a1,a2}的集合M可能是()A.{a1,a2}B.{a1,a2,a3}C.{a1,a2,a4}D.{a1,a2,a3,a4}11。
2020-2021学年高一数学上学期第一次月考试题文(含解析)时间:120分钟满分:150分第Ⅰ卷选择题(请将该卷答案写在答题纸上)一、单选题(共12题,每题5分,总分60分)1. 集合,,则()A. B.C. D.【答案】B【解析】【分析】根据函数的定义域与值域,分别求得集合,再结合集合的交集的运算,即可求解.【详解】由题意,,,根据集合的交集的概念及运算,可得.故选:B.【点睛】本题主要考查了集合的表示方法,以及集合的交集的概念及运算,其中解答中根据函数的定义域与值域求得集合是解答的关键,着重考查推理与运算能力,属于基础题.2. “”是“”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】D【解析】试题分析:由指数函数的单调性可知,但由于的符号不能确定是否一致,所以不能推出,同理也不能推出,所以“”是“”的既不充分也不必要条件,故选D.考点:充分条件与必要条件.3. 下列函数中,是奇函数且在区间内单调递减的函数是( )A. B. C. D.【答案】B【解析】奇函数的B、C、D,在区间内单调递减的函数是B4. 已知,则的单调增区间是()A. B. C. D.【答案】B【解析】【分析】函数在满足的条件下,函数的减区间即为所求,利用二次函数的性质,得出结论.【详解】因为在递减,所以的单调增区间,即为函数在满足的条件下,函数的减区间.由可得或,所以函数在满足的条件下,的减区间为,所以的单调增区间是,故选:B.【点睛】本题主要考查复合函数的单调性,二次函数、对数函数的性质,属于中档题.5. 函数在R上满足,则曲线在处的切线方程是()A. B. C. D.【答案】C【解析】【分析】先根据求出函数的解析式,然后对函数进行求导,进而可得到在点,(1)处的切线的斜率,最后根据点斜式可求导切线方程.【详解】,设,则,..得,在,(1)处的切线斜率为.函数在,(1)处的切线方程为,即.故选:.【点睛】本题主要考查求函数解析式的方法和函数的求导法则以及导数的几何意义.函数在某点的导数值等于该点处的切线的斜率.6. 函数,的最小值为()A. B. C. 1 D.【答案】D【解析】【分析】换元法:令,可得,,由二次函数在闭区间求解最小值即可.【详解】函数,令,由可得,,由二次函数可知当时,单调递增,当时,函数取最小值,故选:.【点睛】本题考查三角函数的最值,换元并利用二次函数区间上的最值是解决问题的关键,属中档题.7. 函数在定义域R内可导,若且,若,,,则a,b,c的大小关系是()A. B. C. D.【答案】C【解析】【分析】确定函数关于对称,再确定函数的单调性,综合两者判断大小得到答案.【详解】,即,函数关于对称,当时,,即,函数单调递减;当时,,即,函数单调递增.,,,故.故选:C.【点睛】本题考查了利用函数的单调性和对称性判断函数值的大小关系,意在考查学生对于函数性质的综合应用能力.8. 已知,则的值是()A. B. C. D.【答案】C【解析】【分析】利用已知条件求出正切函数值,化简所求表达式为正切函数的形式,即可求出结果.【详解】由,可得.则.故选:C.【点睛】本题考查同角三角函数的基本关系式的应用,三角函数的化简求值,考查计算能力.属于基础题.9. 若函数的一个正数零点附近的函数值用二分法计算,其参考数据如下:那么方程一个近似根(精确到0.1)为()A. 1.4 B. 1.3 C. 1.2 D. 1.5【答案】A【解析】【分析】由表格中参考数据可得,,结合题中要求精确到0.1可得答案.【详解】由表格中参考数据可得,,又因为题中要求精确到0.1,所以近似根为 1.4故选:A.【点睛】本题主要考查用二分法求区间根的问题,属于基础题型.在利用二分法求区间根的问题上,如果题中有根的精确度的限制,在解题时就一定要计算到满足要求才能结束.10. 若定义在R的奇函数满足,当时,,则()A. B. C. 3 D. 2【答案】A【解析】【分析】利用求出函数的周期,然后由周期性求解函数值即可.【详解】定义在上的奇函数满足,可得,所以函数的周期是4,当时,,则(1).故选:.【点睛】本题考查函数的奇偶性以及函数的周期性,函数值的求法,考查计算能力,属于基础题.11. 已知函数是定义在上的增函数,且,,则不等式()A. B. C. D.【答案】D【解析】【分析】根据且可得,,则可化为,然后根据单调性求解.【详解】根据可得,可转化为,又,所以,即,因为是定义在上的增函数,所以只需满足,解得:.故选:D.【点睛】本题考查抽象函数的应用,考查利用函数的单调性解不等式,难度一般,根据题目条件将问题灵活转化是关键.12. 若在上是减函数,则b的取值范围是()A. B. C. D.【答案】D【解析】【分析】求出原函数的定义域,要使原函数在内是单调减函数,则其导函数在定义域内恒小于等于0,原函数的导函数的分母恒大于0,只需分析分子的二次三项式恒大于等于0即可,根据二次项系数大于0,且对称轴在定义域范围内,所以二次三项式对应的抛物线开口向上,只有其对应二次方程的判别式小于等于0时导函数恒小于等于0,由此解得b的取值范围.【详解】由,得,所以函数的定义域为,再由,得:,要使函数在内是单调减函数,则在上恒小于等于0,因为,令,则在上恒大于等于0,函数开口向上,且对称轴为,所以只有当,即时,恒成立,所以,使函数在其定义域内是单调减函数的b的取值范围是.故选:D.【点睛】本题考查了函数的单调性与导数之间的关系,一个函数在其定义域内的某个区间上单调减,说明函数的导函数在该区间内恒小于等于0,是中档题.第Ⅱ卷非选择题(请将该卷答案写在答题纸上)二、填空题(共4题,每题5分,总分20分)13. 命题“对任意,都有”的否定为__________.【答案】存在,使得【解析】全称命题的否定为其对应的特称命题,则:命题“对任意,都有”的否定为存在,使得. 14. 函数的零点有__________个.【答案】1【解析】【分析】求导得到,得到函数的单调区间,再计算极值的正负判断得到答案.【详解】,故,故函数在和上单调递增,在上单调递减,函数的极大值,函数的极小值,当时,,故函数共有1个零点故答案为:1.【点睛】本题考查了利用导数计算函数零点问题,意在考查学生的计算能力和转化能力,属于常考题型.15. 条件,条件,则p是q的__________条件.【答案】必要不充分【解析】【分析】根据一元二次不等式和分式不等式解法,分别求得对应的集合,结合集合间的包含关系,即可求解.【详解】由不等式可化为,解得,即不等式的解集为,又由,解得,即不等式的解集为,可得是的真子集,所以p是q的必要不充分条件.故答案为:必要不充分.【点睛】本题主要考查充分条件、必要条件的判定,以及一元二次不等式和分式不等式的求解,其中解答中结合不等式的解法,求得是解答的关键,着重考查推理与运算能力.16. 已知,若,则实数的取值范围是____________.【答案】【解析】【分析】判断函数的单调性,利用单调性转化为自变量的不等式,即可求解.【详解】在区间都是增函数,并且在处函数连续,所以在上是增函数,等价于,解得.故答案为:【点睛】本题考查函数的单调性,并利用单调性解不等式,属于中档题.三、解答题(简答题)(共6题,总分70分)17. 已知角的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点.(1)求的值;(2)若角就是将角的终边顺时针旋转得到,求的值.【答案】(1);(2)【解析】【分析】(1)直接利用三角函数定义结合诱导公式计算得到答案.(2),带入式子利用诱导公式化简,带入数据得到答案.【详解】(1)根据题意:,,,.(2)根据题意:,故.【点睛】本题考查了三角函数定义,诱导公式,意在考查学生的计算能力和转化能力.18. 已知函数,.(1)若函数是单调函数,求实数的取值范围;(2)若函数的最大值是2,求实数的值.【答案】(1);(2)3或.【解析】试题分析:(1)二次函数开口向下,对称轴为,据此可得实数的取值范围是;(2)分类讨论,,三种情况可得实数的值3或.试题解析:(1)二次函数开口向下,对称轴为,结合题意可得或,即实数的取值范围是;(2)分类讨论:当时,函数在区间上单调递减,函数的最大值:;当时,函数在区间上单调递增,函数的最大值:;当时,函数在对称轴处取得最大值,即:,解得:或,不合题意,舍去;综上可得实数的值3或.点睛:二次函数、二次方程与二次不等式统称“三个二次”,它们常结合在一起,有关二次函数的问题,数形结合,密切联系图象是探求解题思路的有效方法.一般从:①开口方向;②对称轴位置;③判别式;④端点函数值符号四个方面分析.19. 已知函数,其中.(1)讨论函数的单调区间;(2)若存在,使得,求实数的取值范围.【答案】(1)时,减区间是,时,减区间是,增区间是;(2).【解析】试题分析:(1)这是一个利用导数研究函数的单调区间的问题,应先确定函数的定义域,然后再对函数求导,并分别针对的不同取值进行讨论,就可得到的单调区间;(2)首先根据关系式把从中分离出来,再通过构造函数并求出其最值,即可得到实数的取值范围.试题解析:(1)因为若则对恒成立,所以,此时的单调递减区间为;若,则时,所以,单调递减区间为,单调递增区间为;(2)因为,所以,,即若存在,使得成立,只需的最小值设,则时,所以在上减,在上增,所以时,取最小值所以.考点:1、导数在函数研究中的应用;2、单调区间;3、最值.【思路点晴】本题是一个利用导数研究函数的单调区间、求极值等方面的综合性问题,属于难题.解决本题的基本思路是,首先应根据函数关系式求出函数的定义域,再对函数进行求导,并针对实数的不同取值加以讨论,就可以得到函数的单调区间;至于第二问求的取值范围,解决问题的切入点是不等在上有解,然后再结合构造函数并求其最值即可得到的范围.20. 对于企业来说,生产成本、销售收入和利润之间的关系是个重要的问题.对一家药品生产企业的研究表明:该企业的生产成本(单位:万元)和生产收入(单位:万元)都是产量(单位:)的函数,它们分别为和,试求出该企业获得的生产利润(单位:万元)的最大值.【答案】当产量为时,该企业可获得最大利润,最大利润为万元.【解析】【分析】生产利润,列出关于的表达式,然后利用导数分析的最大值.【详解】解:,即,,令,得或,当变化时,,的变化情况如下表:1极小值↗极大值由上表可知:是函数w的唯一极大值点,也是最大值点.所以,当时,w取得取最大值.【点睛】本题考查利润最值问题,考查利用导数分析求解函数的最值问题,难度一般.21. 已知函数.(1)设是的极值点.求a的值,并讨论的零点个数;(2)证明:当时,.【答案】(1),有两个零点;(2)证明见解析.【解析】【分析】(1)求导得到,根据得到,再计算函数单调区间,计算极值得到函数零点个数.(2)设,求导得到单调区间,计算最值得到证明.【详解】(1)的定义域为,.由题设知,,所以.从而,.当时,;当时,.所以在单调递减,在单调递增.,∵,,所以有两个零点.(2)当时,,设,则.当时,;当时,.所以是的最小值点,故当时,.因此当时,.【点睛】本题考查了根据函数的极值求参数,函数的零点问题,证明不等式,意在考查学生的计算能力和综合应用能力.选做题(本小题满分12分,请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题记分,作答时请写清题号.)22. 在平面直角坐标系xOy中,已知曲线C的参数方程为(为参数).以坐标原点为极点,x轴的非负半轴为极轴,并取相同的长度单位建立极坐标系,直线的极坐标方程为.(1)求直线的直角坐标方程与曲线C的普通方程;(2)若曲线C上到直线的距离为1的点有3个,求m的值.【答案】(1)直线的直角坐标方程为,圆C的普通方程为;(2)或.【解析】【分析】(1)将直线的极坐标方程利用余弦的两角差的公式展开,再将代入便可得到的直角坐标方程;将曲线的参数方程消去便可得到普通方程.(2)若曲线上到直线距离为的点有个,则圆心到直线的距离为,然后利用点到线距离公式求解.【详解】解:(1)由(为参数)得:,而,即.所以直线的直角坐标方程为,圆C的普通方程为.(2)由于圆C的半径为3,根据题意,若圆C上到直线的距离为的点有个,则圆心到直线的距离为,可得,解得或.【点睛】本题考查极坐标方程、参数方程与直角坐标方程的转化,考查圆上的点到直线的距离问题,考查点到线距离公式的运用,难度一般.23. 选修4-5:不等式选讲设函数.(Ⅰ)若,解不等式;(Ⅱ)如果,,求的取值范围.【答案】(Ⅰ)(Ⅱ)【解析】试题分析:(Ⅰ)当时,利用零点分段法,分三段去绝对值解不等式;(Ⅱ)利用绝对值的三角不等式,令最小值求的取值范围.试题解析:解:(Ⅰ)当时,.由得.当时,不等式可化为,即,其解集为;当时,不等式可化为,不可能成立,其解集为;当时,不等式可化为,即,其解集为.综上所述,的解集为.(Ⅱ)∵,∴要,成立.则,∴或.即的取值范围是.2020-2021学年高一数学上学期第一次月考试题文(含解析)时间:120分钟满分:150分第Ⅰ卷选择题(请将该卷答案写在答题纸上)一、单选题(共12题,每题5分,总分60分)1. 集合,,则()A. B.C. D.【答案】B【解析】【分析】根据函数的定义域与值域,分别求得集合,再结合集合的交集的运算,即可求解.【详解】由题意,,,根据集合的交集的概念及运算,可得.故选:B.【点睛】本题主要考查了集合的表示方法,以及集合的交集的概念及运算,其中解答中根据函数的定义域与值域求得集合是解答的关键,着重考查推理与运算能力,属于基础题.2. “”是“”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】D【解析】试题分析:由指数函数的单调性可知,但由于的符号不能确定是否一致,所以不能推出,同理也不能推出,所以“”是“”的既不充分也不必要条件,故选D.考点:充分条件与必要条件.3. 下列函数中,是奇函数且在区间内单调递减的函数是( )A. B. C. D.【答案】B【解析】奇函数的B、C、D,在区间内单调递减的函数是B4. 已知,则的单调增区间是()A. B. C. D.【答案】B【解析】【分析】函数在满足的条件下,函数的减区间即为所求,利用二次函数的性质,得出结论.【详解】因为在递减,所以的单调增区间,即为函数在满足的条件下,函数的减区间.由可得或,所以函数在满足的条件下,的减区间为,所以的单调增区间是,故选:B.【点睛】本题主要考查复合函数的单调性,二次函数、对数函数的性质,属于中档题.5. 函数在R上满足,则曲线在处的切线方程是()A. B. C. D.【答案】C【解析】【分析】先根据求出函数的解析式,然后对函数进行求导,进而可得到在点,(1)处的切线的斜率,最后根据点斜式可求导切线方程.【详解】,设,则,..得,在,(1)处的切线斜率为.函数在,(1)处的切线方程为,即.故选:.【点睛】本题主要考查求函数解析式的方法和函数的求导法则以及导数的几何意义.函数在某点的导数值等于该点处的切线的斜率.6. 函数,的最小值为()A. B. C. 1 D.【答案】D【解析】【分析】换元法:令,可得,,由二次函数在闭区间求解最小值即可.【详解】函数,令,由可得,,由二次函数可知当时,单调递增,当时,函数取最小值,故选:.【点睛】本题考查三角函数的最值,换元并利用二次函数区间上的最值是解决问题的关键,属中档题.7. 函数在定义域R内可导,若且,若,,,则a,b,c的大小关系是()A. B. C. D.【答案】C【解析】【分析】确定函数关于对称,再确定函数的单调性,综合两者判断大小得到答案.【详解】,即,函数关于对称,当时,,即,函数单调递减;当时,,即,函数单调递增.,,,故.故选:C.【点睛】本题考查了利用函数的单调性和对称性判断函数值的大小关系,意在考查学生对于函数性质的综合应用能力.8. 已知,则的值是()A. B. C. D.【答案】C【解析】【分析】利用已知条件求出正切函数值,化简所求表达式为正切函数的形式,即可求出结果.【详解】由,可得.则.故选:C.【点睛】本题考查同角三角函数的基本关系式的应用,三角函数的化简求值,考查计算能力.属于基础题.9. 若函数的一个正数零点附近的函数值用二分法计算,其参考数据如下:那么方程一个近似根(精确到0.1)为()A. 1.4B. 1.3C. 1.2D. 1.5【答案】A【解析】【分析】由表格中参考数据可得,,结合题中要求精确到0.1可得答案.【详解】由表格中参考数据可得,,又因为题中要求精确到0.1,所以近似根为 1.4故选:A.【点睛】本题主要考查用二分法求区间根的问题,属于基础题型.在利用二分法求区间根的问题上,如果题中有根的精确度的限制,在解题时就一定要计算到满足要求才能结束.10. 若定义在R的奇函数满足,当时,,则()A. B. C. 3 D. 2【答案】A【解析】【分析】利用求出函数的周期,然后由周期性求解函数值即可.【详解】定义在上的奇函数满足,可得,所以函数的周期是4,当时,,则(1).故选:.【点睛】本题考查函数的奇偶性以及函数的周期性,函数值的求法,考查计算能力,属于基础题.11. 已知函数是定义在上的增函数,且,,则不等式()A. B. C. D.【答案】D【解析】【分析】根据且可得,,则可化为,然后根据单调性求解.【详解】根据可得,可转化为,又,所以,即,因为是定义在上的增函数,所以只需满足,解得:.故选:D.【点睛】本题考查抽象函数的应用,考查利用函数的单调性解不等式,难度一般,根据题目条件将问题灵活转化是关键.12. 若在上是减函数,则b的取值范围是()A. B. C. D.【答案】D【解析】【分析】求出原函数的定义域,要使原函数在内是单调减函数,则其导函数在定义域内恒小于等于0,原函数的导函数的分母恒大于0,只需分析分子的二次三项式恒大于等于0即可,根据二次项系数大于0,且对称轴在定义域范围内,所以二次三项式对应的抛物线开口向上,只有其对应二次方程的判别式小于等于0时导函数恒小于等于0,由此解得b的取值范围.【详解】由,得,所以函数的定义域为,再由,得:,要使函数在内是单调减函数,则在上恒小于等于0,因为,令,则在上恒大于等于0,函数开口向上,且对称轴为,所以只有当,即时,恒成立,所以,使函数在其定义域内是单调减函数的b的取值范围是.故选:D.【点睛】本题考查了函数的单调性与导数之间的关系,一个函数在其定义域内的某个区间上单调减,说明函数的导函数在该区间内恒小于等于0,是中档题.第Ⅱ卷非选择题(请将该卷答案写在答题纸上)二、填空题(共4题,每题5分,总分20分)13. 命题“对任意,都有”的否定为__________.【答案】存在,使得【解析】全称命题的否定为其对应的特称命题,则:命题“对任意,都有”的否定为存在,使得.14. 函数的零点有__________个.【答案】1【解析】【分析】求导得到,得到函数的单调区间,再计算极值的正负判断得到答案.【详解】,故,故函数在和上单调递增,在上单调递减,函数的极大值,函数的极小值,当时,,故函数共有1个零点故答案为:1.【点睛】本题考查了利用导数计算函数零点问题,意在考查学生的计算能力和转化能力,属于常考题型.15. 条件,条件,则p是q的__________条件.【答案】必要不充分【解析】【分析】根据一元二次不等式和分式不等式解法,分别求得对应的集合,结合集合间的包含关系,即可求解.【详解】由不等式可化为,解得,即不等式的解集为,又由,解得,即不等式的解集为,可得是的真子集,所以p是q的必要不充分条件.故答案为:必要不充分.【点睛】本题主要考查充分条件、必要条件的判定,以及一元二次不等式和分式不等式的求解,其中解答中结合不等式的解法,求得是解答的关键,着重考查推理与运算能力.16. 已知,若,则实数的取值范围是____________.【答案】【解析】【分析】判断函数的单调性,利用单调性转化为自变量的不等式,即可求解.【详解】在区间都是增函数,并且在处函数连续,所以在上是增函数,等价于,解得.故答案为:【点睛】本题考查函数的单调性,并利用单调性解不等式,属于中档题.三、解答题(简答题)(共6题,总分70分)17. 已知角的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点.(1)求的值;(2)若角就是将角的终边顺时针旋转得到,求的值.【答案】(1);(2)【解析】【分析】(1)直接利用三角函数定义结合诱导公式计算得到答案.(2),带入式子利用诱导公式化简,带入数据得到答案.【详解】(1)根据题意:,,,.(2)根据题意:,故.【点睛】本题考查了三角函数定义,诱导公式,意在考查学生的计算能力和转化能力.18. 已知函数,.(1)若函数是单调函数,求实数的取值范围;(2)若函数的最大值是2,求实数的值.【答案】(1);(2)3或.【解析】试题分析:(1)二次函数开口向下,对称轴为,据此可得实数的取值范围是;(2)分类讨论,,三种情况可得实数的值3或.试题解析:(1)二次函数开口向下,对称轴为,结合题意可得或,即实数的取值范围是;(2)分类讨论:当时,函数在区间上单调递减,函数的最大值:;当时,函数在区间上单调递增,函数的最大值:;当时,函数在对称轴处取得最大值,即:,解得:或,不合题意,舍去;综上可得实数的值3或.点睛:二次函数、二次方程与二次不等式统称“三个二次”,它们常结合在一起,有关二次函数的问题,数形结合,密切联系图象是探求解题思路的有效方法.一般从:①开口方向;②对称轴位置;③判别式;④端点函数值符号四个方面分析.19. 已知函数,其中.(1)讨论函数的单调区间;(2)若存在,使得,求实数的取值范围.【答案】(1)时,减区间是,时,减区间是,增区间是;(2).【解析】试题分析:(1)这是一个利用导数研究函数的单调区间的问题,应先确定函数的定义域,然后再对函数求导,并分别针对的不同取值进行讨论,就可得到的单调区间;(2)首先根据关系式把从中分离出来,再通过构造函数并求出其最值,即可得到实数的取值范围.试题解析:(1)因为若则对恒成立,所以,此时的单调递减区间为;若,则时,所以,单调递减区间为,单调递增区间为;(2)因为,所以,,即若存在,使得成立,只需的最小值设,则时,所以在上减,在上增,所以时,取最小值所以.考点:1、导数在函数研究中的应用;2、单调区间;3、最值.【思路点晴】本题是一个利用导数研究函数的单调区间、求极值等方面的综合性问题,属于难题.解决本题的基本思路是,首先应根据函数关系式求出函数的定义域,再对函数进行求导,并针对实数的不同取值加以讨论,就可以得到函数的单调区间;至于第二问求的取值范围,解决问题的切入点是不等在上有解,然后再结合构造函数并求其最值即可得到的范围.20. 对于企业来说,生产成本、销售收入和利润之间的关系是个重要的问题.对一家药品生产企业的研究表明:该企业的生产成本(单位:万元)和生产收入(单位:万元)都是产量(单位:)的函数,它们分别为和,试求出该企业获得的生产利润(单位:万元)的最大值.【答案】当产量为时,该企业可获得最大利润,最大利润为万元.【解析】【分析】生产利润,列出关于的表达式,然后利用导数分析的最大值.【详解】解:,即,,令,得或,当变化时,,的变化情况如下表:1。
(新教材)2020-2021学年上学期高一期中备考金卷数学(A )注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{1,0,}A m ,{1,2}B,若{1,0,1,2}A B ,则实数m 的值为( )A .1或0B .0或1C .1或2D .1或22.“关于x 的不等式220ax x a -+>的解集为R ”的一个必要不充分条件是( ) A .01a <<B .103a <<C .01a ≤≤D .0a <或13a >3.若不等式20ax bx c ++>的解集为{|12}x x -<<,那么不等式()()2112a x b x c ax ++-+>的解集为( ) A .{|21}x x -<<B .{|2x x <-或1}x >C .{|0x x <或3}x >D .{|03}x x <<4.已知0x >,0y >,若1x y +=,则1xy的最小值为( )A .4B .14 C .2D .125.函数1()1f x x x=+-的定义域是( )A .RB .[1,)-+∞C .(,0)(0,)-∞+∞D .[1,0)(0,)-+∞6.对于定义在R 上的任意奇函数()f x ,均有( ) A .()()0f x f x --> B .()()0f x f x --≤ C .()()0f x f x ⋅->D .()()0f x f x ⋅-≤7.已知偶函数()f x 的图象经过点(1,3)--,且当0a b ≤<时,不等式()()0f b f a b a-<-恒成立,则使得(2)30f x -+<成立的x 取值范围为( ) A .(3,)+∞B .(1,3)C .(,1)(3,)-∞+∞ D .[1,3]8.记max{,,}x y z 表示,,x y z 中的最大者,设函数2()max{42,,3}f x x x x x =-+---, 若()1f m <,则实数m 的取值范围是( ) A .(1,1)(3,4)-B .(1,3)C .(1,4)-D .(,1)(4,)-∞-+∞二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分. 9.已知{|10}A x x =+>,{2,1,0,1}B =--,则()A B R中的元素有( )A .2-B .1-C .0D .110.已知正数,a b ,则下列不等式中恒成立的是( ) A .122a b ab++≥ B .11()4a b a b ⎛⎫++≥⎪⎝⎭C .222a b ab ab+≥ D .2abab a b>+ 11.下列函数()f x 中,满足对任意()12,0,x x ∈+∞,当12x x >时,都有()()12f x f x >的是( )A .()2f x x =B .()1f x x=C .()f x x =D .()21f x x =+12.已知函数2, 0(),0ax x f x x ax x ≥⎧=⎨-<⎩,若函数的值域为[)0,+∞,则下列的a 值满足条件的是( ) 此卷只装订不密封班级 姓名 准考证号 考场号 座位号A .21=aB .3-=aC .0=aD .4=a第Ⅱ卷三、填空题:本大题共4小题,每小题5分.13.已知集合{}221,(1),33A m m m m =+--+,若1A ∈,则2020m =________.14.已知{|1}A x y x ==-,{|1}B x x m =≤+,若x A ∈是x B ∈的必要条件,则m 范围是 .15.已知一元二次方程220x mx +-=的一个根为2,那么另一根为_______;m 的值为__________. 16.给出下列8个命题:①0b a a b ->-⇒>;②20b ab a a <<⇒>;③1100a b a b>>⇒<<;④22a b ac bc >⇒>;⑤,a b c d ac bd >>⇒>;⑥c ab c a b>⇒>;⑦()220a ba b c c c >⇒>≠;⑧,a b c d a c b d >>⇒->-,其中正确的命题的序号是 .(将你认为的所有正确的命题的序号都填上)四、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.(10分)设(){}210A x x a x a =-++<,{}23100B x x x =--<,若A B ⊆,求实数a 的取值范围.18.(12分)已知二次函数2()43f x x x =-+,非空集合{|0}A x x a =≤≤.(1)当x A ∈时,二次函数的最小值为1-,求实数a 的取值范围;(2)当 时,求二次函数2()43f x x x =-+的最值以及取到最值时x 的取值.在①1a =,②4a =,③5a =,这三个条件中任选一个补充在(2)问中的横线上,并求解. 注:如果选择多个条件分别解答,按第一个解答计分.19.(12分)已知二次函数2()41f x mx x ,且满足(1)(3)f f .(1)求函数()f x 的解析式;(2)若函数()f x 的定义域为(2,2),求()f x 的值域.20.(12分)已知函数2()2f x x ax b =+-. (1)若23b a =,求不等式()0f x ≤的解集;(2)若0a >,0b >,且2()1f b b b a =+++,求a b +的最小值.21.(12分)作出下列函数的图象并求其值域. (1)1(,2)y x x x =-∈≤Z ; (2)2243(03)y x x x =--≤<.22.(12分)已知函数()()21f x x ax a =-+-∈R .(1)若函数()f x 在区间[)21,a -+∞上单调递减,求a 的取值范围; (2)若()f x 在区间1,12⎡⎤⎢⎥⎣⎦上的最大值为14-,求a 的值.(新教材)2020-2021学年上学期高一期中备考金卷数学(A )答案第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.【答案】D 【解析】由题意得{1,0,}A m ,{1,2}B ,且{1,0,1,2}A B ,所以1m或2.2.【答案】C【解析】因为关于x 的不等式220x ax a -+>的解集为R , 所以函数2()2f x x ax a =-+的图象始终落在x 轴的上方,即2440Δa a =-<,解得01a <<,因为要找其必要不充分条件,对比可得C 选项满足条件. 3.【答案】D【解析】因为不等式20ax bx c ++>的解集为{|12}x x -<<, 所以1-和2是方程20ax bx c ++=的两根,且0a <,所以121b a -=-+=,2ca=-,即b a =-,2c a =-,代入不等式()()2112a x b x c ax ++-+>整理得()230a x x ->,因为0a <,所以230x x -<,所以03x <<,故选D . 4.【答案】A 【解析】∵21()24x y xy +≤=,∴14xy ≥当且仅当x y =时等号成立. 5.【答案】D【解析】由题意可得10x +≥,且0x ≠,得到1x ≥-,且0x ≠,故选D . 6.【答案】D【解析】因为()f x 是定义在R 上的奇函数,所以有(0)0f =、()()f x f x -=-.()()()()2()f x f x f x f x f x --=+=,()f x 的正负性题目中没有说明,故A 、B 错误;2()()()[()][()]0f x f x f x f x f x ⋅-=⋅-=-≤,故C 错误,D 正确.7.【答案】C【解析】根据题意,()f x 为偶函数,且经过点(1,3)--,则点(1,3)-也在函数图象上,当0a b ≤<时,不等式()()0f b f a b a-<-恒成立,则函数()f x 在[0,)+∞上为减函数,因为(2)30f x -+<,所以(2)3(2)(1)21f x f x f x -<-⇒-<⇒->, 解得1x <或3x >.8.【答案】A【解析】函数()f x 的图象如图,直线1y =与曲线交点(1,1)A -,(1,1)B ,(3,1)C ,(4,1)D , 故()1f m <时,实数m 的取值范围是11m -<<或34m <<.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分. 9.【答案】AB【解析】因为集合{|1}A x x =>-,所以{|1}A x x =≤-R,则(){|1}{2,1,0,1}{2,1}A B x x =≤---=--R.10.【答案】ABC【解析】222a b ab ab ab +≥≥,当且仅当2a b ==时,等号成立,A 正确; 11()2224b aa b b a b a a b b a ⎛⎫++=++≥⋅+= ⎪⎝⎭,当且仅当a b =时,等号成立,B 正确;∵2220a b ab +≥>22ab ab≥,当且仅当a b =时,等号成立,C 正确;∵a b +≥1a b≤+,2ab a b ≤+,当且仅当a b =时,等号成立,D 不正确. 11.【答案】ACD【解析】由12x x >时,()()12f x f x >,所以函数()f x 在()0,+∞上为增函数的函数. A 选项,2y x 在()0,+∞上为增函数,符合题意;B 选项,1y x=在()0,+∞上为减函数,不符合题意; C 选项,y x =在()0,+∞上为增函数,符合题意; D 选项,()21f x x =+在()0,+∞上为增函数,符合题意. 12.【答案】ACD【解析】当0a <时,有(1)0f a =<,不符合题意; 当0a ≥时,若0x ≥,则有0y ax =≥, 若0x ≥,则2y x ax =-在(,0)-∞上为减函数,故当0a ≥时,2, 0(),0ax x f x x ax x ≥⎧=⎨-<⎩的值域为[)0,+∞,则0a ≥,ACD 满足条件.第Ⅱ卷三、填空题:本大题共4小题,每小题5分. 13.【答案】1【解析】令11m +=,则解得0m =,此时()211m -=,与集合的互异性不符;令()211m -=,解得2m =或0m =(舍),则2331m m -+=,与集合互异性不符,舍去; 令2331m m -+=,解得2m =(舍)或1m =,则12m +=,()210m -=, 故1m =,20201m =. 14.【答案】(,0]-∞【解析】由{|{|1}A x y x x ===≤,{|1}B x x m =≤+, 又∵x A ∈是x B ∈的必要条件,∴B A ⊆,∴11m +≤,解得0m ≤,即m 的取值范围是(,0]-∞. 15.【答案】1-,1-【解析】设方程的两根分别为1x ,2,根据根与系数的关系可得122x =-,解得11x =-, 所以121m -=-+=,1m =-. 16.【答案】①②③⑦【解析】对于①,若b a a ->-,则()()0b a a --->,即0b >,故①正确;对于②,若0a b <<,则0a <,0b <,0a b -<,则()20a ab a a b -=->,即2a ab >,故②正确;对于③,若0a b >>则0a >,0b >,0b a -<,10a >,则110b a a b a--=<,即11a b <,则110a b<<,故③正确; 对于④,若a b >,取0c,则20ac =,20bc =,则22ac bc >不成立,故④不正确;对于⑤,若a b >,c d >,取0a =,1b =-,0c ,1d =-,则0ac =,1bd =,则ac bd >不成立,故⑤不正确;对于⑥,若ab c >,取1a =-,1b =-,0c ,则0c b =,则ca b>不成立,故⑥不正确; 对于⑦,若a b >,则0a b ->,则2220a b a b c c c --=>(0c ≠),即22a bc c>,故⑦正确; 对于⑧,若a b >,c d >,取1a =,0b =,1c =,0d =, 则0a c -=,0b d -=,则a c b d ->-不成立,故⑧不正确.四、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.【答案】{}|25a a -≤≤.【解析】∵23100x x --<,解得25x -<<,∴{}|25B x x =-<<, 由题意得()()()2110x a x a x x a -++=--<,当1a >时,{}|1A x x a =<<,A B ⊆,15a ∴<≤;当1a =时,A =∅满足条件; 当1a <时,{}|1A x a x =<<,A B ⊆,21a ∴-≤<,综上,实数a 的取值范围是{}|25a a -≤≤. 18.【答案】(1)2a ≥;(2)见解析.【解析】(1)作出二次函数22()43(2)1f x x x x =-+=--的图象如图所示,当0x a ≤≤,二次函数的最小值为1-,则a 的取值范围为2a ≥. (2)选择方案①,由图像可知,当1a =时,max ()(0)3f x f ==,此时0x =,min ()(1)0f x f ==,此时1x =.选择方案②,当4a =时,max ()(0)(4)3f x f f ===,此时0x =或4x =,min ()(2)1f x f ==-,此时2x =.选择方案③,当5a =时,max ()(5)8f x f ==,此时5x =,min ()(2)1f x f ==-,此时2x =.19.【答案】(1)2()241f x x x ;(2)(]15,3.【解析】(1)由(1)(3)f f 可得该二次函数的对称轴为1x,即412m从而得2m,所以该二次函数的解析式为2()241f x x x .(2)由(1)可得2()2(1)3f x x ,所以()f x 在(2,2)上的值域为(]15,3. 20.【答案】(1)见解析;(2)72. 【解析】(1)因为23b a =,所以22()23f x x ax a =+-, 由()0f x ≤,得22230x ax a +-≤,即(3)()0x a x a +-≤, 当0a =时,不等式()0f x ≤的解集为{|0}x x =; 当0a >时,不等式()0f x ≤的解集为{|3}x a x a -≤≤; 当0a <时,不等式()0f x ≤的解集为{|3}x a x a ≤≤-. (2)因为2()2f b b ab b =+-,由已知2()1f b b b a =+++, 可得2210ab a b ---=,∵0a >,0b >,∴1a >,12b >, ∴1112(1)12a b a a +==+--,∵0a >,0b >,∴1a >,12b >, 1337121222a b a a +=-++≥+=-,当且仅当2a =,32b =时取等号,所以a b +的最小值为72.21.【答案】(1)图象见解析,值域为{}1,0,1,2,3-;(2)图象见解析,值域为[)5,3-. 【解析】(1)因为x Z ∈且2x ≤,所以{}2,1,0,1,2x ∈--, 当2x =-时,13y x =-=;当1x =-时,12y x =-=; 当0x =时,11y x =-=;当1x =时,10y x =-=; 当2x =时,11y x =-=-.所以该函数图象为一条直线上孤立的点,如图:由图象可知,{}1,0,1,2,3y ∈-,所以该函数的值域为{}1,0,1,2,3-. (2)因为()22243215y x x x =--=--,所以当0x =时,()22153y x =--=-;当1x =时,()22155y x =--=-; 当3x =时,()22153y x =--=,因为03x ≤<,所以该函数图象为抛物线的一部分,如图:由图象可知,[)5,3y ∈-,所以该函数的值域为[)5,3-. 22.【答案】(1)23a ≥;(2)3a = 【解析】(1)由题知函数()f x 的对称轴方程为2a x =, ()f x 在区间[)21,a -+∞上单调递减,[)21,,2a a ⎡⎫∴-+∞⊆+∞⎪⎢⎣⎭,则212a a -≥,解得23a ≥.(2)由(1)知函数()f x 的对称轴方程为2a x =, 当122a ≤,即1a ≤时,函数()f x 在区间1,12⎡⎤⎢⎥⎣⎦上单调递减, ()f x 最大值为1512244a f ⎛⎫=-=- ⎪⎝⎭,解得2a =,与1a ≤矛盾;当1122a <<,即12a <<时,函数()f x 在区间1,12⎡⎤⎢⎥⎣⎦的最大值为211244a af ⎛⎫=-=- ⎪⎝⎭,解得3a =3a =当12a ≥,即2a ≥时,函数()f x 在区间1,12⎡⎤⎢⎥⎣⎦上单调递增,()f x 最大值为()1124f a =-=-,解得74a =,与2a ≥矛盾,综上,3a =。
福建省连城县第一中学2020-2021学年高一上学期月考(一)数学试题学校:___________姓名:___________班级:___________考号:___________1.已知集合{}2|20P x x x =-≥ ,{}|12Q x x =<≤ ,则()RP Q 等于( )A .[)0,1B .(]0,2C .()1,2D .[]1,22.函数()0f x =的定义域是( )A .333,,222⎛⎫⎛⎤-∞-⋃- ⎪ ⎥⎝⎭⎝⎦B .333,,222⎛⎫⎛⎫-∞-⋃- ⎪ ⎪⎝⎭⎝⎭C .33,22⎛⎤-⎥⎝⎦ D .3,2⎛⎫-∞ ⎪⎝⎭3.下列各组函数中表示同一函数的是( )A .1y x =-和211x y x -=+B .0y x =和()1y x R =∈C .2yx 和()21y x =+D .y=y =4.已知函数()f x 在R 上单调递减,若()()4f a f a +≥-,则实数a 的取值范围是( ) A .[)2,-+∞ B .(],2-∞- C .()2,-+∞ D .(),2-∞-5.若0,0x y >>,且281x y+=,则xy 有( ) A .最大值64 B .最小值164C .最小值64D .最小值126.设m 为给定的一个实常数,命题2:,420p x R x x m ∀∈-+≥,则“3m ≥”是“命题p为真命题”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件7.关于x 的不等式0ax b -<的解集是()1,+∞,则关于x 的不等式()()30ax b x +->的解集是( )A .()(),13,-∞-+∞B .()1,3C .()1,3-D .()(),13,-∞⋃+∞8.已知函数()()()()()()()()()2,32,2,,,g x f x g x f x x g x x x F x f x g x f x ⎧≥⎪=-=-=⎨≥⎪⎩则( ) A .()F x 的最大值为3,最小值为1B .()F x 的最大值为2C .()F x 的最大值为7-,无最小值D .()F x 的最大值为3,最小值为1- 9.下面命题正确的是( ) A .“1a >”是“11a<”的 充 分不 必 要条件 B .命题“若1x <,则21x <”的 否 定 是“ 存 在1x <,则21x ≥”.C .设,x y R ∈,则“2x ≥且2y ≥”是“224x y +≥”的必要而不充分条件D .设,a b ∈R ,则“0a ≠”是“0ab ≠”的必要 不 充 分 条件10.已知集合()(){}221110A x a x a x =-+++=中有且仅有一个元素,那么a 的可能取值为( ) A .1-B .1C .53D .011.(多选题)下列表达式的最小值为2的有( ) A .当1ab =时,+a b B .当1ab =时,b a a b+ C .223a a -+D12.已知函数()22,1,12x x f x x x +≤-⎧=⎨-<<⎩,关于函数()f x 的结论正确的是( ) A .()f x 的定义域为R B .()f x 的值域为(,4)-∞C .若()3f x =,则xD .()1f x <的解集为(1,1)-13.已知集合{}1,2A =,{}2,3B a a =+,若A B={1}⋂则实数a 的值为________14.已知()224,f x x x +=-则()f x =________.15.若对任意x >0,231xx x ++≤a 恒成立,则a 的取值范围是________. 16.设集合10,2A ⎡⎫=⎪⎢⎣⎭,1,12B ⎡⎤=⎢⎥⎣⎦,函数()()1,221,x x A x x Bf x ⎧+∈⎪=⎨⎪-∈⎩. (1)56f f ⎡⎤⎛⎫= ⎪⎢⎥⎝⎭⎣⎦______;(2)若()f f t A ∈⎡⎤⎣⎦,则t 的取值范围是______. 17.设全集U =R ,集合302x A x x ⎧⎫-=<⎨⎬+⎩⎭,{}1B x x =≥,{}23C x a x a =≤≤+.(1)求U C A 和AB ;(2)若A C A ⋃=,求实数a 的取值范围. 18.设函数()230y axbx a =++≠(1)若不等式230ax bx ++>的解集为()1,3-,求,a b 的值; (2)若1,0,0a b a b +=>>,求14a b+的最小值 19.已知二次函数()f x 满足()()02,1()2 1.f f x f x x =+-=- (1)求函数()f x 的解析式及单调区间;(2)当[]1,2x ∈-时,求函数()f x 的最大值和最小值20.某市财政下拨一项专款100百万元,分别用于植绿护绿和处理污染两个生态维护项目,植绿护绿项目五年内带来的生态收益可表示为投放资金x (单位:百万元)的函数()M x 单位:百万元):()50050;10M x x=-+处理污染项目五年内带来的生态收益可表示为投放资金x (单位:百万元)的函数()N x (单位:百万元):()0.2N x x = (1)设分配给植绿护绿项目的资金为x (百万元),则两个生态项目五年内带来的生态收益总和为y ,写出y 关于x 的函数解析式和定义域;(2)求出y 的最大值,并求出此时对两个生态项目的投资分别为多少? 21.已知函数()()211f x ax a x =+--(a ∈R ).(1)解关于x 的不等式()0f x >;(2)若函数()f x 在[)2,+∞是单调函数,求实数a 的取值范围.22.已知函数ky x x=+有如下性质:如果常数0k >,那么该函数在(上是减函数,在)+∞上是增函数.(1)用定义法证明:函数(0)ky x k x=+>在(上是减函数; (2)若函数()24123,21x x f x x --=+()2g x x a =--,若对任意[]10,1x ∈,总存在[]20,1x ∈,使得()()12g x f x <成立,求实数a 的取值范围.参考答案1.C 【解析】 【分析】先解不等式,化简集合P ,求出RP ,再和Q 求交集,即可得出结果.【详解】由220x x -≥得2x ≥或0x ≤,则{2P x x =≥或}0x ≤,因此{}02RP x x =<<;又{}|12Q x x =<≤,则(){}12RP Q x x ⋂=<<.故选:C. 【点睛】本题主要考查集合的交集和补集运算,熟记概念即可,属于基础题型. 2.B 【解析】 【分析】根据偶次根式被开方数大于等于零、分式分母不为零、0y x =中{}0x x ≠,求解出x 的取值范围即可得到函数定义域. 【详解】由条件可知:320230x x ->⎧⎨+≠⎩,所以3232x x ⎧<⎪⎪⎨⎪≠-⎪⎩,所以定义域为333,,222⎛⎫⎛⎫-∞-⋃- ⎪ ⎪⎝⎭⎝⎭, 故选:B. 【点睛】本题考查具体函数的定义域求解,难度较易.求解具体函数的定义域时需要注意:偶次根式被开方数大于等于零、分式分母不为零、0y x =中{}0x x ≠、对数的真数大于零、tan y x=中,2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭等.3.D 【解析】 【分析】根据函数的定义域和解析式是否相同判断. 【详解】A. 1y x =-的定义域为R ,211x y x -=+的定义域为{}|1x x ≠-,故错误;B. 0y x =和定义域为{}|0x x ≠,y =1定义域为R ,故错误;C. 2yx 和()21y x =+解析式不同,故错误;D.2()1f xx==,定义域为{}0x x >,()1g x ==,定义域为{}0x x >,故正确; 故选:D 【点睛】本题主要考查相等函数的判断,属于基础题. 4.B 【解析】 【分析】由已知条件中函数的单调性列出不等式,可得选项. 【详解】因为函数()f x 在R 上单调递减,()()4f a f a +≥-,所以4a a +≤-,解得2a ≤-, 故选:B. 【点睛】本题考查运用函数的单调性求解抽象不等式的问题,属于基础题. 5.C 【解析】因为0,0x y >>,所以28 164xy x y +=≥=⇒≥,当且仅当4x =,16y =时取等号,故选C.6.A 【解析】 【分析】由2:,420p x R x x m ∀∈-+≥为真命题,可得0∆≤,再利用充分条件、必要条件的定义即可求解. 【详解】命题2:,420p x R x x m ∀∈-+≥,若命题p 为真命题,则0∆≤,即1680m -≤,解得2m ≥,32m m ≥⇒≥,反之不成立,所以“3m ≥”是“命题p 为真命题”的充分不必要条件. 故选:A 【点睛】本题考查了充分不必要条件、一元二次不等式恒成立,考查了基本知识的掌握情况,属于基础题. 7.C 【解析】关于x 的不等式0ax b -<,即ax b <的解集是()1,,0a b +∞∴=<,∴不等式()()30ax b x +->,可化为()()130x x +-<,解得13x ,∴所求不等式的解集是()1,3-,故选C.8.C 【解析】 【分析】在同一坐标系中先画出()f x 与()g x 的图象,然后根据定义画出()F x ,就容易看出()F x 有最大值,无最小值,解出两个函数的交点,即可求得最大值. 【详解】在同一坐标系中先画出()f x 与()g x 的图象,然后根据定义画出()F x ,就容易看出()F x 有最大值,无最小值. 由图象可知,当0x <时,()y F x =取得最大值,所以由232||2x x x -=-得2x =+2x =-结合函数图象可知当2x =-()F x 有最大值7-,无最小值. 故选:C .【点睛】本题主要考查了函数的图象,以及函数求最值,同时考查了分析问题的能力和作图的能力,这是一道创新性较强的试题,属于中档题. 9.ABD 【解析】 【分析】选项A:先判断由1a >,能不能推出11a <,再判断由11a<,能不能推出1a >,最后判断本选项是否正确;选项B: 根据命题的否定的定义进行判断即可.选项C:先判断由2x ≥且2y ≥能不能推出224x y +≥,然后再判断由224x y +≥能不能推出2x ≥且2y ≥,最后判断本选项是否正确;选项D:先判断由0a ≠能不能推出0ab ≠,再判断由0ab ≠能不能推出0a ≠,最后判断本选项是否正确. 【详解】选项A:根据反比例函数的性质可知:由1a >,能推出11a <,但是由11a<,不能推出1a >,例如当0a <时,符合11a<,但是不符合1a >,所以本选项是正确的; 选项B: 根据命题的否定的定义可知:命题“若1x <,则21x <”的 否 定 是“ 存 在1x <,则21x ≥”.所以本选项是正确的;选项C:根据不等式的性质可知:由2x ≥且2y ≥能推出224x y +≥,本选项是不正确的; 选项D: 因为b 可以等于零,所以由0a ≠不能推出0ab ≠,再判断由0ab ≠能不能推出0a ≠,最后判断本选项是否正确.故选ABD 【点睛】本题考查了充分性和必要性的判断,考查了命题的否定,属于基础题. 10.BC 【解析】 【分析】讨论二次项系数210a -=或210a -≠,当210a -≠时,0∆=即可求解. 【详解】()()221110ax a x -+++=当210a -=时,即21a =,解得1a =±, 当1a =时,代入方程解得12x =,满足题意; 当1a =-时,方程无解,不满足题意;当210a -≠时,即1a ≠±,0∆=,即()()221410a a +--=,整理可得()()3510a a -+=,解得53a =,满足题意; 故选:BC 【点睛】本题考查了由集合元素个数求参数值,考查了分类讨论的思想,属于基础题. 11.BC 【解析】【分析】根据基本不等式及二次函数性质判断. 【详解】解:①对选项A ,当,a b 均为负值时,0a b +<,故最小值不为2; ②对选项B ,因为1ab =,所以,a b 同号,所以0,0b aa b>>,所以2b a a b +≥=,当且仅b a a b =,即1a b ==±时取等号,故最小值为2;③对选项C ,2223(1)2a a a -+=-+,当1a =时,取最小值2;④对选项D2≥=,=,即221a +=时,取等号,但等号显然不成立,故最小值不为2. 故选:BC . 【点睛】本题考查用基本不等式求最值,基本不等式求最值的三个条件:一正二定三相等需同时满足才能确定最值. 12.BC 【解析】 【分析】根据分段函数的形式可求其定义域和值域,从而判断A 、 B 的正误,再分段求C 、D 中对应的方程的解和不等式的解后可判断C 、D 的正误. 【详解】由题意知函数()f x 的定义域为(,2)-∞,故A 错误; 当1x ≤-时,()f x 的取值范围是(,1]-∞ 当12x -<<时,()f x 的取值范围是[0,4), 因此()f x 的值域为(,4)-∞,故B 正确;当1x ≤-时,23x +=,解得1x =(舍去),当12x -<<时,23x =,解得x x =,故C 正确;当1x ≤-时,21x +<,解得1x <-,当12x -<<时,21x <,解得-11x -<<, 因此()1f x <的解集为(,1)(1,1)-∞--,故D 错误.故选:BC . 【点睛】本题考查分段函数的性质,对于与分段函数相关的不等式或方程的解的问题,一般用分段讨论的方法,本题属于中档题. 13.1 【解析】由题意1B ∈,显然233a +≥,所以1a =,此时234a +=,满足题意,故答案为1.点睛:(1)认清元素的属性.解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件. (2)注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致错误.(3)防范空集.在解决有关,A B A B ⋂=∅⊆等集合问题时,往往容易忽略空集的情况,一定要先考虑∅时是否成立,以防漏解. 14.x 2-8x +12 【解析】 【分析】利用换元法,令2t x =+,代入即可得到()f x 解析式.【详解】 令2t x =+,则2x t =-,()()()22242812f t t t t t ∴=---=-+,()2812f x x x ∴=-+.故答案为:2812x x -+. 【点睛】本题主要考查了复合函数解析式的求法,采取的方法一般是利用换元法来解决,属于基础题. 15.[15,+∞). 【解析】 【分析】 【详解】试题分析:因为x >0,所以21113153x x x x x =≤=++++, 当且仅当1(0)x x x =>即1x =时等号成立,故a 的取值范围是15a ≤, 即1,5a ⎡⎫∈+∞⎪⎢⎣⎭考点:不等式的恒成立. 16.56 15,48⎛⎫⎪⎝⎭. 【解析】 【分析】(1)根据题意,由函数的解析式分析可得5()6f 的值,进而计算可得答案;(2)根据题意,按t 的取值范围分情况讨论,分析()f t 的取值范围,求出[()]f f t 的解析式,据此分析[()]f f t A ∈的解集,即可得答案.【详解】(1)根据题意,1,()22(1),x x A f x x x B ⎧+∈⎪=⎨⎪-∈⎩,即11,022()12(1),12x x f x x x ⎧+<⎪⎪=⎨⎪-⎪⎩, 则551()2(1)663f =-=,则51115[()]()63326f f f ==+=;(2)根据题意,分2种情况讨论:①、当t A ∈时,1()2f t t =+,则有1()12f t <,此时1[()]2(1())22()122f f t f t t t =-=-+=-, 若[()]f f t A ∈,即10122t -<,解可得:1142t <, 此时t 的取值范围为1(4,1]2;②、当t B ∈时,()2(1)f t t =-,则有0()2(1)1f t t =-, 其中当314t 时,10()2f t ,此时15[()]()222f f t f t t =+=-,若[()]f f t A ∈,即510222t -,解可得:514t ,舍去 当1324t <时,1()12f t <,此时[()]222(1)42f f t t t =-⨯-=-,若[()]f f t A ∈,即10422t -<,解可得:1528t <, 此时t 的取值为1[2,5)8;综合可得:t 的取值范围为1(4,5)8.【点睛】本题主要考查分段函数的应用,涉及函数值的计算,意在考查学生对这些知识的理解掌握水平,分类讨论是解决本题的关键.17.(1) {}U 23C A x x x =≤-≥或,{}13A B x x ⋂=≤< (2) >3a 或10a -<< 【解析】 【分析】(1)先解出A ,然后进行交集、补集的运算即可;(2)根据题意可得C ⊆A 可讨论C 是否为空集,从而可求出实数a 的取值范围. 【详解】(1){}23A x x =-<<,{}U 23C A x x x =≤-≥或,{}13A B x x ⋂=≤< (2)由A C A ⋃=知C A ⊆当23a a >+时,即>3a 时,=C ∅,满足条件;当23a a ≤+时,即3a ≤时,22a >-且33a +<,10a ∴-<< 综上,>3a 或10a -<< 【点睛】本题考查描述法的定义,分式不等式的解法,交集、补集的运算,以及子集的定义.考查了分类讨论的数学思想,属于中档题. 18.(1)1,2a b =-⎧⎨=⎩;(2)9.【解析】 【分析】(1)由不等式()0f x >的解集(1,3)-.1-,3是方程()0f x =的两根,由根与系数的关系可求a ,b 值;(2)由1a b +=,将所求变形为1(4)()a ba b ++展开,整理为基本不等式的形式求最小值. 【详解】解析:(1)∵不等式ax 2+bx +3>0的解集为(-1,3),∴-1和3是方程ax 2+bx +3=0的两个实根, 从而有309330a b a b -+=⎧⎨++=⎩ 解得1,2a b =-⎧⎨=⎩.(2)∵a +b =1,又a >0,b >0,∴1a +4b =14a b ⎛+⎫ ⎪⎝⎭ (a +b )= 5+b a+4a b ≥5+=9,当且仅当41b a a b a b ⎧=⎪⎨⎪+=⎩即1323a b ⎧=⎪⎪⎨⎪=⎪⎩时等号成立, ∴14a b+的最小值为9. 【点评】本题考查了二次函数的图象和性质,运用基本不等式求最值,属于中档题.19.(1)f (x )=x 2-2x +2;f (x )单调递增区间为(1,+∞),单调递减区间为(-∞,1);(2)最大值5,最小值1. 【解析】 【分析】(1)利用待定系数法求解即可;(2)结合()f x 的单调性可得出答案. 【详解】(1)设函数f (x )=ax 2+bx +c (a ≠0) 由f (0)=2,得c =2, 又f (x +1)-f (x )=2x -1, 得2ax +a +b =2x -1 故221a ab =⎧⎨+=-⎩解得:a =1,b =-2.所以f (x )=x 2-2x +2.f (x )=x 2-2x +2=(x -1)2+1函数f (x )图象的对称轴为x =1,且开口向上, 所以f (x )单调递增区间为(1,+∞),单调递减区间为(-∞,1). (2)f (x )=x 2-2x +2=(x -1)2+1, 对称轴为x =1∈[-1,2], 故()()min 11f x f ==, 又f (-1)=5,f (2)=2, 所以()()max 15f x f =-= 【点睛】本题考查了利用待定系数法求解析式和二次函数的最值问题,考查了学生对基本知识的掌握情况,较简单. 20.(1)50070105x y x ⎛⎫=-+⎪+⎝⎭,[]0,100x ∈;(2)y 的最大值为52百万元,分别投资给植绿护绿项目、污染处理项目的资金为40百万元,60百万元. 【解析】 【分析】(1)由题意可得处理污染项目投放资金为()100x -百万元,由此可得()N x ,再将()N x 与()M x 相加可得y ,再写出定义域即可. (2)将50070105x y x ⎛⎫=-+⎪+⎝⎭变形后利用基本不等式可得最大值以及取得最大值的条件.【详解】(1)由题意可得处理污染项目投放资金为()100x -百万元, 所以()()0.2100N x x =-, 所以()500500.210010y x x=-+-+,()0,100x ∈.(2)由(1)可得,()500500500.21007010105x y x x x ⎛⎫=-+-=-+ ⎪++⎝⎭72722052≤-=-=, 当且仅当50010x +=105x+,即40x =时等号成立, 此时1001004060x -=-=,所以y 的最大值为52百万元,分别投资给植绿护绿项目、污染处理项目的资金为40百万元,60百万元.【点睛】本题主要考查了函数的应用,基本不等式求最值,属于中档题. 21.(1)分类讨论,答案见解析;(2)(]1,0,5⎡⎫-∞⋃+∞⎪⎢⎣⎭. 【解析】 【分析】(1)将二次不等式因式分解,讨论a 的范围可得到解集;(2)分0a =和0a ≠两种情况,根据一次函数和二次函数的单调性可得答案. 【详解】(1)由已知得()()+110x ax ->,①当a =0时,由-(x +1)>0,得x <-1. ②当a >0时,不等式可化为1x a ⎛⎫-⎪⎝⎭(x +1)>0,解得x <-1或x >1a . ③当a <0时,不等式可化为1x a ⎛⎫-⎪⎝⎭(x +1)<0.若1a <-1,即-1<a <0,则1a<x <-1; 若1a=-1,即a =-1,则不等式的解集为空集; 若1a >-1,即a <-1,则-1<x <1a. 综上所述,当a <-1时,不等式的解集为11,a ⎛⎫- ⎪⎝⎭; 当a =-1时,不等式解集为∅; 当-1<a <0时,不等式的解集为1,1a ⎛⎫-⎪⎝⎭; 当a =0时,不等式的解集为(-∞,-1); 当a >0时,不等式的解集为(-∞,-1)∪1,a ⎛⎫+∞⎪⎝⎭. (2)当0a =时,()1f x x =--是单调递减的函数,满足题意, 当0a ≠,若函数()f x 在[)2,+∞是单调函数,则需122a a --≤,解得0a <或15a ≥ , 综上所述:a 的取值范围:(]1,0,5⎡⎫-∞⋃+∞⎪⎢⎣⎭. 【点睛】本题考查了含有字母系数的不等式的解法与应用问题,对于含参的二次不等式问题,先判断二次项系数是否含参,接着讨论参数等于0,不等于0,再看式子能否因式分解,若能够因式分解则进行分解,再比较两根大小,结合图像得到不等式的解集. 属于中档题. 22.(1)证明见解析;(2)a>32. 【解析】 【分析】(1)根据单调性的定义可证明结论;(2)由已知得当[]0,1x ∈时,()()max max f x g x <,由()2412342182121x x x x x f x --=++-++=2412321x x x --+,设21u x =+,利用(1)可得函数的单调性,求得答案.【详解】(1)证明:设(12,,x x ∀∈,且12x x <有121212()()k k y y x x x x -=+-+()1212()k kx x x x =-+-()211212()k x x x x x x -=-+()12121k x x x x ⎛⎫=-- ⎪⎝⎭()121212x x k x x x x -=-, (12,x x ∀∈,12x x k ∴<,120x x k ∴-<,12x x <,120x x ∴-<,()1212120x x kx x x x -∴->,12y y ∴> ∴函数(0)ky x k x=+>在(上是减函数, (2)由题意得,当[]0,1x ∈时,()max max ()g x f x ∴< ,又()2412342182121x x x x x f x --=++-++=,设[]21,0,1u x x =+∈,则13u ≤≤, 则[]48,1,3y u u u=+-∈. 由已知性质得,当12u ≤≤,即102x ≤≤时,()f x 单调递减; 当23u ≤≤,即112x ≤≤时,()f x 单调递增, 由()()11103,4,123f f f ⎛⎫=-=-=-⎪⎝⎭,max ()3f x ∴=-,()[]2,0,1g x x a x =--∈为减函数,故()[]12,2g x a a ∈---,23a ∴-<- ,所以32a >. 【点睛】本题考查运用函数的单调性的定义证明函数的单调性,利用函数的单调性求得函数的最值,解决任意和存在的问题,属于较难题.。
湖南省雅礼中学2020年下学期高一第一次月考试卷数 学(时间:120分钟分值:150分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1、已知集合S ={a ,b ,c }中的三个元素是△ABC 的三边长,那么△ABC 一定不是(D )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形2、集合A ={x |-1≤x ≤2},B ={x |x <1},则A ∩(∁R B )=(D )A .{x |x >1}B .{x |x ≥1}C .{x |1<x ≤2}D .{x |1≤x ≤2}3、设A 、B 、U 均为非空集合,且满足A ⊆B ⊆U ,则下列各式中错误的是(B )A .(∁U A )∪B =U B .(∁U A )∪(∁U B )=UC .A ∩(∁U B )=∅D .(∁U A )∩(∁U B )=∁U B4、“b a ,为正数”是“ab b a 2>+”的(D )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5、已知命题p :01x ∃>,2010x ->,那么p ⌝是(C )A .2110x x ∀-,>>B .200110x x ∃-,≤>C .2110x x ∀-,≤>D .200110x x ∃-≤,≤6、已知函数()()2143f x x x R -=+∈,若()15f a =,则实数a 的值为(D )A .2B .3C .4D .57、已知命题“∃x ∈R ,使4x 2+x +14(a -2)≤0”是假命题,则实数a 的取值范围是(D)A .a <0B .0≤a ≤4C .a ≥4D .a >948、已知2>x ,则函数421)(-+=x x x f 的最小值为(A )A.22+ B.222+ C.2D.22二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分.9、使ab >0成立的充分不必要条件可以是(ACD )A .a >0,b >0B .a +b >0C .a <0,b <0D .a >1,b >110、下列说法中,正确的是(BC )A .若0a b >>,则22ac bc >B .若0a b <<,则22a ab b >>C .若00a b c >><且,则22c c a b >D .若a b >且11a b>,则0>ab 11、已知a ∈Z ,关于x 的一元二次不等式260x x a -+≤的解集中有且仅有3个整数,则a 的值可以是(CD ).A .4B .5C .6D .7【解析】设26y x x a =-+,其图像为开口向上,对称轴是3x =的抛物线,如图所示.若关于x 的一元二次不等式260x x a -+≤的解集中有且仅有3个整数,因为对称轴为3x =,则2226201610a a ⎧-⨯+≤⎨-⨯+>⎩解得58a <≤,.又a ∈Z ,故a 可以为6,7,8.12、下列说法正确的是(BCD )A.若R x ∈,则21≥+xx B.若51≤<≤-y x ,则06<-≤-y x C.“1>x 或2>y ”是“3>+y x ”的必要不充分条件D.若||||b b a a >,则ba >三、填空题:本题共4小题,每小题5分,共20分.13、设A ={x |-1<x ≤3},B ={x |x >a },若A ⊆B ,则a 的取值范围是_a ≤-1_______.14、已知⎪⎩⎪⎨⎧>+=<=0,10,10,0)(x x x x x f ,则)))1(((-f f f 的值是_____2_____.15、若}31|{≤≤∈∃x x x ,使得不等式022≥++a x x 成立,则实数a 的取值范围为15-≥a .16、已知1,=+∈+b a R b a ,,则:(1)2121+++b a 的最小值是__54_________;(2)11b a b ⎛⎫+ ⎪⎝⎭的最小值是2+.【解析】(1)由于1,=+∈+b a R b a ,,则5)2()2(=+++b a 所以54)222121512121≥++++++=+++b a b a b a (,当且仅当21==b a 时等号成立;(2)22222111()22(2b b a b b a ab b a b abab ab ++++++===当且仅当a =即2a =,1b =-时等号成立.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17、已知集合{}2|2A x x -=≤≤,集合{}|1B x x =>.(1)求()R C B A ⋂;(2)设集合{}|6M x a x a =<<+,且A M M ⋃=,求实数a 的取值范围.【解析】(1) 集合{}1B x x =.则{}|1R C B x x =≤ 集合{}|22A x x =-≤≤,则(){}|21R C B A x x ⋂=-≤≤(2) 集合{}|6M x a x a =<<+,且A M M ⋃=,则MA ⊆622a a +>⎧∴⎨<-⎩,解得42a -<<-,故实数a 的取值范围为{}|42a a -<<-18、设集合{}2|230A x x x =+-<,集合{|||1}B x x a =+<.(1)若3a =,求A B ;(2)设命题 : p x A ∈,命题:q x B ∈,若p 是q 成立的必要不充分条件,求实数a 的取值范围.【解析】(1){}{}2|230|31A x x x x x =+-<=-<<.因为3a =,所以{||3|1}{|42}B x x x x =+<=-<<-,因此{|41}A B x x =-<<(2){}|31A x x =-<<,{|||1}{|11}B x x a x a x a =+<=--<<-,因为p 是q 成立的必要不充分条件,所以集合B 是集合A 的真子集,因此有⎩⎨⎧≤--≥--1131a a ,解得02a ≤≤.19、已知函数x x x f 2622)(-+-=.(1)求)(x f 的定义域;(2)求)(x f 的值域.【解析】(1)由⎩⎨⎧≥-≥-026022x x 得)(x f 的定义域为]3,1[;(2)易知0)(≥x f .又121642426)26)(22(222)(22-+-+=-+--+-=x x x x x x x f =1)2(442+--+x .由于)(x f 的定义域为]3,1[,易得]8,4[)(2∈x f ,故求)(x f 的值域为]22,2[.20、已知:()2:,21p x R x m x ∀∈>+,0:,q x R ∃∈200210x x m +--=,(1)若q 是真命题,求实数m 的取值范围;(2)若p 、q ⌝均为真命题,求实数m 的取值范围.【解析】(1)因为0:R,q x ∃∈200210x x m +--=为真命题,所以方程2210x x m +--=有实根,所以判别式()4410m ∆=++≥,得实数m 的取值范围为2m ≥-.(2)()221x m x >+可化为220mx x m -+<,若:R,p x ∀∈()221x m x >+为真命题,则220mx x m -+<对任意的x ∈R当0m =时,不等式可化为20x -<,显然不恒成立;当0m ≠时,有2440m m <⎧⎨-<⎩,1m ∴<-.由(1)知,若q ⌝为真命题,则2m <-,又p、q⌝均为真命题,所以实数m需满足12mm<-⎧⎨<-⎩,解得2m<-,所以实数m的取值范围为2m<-.21、某单位决定投资3200旧墙不花钱,正面用铁栅,每1m长造价40元;两侧墙砌砖,每1m长造价45元(不考虑铁栅及墙体的厚度和高度).(1)若该仓库不需要做屋顶,求该仓库占地面积S的最大值;(2)若为了使仓库防雨,需要为仓库做屋顶.顶部每21m造价20元,则当仓库占地面积S取最大值时,正面铁栅应设计为多长?【解析】设铁栅长为()0x x>米,一侧砖墙长为()0y y>米,则仓库占地面积S(1)402453200x y+⨯=,6400493209S xyx y+==≥≤当且仅当9160,40==yx时取等号.故该仓库占地面积S的最大值为96400.(2)依题设,得40245203200x y xy+⨯+=,由基本不等式得3200202020xy xy S≥+=+=,则1600S+-≤,即)10160+≤,故10≤S,从而100≤S,当且仅当4090x y=且100xy=即15x=时取等号,所以S的最大值是100平方米,故此时铁栅的长是15米.22、(1)已知a,b,c均为正数,求证:aacb-+32+bbca223-++3332≥-+ccba;(2)已知正数x,y满足2x y+=,若2122+++<yyxxa恒成立,求实数a的取值范围.【解析】(1)证明∵a,b,c均为正数,∴ab2+ba2≥2ac3+ca3≥2bc23+cb32≥2以上三式相加,得ab2+ba2+ac3+ca3+bc23+cb32≥6∴(ab2+ba2-1)+(ac3+ca3-1)+(bc23+cb32-1)≥3即aacb-+32+bbca223-++3332≥-+ccba.(当且仅当a=2b=3c时等号成立).(2)解:由于正数x ,y 满足2x y +=,所以(1)(2)5x y +++=,所以:12155x y +++=则2222(11)(22)1212x y x y x y x y +-+-+=+++++,22(1)2(1)1(2)4(2)412x x y y x y +-+++-++=+++,14122412x y x y =+-+++-+++,14112x y =+-++,1214()()15512x y x y ++=++-++14(1)24155(2)5(1)5x y y x ++=+++-++≥4115-+,当且仅当34,32==y x 等号成立要使2122+++<y y x x a 恒成立,只需满足min21)(+++<y x a 即可,故54<a .。
2020-2021学年重庆市某校高一(上)第一次月考数学试卷一、单选题(本大题共8小题,每小题5分,共40分在每小题给出的四个选项中,只有一项是符合题目要求的)1. 下列关系正确的是()A.{0}∈{0, 1, 2}B.{0, 1}≠{1, 0}C.{0, 1}⊆{(0, 1)}D.⌀⊆{0, 1}2. 已知集合A={1, 3a},B={a, b},若A∩B={13},则a2−b2=()A.0B.43C.89D.2√233. 设x>0,y>0,M=x+y1+x+y ,N=x1+x+y1+y,则M,N的大小关系是()A.M=NB.M<NC.M>ND.不能确定4. 若实数a,b满足a≥0,b≥0,且ab=0,则称a与b互补,记φ(a, b)=√a2+b2−a−b,那么φ(a, b)=0是a与b互补的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件5. 已知不等式ax2−bx−1≥0的解集是{x|−12≤x≤−13},则不等式x2−bx−a<0的解集是()A.{x|2<x<3}B.{x|x<2或x>3}C.{x|13<x<12}D.{x|x<13x>12}6. 若a>0,b>0且a+b=7,则4a +1b+2的最小值为()A.89B.1 C.98D.102777. 关于x的不等式x2−(a+1)x+a<0的解集中恰有两个整数,则实数a的取值范围是()A.−2<a≤−1或3≤a<4B.−2≤a≤−1或3≤a≤4C.−2≤a<−1或3<a≤4D.−2<a<−1或3<a<48. 下列说法正确的是()A.若命题p,¬q都是真命题,则命题“(¬p)∨q”为真命题B.命题“若x+y≠5,则x≠2或y≠3”与命题“若x=2且y=3,则x+y=5”真假相同C.“x=−1”是“x2−5x−6=0”的必要不充分条件D.命题“∀x>1,2x>0”的否定是“∃x0≤1,2x0≤0”二、多选题(本大题共4小题,每小题5分,共20分在每小题给出的四个选项中,有多项是符合题目要求的,全部选对得5分,部分选对的得3分,有选错的得0分)下列各不等式,其中不正确的是()A.a2+1>2a(a∈R)B.|x+1x|≥2(x∈R,x≠0)C.√ab ≥2(ab≠0) D.x2+1x2+1>1(x∈R)下列不等式中可以作为x2<1的一个充分不必要条件的有()A.x<1B.0<x<1C.−1<x<0D.−1<x<1下列命题正确的是()A.∃a,b∈R,|a−2|+(b+1)2≤0B.∀a∈R,∃x∈R,使得ax>2C.ab≠0是a2+b2≠0的充要条件D.若a≥b>0,则a1+a ≥b1+b给定数集M,若对于任意a,b∈M,有a+b∈M,且a−b∈M,则称集合M为闭集合,则下列说法中不正确的是()A.集合M={−4, −2, 0, 2, 4}为闭集合B.正整数集是闭集合C.集合M={n|n=3k, k∈Z}为闭集合D.若集合A1,A2为闭集合,则A1∪A2为闭集合三、填空题(本大题共4小题,每小题5分,共20分)已知集合A={x∈Z|x2−4x+3<0},B={0, 1, 2},则A∩B=________.若“x>3”是“x>a“的充分不必要条件,则实数a的取值范围是________.若不等式ax2+2ax−4<0的解集为R,则实数a的取值范围是________.已知x>0,y>0,且x+3y=xy,若t2+t<x+3y恒成立,则实数t的取值范围是________四、解答题:(本大题共6小题,共70分。
2020-2021学年江西省南昌二中高一(上)第一次月考数学试卷一、选择题(每小题5分,满分60分)1.(5分)方程组的解集可表示为()A.{1,2}B.(1,2)C.{(x,y)|x=1,y=2}D.2.(5分)已知集合A={a,|a|,a﹣2},若2∈A,则实数a的值为()A.﹣2B.2C.4D.2或43.(5分)已知集合A={x|ax2+2x+a=0,a∈R},若集合A有且仅有2个子集,则a的取值是()A.1B.﹣1C.0,1D.﹣1,0,1 4.(5分)下面的对应是从集合A到集合B的一一映射()A.A=R,B=R,对应关系f:y=,x∈A,y∈BB.X=R,Y={非负实数},对应关系f:y=x4,x∈X,y∈YC.M={1,2,3,4},N={2,4,6,8,10},对应关系f:n=2m,n∈N,m∈MD.A={平面上的点},B={(x,y)|x,y∈R},对应关系f:A中的元素对应它在平面上的坐标5.(5分)对于全集U的子集M,N,若M是N的真子集,则下列集合中必为空集的是()A.(∁U M)∩N B.M∩(∁U N)C.(∁U M)∩(∁U N)D.M∩N6.(5分)已知m<﹣2,点(m﹣1,y1),(m,y2),(m+1,y3)都在二次函数y=x2﹣2x 的图象上,则()A.y1<y2<y3B.y3<y2<y1C.y1<y3<y2D.y2<y1<y3 7.(5分)已知定义在R上的函数f(x)的值域为,则函数的值域为()A.[,]B.[,1]C.[,1]D.(0,]∪[,+∞)8.(5分)某年级先后举办了数学、历史、音乐的讲座,其中有85人听了数学讲座,70人听了历史讲座,61人听了音乐讲座,16人同时听了数学、历史讲座,12人同时听了数学、音乐讲座,9人同时听了历史、音乐讲座,还有5人听了全部讲座.则听讲座的人数为()A.181B.182C.183D.1849.(5分)已知函数的值域是[0,+∞),则实数m的取值范围是()A.[﹣2,2]B.[﹣1,2]C.[﹣2,﹣1]∪[2,+∞)D.(﹣∞,﹣1]∪[2,+∞)10.(5分)已知函数,则不等式f(x+1)>f(2x)的解集为()A.(﹣∞,1)B.(﹣∞,1]C.[,0]D.[,1)11.(5分)已知函数,当x∈[1,4]时,f(x)>1恒成立,则实数m的取值范围为()A.[﹣4,+∞)B.[﹣2,+∞)C.(﹣4,+∞)D.(﹣2,+∞)12.(5分)若存在n∈R,且存在x∈[1,m],使得不等式|mx2+1|+|2nx|≤3x成立,则实数m 的取值范围是()A.[1,2]B.(﹣∞,2]C.(1,2]D.[2,+∞)二、填空题(每小题5分,满分20分)13.(5分)设函数,函数f(x)•g(x)的定义域为.14.(5分)函数y=kx2﹣4x﹣8在区间[5,10]上单调递增,则实数k的取值范围为.15.(5分)已知集合A,B,C,且A⊆B,A⊆C,若B={1,2,3,4},C={0,1,2,3},则所有满足要求的集合A的各个元素之和为.16.(5分)已知函数,若方程f(x)=g(x)有两个实根为x1,x2,且x1=tx2,t∈[,3],则实数a的取值范围为.三、解答题(共6小题,共70分)17.(10分)已知集合A={x|≤0},B={x|x2﹣3x+2<0},U=R,.求(Ⅰ)A∩B;(Ⅱ)A∪B;(Ⅲ)(∁U A)∩B.18.(12分)(1)已知f(x)满足3f(x)+2f(1﹣x)=4x,求f(x)解析式;(2)已知函数,当x>0时,求g(f(x))的解析式.19.(12分)已知集合A={x|0≤x≤2},B={x|a≤x≤3﹣2a}.(1)若(∁U A)∪B=R,求a的取值范围;(2)若A∩B≠B,求a的取值范围.20.(12分)已知二次函数f(x)=ax2+bx+c,f(0)=1,f(1)=0,且对任意实数x均有f(x)≥0成立.(1)求f(x)解析式;(2)若函数g(x)=f(x)+2(1﹣m)x在[2,+∞)上的最小值为﹣7,求实数m的值.21.(12分)已知定义在R上的函数f(x)对任意x1,x2∈R都有等式f(x1+x2)=f(x1)+f(x2)﹣1成立,且当x>0时,有f(x)>1.(1)求证:函数f(x)在R上单调递增;(2)若f(3)=4,关于x不等式恒成立,求t的取值范围.22.(12分)已知函数f(x)=|x+m|2﹣3|x|.(1)当m=0时,求函数y=f(x)的单调递减区间;(2)当0<m≤1时,若对任意的x∈[m,+∞),不等式f(x﹣m﹣1)≤2f(x﹣m)恒成立,求实数m的取值范围.2020-2021学年江西省南昌二中高一(上)第一次月考数学试卷参考答案与试题解析一、选择题(每小题5分,满分60分)1.(5分)方程组的解集可表示为()A.{1,2}B.(1,2)C.{(x,y)|x=1,y=2}D.【分析】求出方程组的解,结合选项即可得解.【解答】解:方程组的解为,∴方程组的解集中只有一个元素,且此元素是有序数对,∴{(x,y)|x=1,y=2}、、{(1,2)}均符合题意.故选:C.【点评】本题主要考查方程组的解以及集合的表示方法,属于基础题.2.(5分)已知集合A={a,|a|,a﹣2},若2∈A,则实数a的值为()A.﹣2B.2C.4D.2或4【分析】由集合A={a,|a|,a﹣2},2∈A,得a=2,|a|=2或a﹣2=2,再由集合中元素的互异性能求出实数a的值.【解答】解:∵集合A={a,|a|,a﹣2},2∈A,∴a=2,|a|=2或a﹣2=2,解得a=﹣2或a=2或a=4.当a=﹣2时,A={﹣2,2,﹣4},成立;当a=2时,a=|a|,A中有两个相等元素,不满足互异性;当a=4时,a=|a|,A中有两个相等元素,不满足互异性.实数a的值为﹣2.故选:A.【点评】本题考查实数值的求法,考查元素与集合的关系等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.3.(5分)已知集合A={x|ax2+2x+a=0,a∈R},若集合A有且仅有2个子集,则a的取值是()A.1B.﹣1C.0,1D.﹣1,0,1【分析】若A有且仅有两个子集,则A为单元素集,所以关于x的方程ax2+2x+a=0恰有一个实数解,分类讨论能求出实数a的取值范围.【解答】解:由题意可得,集合A为单元素集,(1)当a=0时,A={x|2x=0}={0},此时集合A的两个子集是{0},∅,(2)当a≠0时则△=4﹣4a2=0解得a=±1,当a=﹣1时,集合A的两个子集是{1},∅,当a=1,此时集合A的两个子集是{﹣1},∅.综上所述,a的取值为﹣1,0,1.故选:D.【点评】本题考查根据子集与真子集的概念,解题时要认真审题,注意分析法、讨论法和等价转化法的合理运用.属于基础题.4.(5分)下面的对应是从集合A到集合B的一一映射()A.A=R,B=R,对应关系f:y=,x∈A,y∈BB.X=R,Y={非负实数},对应关系f:y=x4,x∈X,y∈YC.M={1,2,3,4},N={2,4,6,8,10},对应关系f:n=2m,n∈N,m∈MD.A={平面上的点},B={(x,y)|x,y∈R},对应关系f:A中的元素对应它在平面上的坐标【分析】利用映射和一一映射的定义求解.【解答】解:对于选项A:集合A中的元素0,在集合B中没有与之对应的y的值,所以选项A错误;对于选项B:集合X中的元素2与﹣2都与集合Y中的元素16对应,所以不是从集合X 到集合Y的一一映射,所以选项B错误;对于选项C:集合N中的元素10在集合M中没有原像,所以不是从集合M到集合N的一一映射,所以选项C错误;对于选项D:平面上的任意一点都存在唯一的有序实数对(x,y)与之对应,反过来,任意一组有序实数对(x,y)都对应平面上的唯一的一个点,所以是从集合A到集合B 的一一映射,所以选项D正确,故选:D.【点评】本题主要考查了映射和一一映射的概念,是基础题.5.(5分)对于全集U的子集M,N,若M是N的真子集,则下列集合中必为空集的是()A.(∁U M)∩N B.M∩(∁U N)C.(∁U M)∩(∁U N)D.M∩N【分析】根据题目给出的全集是U,M,N是全集的子集,M是N的真子集画出集合图形,由图形表示出三个集合间的关系,从而看出是空集的选项.【解答】解:集合U,M,N的关系如图,由图形看出,(∁U N)∩M是空集.故选:B.【点评】本题考查了交、并、补集的混合运算,考查了集合的图形表示法,考查了数形结合的解题思想,是基础题.6.(5分)已知m<﹣2,点(m﹣1,y1),(m,y2),(m+1,y3)都在二次函数y=x2﹣2x 的图象上,则()A.y1<y2<y3B.y3<y2<y1C.y1<y3<y2D.y2<y1<y3【分析】欲比较y3,y2,y1的大小,利用二次函数的单调性,只须考虑三点的横坐标是不是在对称轴的某一侧,结合二次函数的单调性即得.【解答】解:∵m<﹣2,∴m﹣1<m<m+1<﹣1,即三点都在二次函数对称轴的左侧,又二次函数y=x2﹣2x在对称轴的左侧是单调减函数,∴y3<y2<y1故选:B.【点评】本小题主要考查函数单调性的应用、二次函数的性质、二次函数的性质的应用等基础知识,考查数形结合思想.属于基础题.7.(5分)已知定义在R上的函数f(x)的值域为,则函数的值域为()A.[,]B.[,1]C.[,1]D.(0,]∪[,+∞)【分析】由f(x)的值域可知f(x+1)的值域,先用换元法设t=1﹣2f(x+1)将g(x)转化为关于的二次函数,再结合二次函数的性质即可求出g(x)的值域.【解答】解:R上的函数f(x)的值域为,则f(x+1)的值域也为,故1﹣2f(x+1)∈,设t=1﹣2f(x+1)∈,则,∴=,,由二次函数的性质可知:当时,g(x)取最大值1;当时,g(x)取最小值;∴g(x)的值域为,故选:C.【点评】本题考查了利用换元法和数形结合思想,判断二次函数的最值问题,属于中档题.8.(5分)某年级先后举办了数学、历史、音乐的讲座,其中有85人听了数学讲座,70人听了历史讲座,61人听了音乐讲座,16人同时听了数学、历史讲座,12人同时听了数学、音乐讲座,9人同时听了历史、音乐讲座,还有5人听了全部讲座.则听讲座的人数为()A.181B.182C.183D.184【分析】设全班同学是全集U,听数学讲座的人组成集合A,听历史讲座的人组成集合B,听音乐讲座的人组成集合C,根据题意,用韦恩图表示出各部分的人数,即可求出【解答】解:设全班同学是全集U,听数学讲座的人组成集合A,听历史讲座的人组成集合B,听音乐讲座的人组成集合C,根据题意,用韦恩图表示,如图所示:,由韦恩图可知,听讲座的人数为62+7+5+11+4+50+45=184(人),故选:D.【点评】本题主要考查Venn图表达集合的关系和运算,比较基础.9.(5分)已知函数的值域是[0,+∞),则实数m的取值范围是()A.[﹣2,2]B.[﹣1,2]C.[﹣2,﹣1]∪[2,+∞)D.(﹣∞,﹣1]∪[2,+∞)【分析】m=﹣2,则y=(m+2)x2+2mx+1为一次函数,符合题意;m≠﹣2,y=(m+2)x2+2mx+1为二次函数,需要开口向上,且与x轴有交点,用判别式求解m的范围即可.【解答】解:要使函数的值域是[0,+∞),则y=(m+2)x2+2mx+1的最小值≤0,当m=﹣2时,,符合题意;当m≠﹣2时,要使函数的值域是[0,+∞),则y=(m+2)x2+2mx+1为二次函数,开口向上,且与x轴有交点,∴m+2≥0,且△=4m2﹣4(m+2)≥0,∴﹣2<m≤﹣1或m≥2;综上可知﹣2≤m≤﹣1或m≥2,故选:C.【点评】本题需要对m=﹣2和m≠﹣2进行分类讨论,当m≠﹣2时结合利用二次函数的根的存在性判断即可,属于基础题.10.(5分)已知函数,则不等式f(x+1)>f(2x)的解集为()A.(﹣∞,1)B.(﹣∞,1]C.[,0]D.[,1)【分析】根据题意,先分析函数的定义域,再由常见函数的单调性可得f(x)在区间[﹣1,1]上为增函数,由此原不等式等价于,解可得x的取值范围,即可得答案.【解答】解:根据题意,函数,有,解可得﹣1≤x≤1,即函数的定义域为[﹣1,1],函数y=在区间[﹣1,1]上为增函数,y=在区间[﹣1,1]上为减函数,则函数f(x)=﹣在区间[﹣1,1]上为增函数,则f(x+1)>f(2x)⇔,解可得﹣≤x≤0,即不等式的解集为[﹣,0],故选:C.【点评】本题考查函数单调性的性质以及应用,注意函数的定义域,属于基础题.11.(5分)已知函数,当x∈[1,4]时,f(x)>1恒成立,则实数m的取值范围为()A.[﹣4,+∞)B.[﹣2,+∞)C.(﹣4,+∞)D.(﹣2,+∞)【分析】设=t,t∈[1,2],原不等式等价为﹣m<t+在t∈[1,2]恒成立,即有﹣m<t+在t∈[1,2]的最小值,运用基本不等式可得最小值,进而得到所求范围.【解答】解:设=t,由x∈[1,4],可得t∈[1,2],则当x∈[1,4]时,f(x)>1恒成立,即为t2+mt+4>1,即﹣m<t+在t∈[1,2]恒成立,即有﹣m<t+在t∈[1,2]的最小值,由t+≥2=2,当且仅当t=∈[1,2]时,取得等号,则﹣m<2,即m>﹣2,可得m的取值范围是(﹣2,+∞).故选:D.【点评】本题考查函数恒成立问题解法,注意运用参数分离和基本不等式,考查转化思想和运算能力,属于中档题.12.(5分)若存在n∈R,且存在x∈[1,m],使得不等式|mx2+1|+|2nx|≤3x成立,则实数m 的取值范围是()A.[1,2]B.(﹣∞,2]C.(1,2]D.[2,+∞)【分析】由题易知m>1恒成立,则此时利用|2n|恒定非负将不等式进行变形求解即可.【解答】解:因为x∈[1,m],所以m>1,则mx2+1>0,所以原不等式可变为mx2+1+|2nx|≤3x,因为x∈[1,m],所以原不等式进一步变形为mx2+1+|2n|x≤3x,所以,令,则f(x)在区间[1,m]上是减少的,由存在性可知在区间[1,m]上有解,所以f(x)在[1,m]上的最大值应不小于0,所以f(1)≥0,即﹣m+2≥0,解得:m≤2,综上可得:m的取值范围为1<m≤2.故选:C.【点评】本题考查基本不等式及不等式恒成立问题,属于难题.二、填空题(每小题5分,满分20分)13.(5分)设函数,函数f(x)•g(x)的定义域为(,+∞).【分析】根据f(x),g(x)的解析式即可得出:要使得f(x)•g(x)有意义,则需满足2x﹣3>0,然后解出x的范围即可.【解答】解:要使f(x)•g(x)有意义,则:2x﹣3>0,解得,∴f(x)•g(x)的定义域为.故答案为:.【点评】本题考查了函数定义域的定义及求法,考查了计算能力,属于基础题.14.(5分)函数y=kx2﹣4x﹣8在区间[5,10]上单调递增,则实数k的取值范围为[,+∞).【分析】由题意可知区间[5,10]是函数增区间的子集,对k分情况讨论,利用二次函数的性质求解.【解答】解:∵函数y=kx2﹣4x﹣8在区间[5,10]上单调递增,∴区间[5,10]是函数增区间的子集,①当k=0时,函数y=﹣4x﹣8,在区间[5,10]上单调递减,不符合题意;②当k>0时,函数y=kx2﹣4x﹣8的增区间为[,+∞),∴,解得k,∴k;③当k<0时,函数y=kx2﹣4x﹣8的增区间为(﹣∞,],∴10,解得k,∴k∈∅,综上所述,实数k的取值范围为[,+∞),故答案为:[,+∞).【点评】本题主要考查了二次函数的图象和性质,对k分情况讨论是解题关键,是中档题.15.(5分)已知集合A,B,C,且A⊆B,A⊆C,若B={1,2,3,4},C={0,1,2,3},则所有满足要求的集合A的各个元素之和为24.【分析】由题意推出集合A是两个集合的子集,求出集合B,C的公共元素得到集合A,进而求出结论.【解答】解:因为集合A,B,C,且A⊆B,A⊆C,B={1,2,3,4},C={0,1,2,3},所以集合A是两个集合的子集,集合B,C的公共元素是1,2,3,所以满足上述条件的集合A=∅,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3},∴所有满足要求的集合A的各个元素之和为:4(1+2+3)=24.故答案为:24.【点评】本题考查集合的基本运算,集合的子集的运算,考查基本知识的应用.16.(5分)已知函数,若方程f(x)=g(x)有两个实根为x1,x2,且x1=tx2,t∈[,3],则实数a的取值范围为[,].【分析】把方程f(x)=g(x)有两个实根为x1,x2,转化为ax2+x+1=0(x≠0)有两个实根为x1,x2,由根与系数的关系及x1=tx2可得a与t的关系,分离a,结合双勾函数求最值.【解答】解:方程f(x)=g(x)即为,亦即ax2+x+1=0(x≠0),由题意,△=1﹣4a≥0,即a.且,,又x1=tx2,得a===,t∈[,3],当t=1时,有最小值4,则a有最大值,当t=或3时,t+有最大值,则a有最小值为.∴实数a的取值范围为[,],故答案为:[,].【点评】本题考查函数零点与方程根的关系,考查数学转化思想方法,训练了利用双勾函数求最值,是中档题.三、解答题(共6小题,共70分)17.(10分)已知集合A={x|≤0},B={x|x2﹣3x+2<0},U=R,.求(Ⅰ)A∩B;(Ⅱ)A∪B;(Ⅲ)(∁U A)∩B.【分析】化简集合A、B,再求A∩B与A∪B、(∁U A)∩B.【解答】解:集合A={x|≤0}={x|﹣5<x≤},B={x|x2﹣3x+2<0}={x|1<x<2},U=R,(Ⅰ)A∩B={x|﹣5<x≤}∩{x|1<x<2}={x|1<x≤};(Ⅱ)A∪B={x|﹣5<x≤}∪{x|1<x<2}={x|﹣5<x<2};(Ⅲ)∵∁U A={x|x≤﹣5或x>},∴(∁U A)∩B={x|x≤﹣5或x>}∩{x|1<x<2}={x|<x<2}.【点评】本题考查了集合的化简与运算问题,是基础题目.18.(12分)(1)已知f(x)满足3f(x)+2f(1﹣x)=4x,求f(x)解析式;(2)已知函数,当x>0时,求g(f(x))的解析式.【分析】(1)直接利用换元法的应用和解方程组求出函数的关系式.(2)利用函数的定义域的应用求出函数的关系式.【解答】解:(1)解令x=1﹣x,则1﹣x=x,所以3f(x)+2f(1﹣x)=4x,整理得3f(1﹣x)+2f(x)=4(1﹣x),则,解得:;(2)由于函数,当x>0时,g(f(x))=.故:.【点评】本题考查的知识要点:函数的解析式的求法,换元法,主要考查学生的运算能力和转换能力及思维能力,属于基础题.19.(12分)已知集合A={x|0≤x≤2},B={x|a≤x≤3﹣2a}.(1)若(∁U A)∪B=R,求a的取值范围;(2)若A∩B≠B,求a的取值范围.【分析】(1)根据补集与并集的定义,列出不等式组求得a的取值范围.(2)根据A∩B=B得B⊆A,讨论B=∅和B≠∅时,分别求出对应a的取值范围,再求A∩B≠B时a的取值范围.【解答】解:(1)由集合A={x|0≤x≤2},所以∁U A={x|x<0或x>2},又B={x|a≤x≤3﹣2a},(∁U A)∪B=R,所以,解得a≤0;所以实数a的取值范围是(﹣∞,0].(2)若A∩B=B,则B⊆A,当B=∅时,3﹣2a<a,解得a>1;当B≠∅时,有a≤1,要使B⊆A,则,解得;综上知,实数a的取值范围是;所以A∩B≠B时a的取值范围是的补集,为.【点评】本题考查了集合的定义与运算问题,也考查了推理与转化能力,是中档题.20.(12分)已知二次函数f(x)=ax2+bx+c,f(0)=1,f(1)=0,且对任意实数x均有f(x)≥0成立.(1)求f(x)解析式;(2)若函数g(x)=f(x)+2(1﹣m)x在[2,+∞)上的最小值为﹣7,求实数m的值.【分析】(1)利用函数值以及函数的值域,转化求解a,b,c,即可得到函数的解析式.(2)求出函数的解析式,通过函数的最小值,求解m的值即可.【解答】解:(1)二次函数f(x)=ax2+bx+c,f(0)=1,f(1)=0,所以c=1,a+b =﹣1,对任意实数x均有f(x)≥0成立,△=b2﹣4a=0,解得a=1,b=﹣2,所以函数的解析式为:f(x)=x2﹣2x+1;(2)g(x)=x2﹣2mx+1,函数的对称轴为x=m,①当m<2时,g(x)min=g(2)=5﹣4m=﹣7,则m=3(舍);②当m≥2时,,得.综上,.【点评】本题考查函数的解析式的求法,二次函数的最值的求法,考查转化思想以及计算能力.21.(12分)已知定义在R上的函数f(x)对任意x1,x2∈R都有等式f(x1+x2)=f(x1)+f(x2)﹣1成立,且当x>0时,有f(x)>1.(1)求证:函数f(x)在R上单调递增;(2)若f(3)=4,关于x不等式恒成立,求t的取值范围.【分析】(1)任取x1,x2∈R,且x1<x2,则x2﹣x1>0,结合已知条件以及单调性的定义推出结果.(2)结合已知条件推出恒成立,利用函数的性质,转化求解即可.【解答】(1)证明:任取x1,x2∈R,且x1<x2,则x2﹣x1>0,∴f(x2﹣x1)>1,f(x2)=f(x1)+f(x2﹣x1)﹣1,∴f(x2)>f(x1).故函数f(x)在R上单调递增.(2)解:f(3)=f(1)+f(2)﹣1=f(1)﹣1+f(1)+f(1)﹣1=3f(1)﹣2,∴f(1)=2,原不等式等价于,故恒成立,令,,∴,y+t>1,∴t>1﹣y,∴t∈(﹣1,+∞).【点评】本题考查函数的应用,不等式的证明,考查转化思想以及计算能力,是难题.22.(12分)已知函数f(x)=|x+m|2﹣3|x|.(1)当m=0时,求函数y=f(x)的单调递减区间;(2)当0<m≤1时,若对任意的x∈[m,+∞),不等式f(x﹣m﹣1)≤2f(x﹣m)恒成立,求实数m的取值范围.【分析】(1)求得m=0时,f(x)的分段函数形式,结合二次函数的对称轴和单调性,可得所求单调递减区间;(2)由题意可得原不等式等价为x2﹣4x+6m﹣1+3|x﹣(1+m)|≥0在x∈[m,+∞)上恒成立,令g(x)=x2﹣4x+6m﹣1+3|x﹣(1+m)|,只需g(x)min≥0即可,写出g(x)的分段函数的形式,讨论单调性可得最小值,解不等式可得所求范围.【解答】解:(1)因为m=0,所以f(x)=x2﹣3|x|=,因为函数f(x)=x2﹣3x的对称轴为,开口向上,所以当时,函数f(x)=x2﹣3x单调递减;当时,函数f(x)=x2﹣3x 单调递增;又函数f(x)=x2+3x的对称轴为,开口向上,所以当时,函数f(x)=x2+3x单调递增;当时,函数f(x)=x2+3x 单调递减;因此,函数y=f(x)的单调递减区间为:(﹣∞,﹣)和;(2)由题意,不等式f(x﹣m﹣1)≤2f(x﹣m)可化为(x﹣1)2﹣3|x﹣1﹣m|≤2x2﹣6|x﹣m|,即x2﹣4x+6m﹣1+3|x﹣(1+m)|≥0在x∈[m,+∞)上恒成立,令g(x)=x2﹣4x+6m﹣1+3|x﹣(1+m)|,则只需g(x)min≥0即可;因为0<m≤1,所以1<m+1≤2,因此g(x)=x2﹣4x+6m﹣1+3|x﹣(1+m)|=,当m≤x≤m+1时,函数g(x)=x2﹣7x+9m+2开口向上,对称轴为:,所以函数g(x)在[m,m+1]上单调递减;当x>m+1时,函数g(x)=x2﹣x+3m﹣4开口向上,对称轴为.所以函数g(x)在[m+1,+∞)上单调递增,因此,由g(x)min≥0得m2+4m﹣4≥0,解得或,因为0<m≤1,所以.即实数m的取值范围为.【点评】本题考查函数的单调区间的求法,以及函数恒成立问题解法,考查转化思想和分类讨论思想、运算能力和推理能力,属于中档题.。
绝密★启用前2020-2021学年高一上学期第一次月考(新高考)试题卷语文考试时间:150分钟试卷分数:150分命题人:紫枫叶注意事项:1.答题前填写好自己的姓名、班级、考号等信息。
2.请将答案正确填写在答题卡上。
一、现代文阅读(35分)(一)现代文阅读Ⅰ(本题共5小题,19分)阅读下面的文字,完成1~5题。
材料一:新中国成立之初,百废待兴。
那时,国家实行单休制度,对大多数人而言,既没有外出旅游的时间,也没有那个经济实力,旅游成为少数人的“幸运”。
随着经济社会的发展变迁,国家休假制度日益完善,法定假日和周末休息日由过去的59天增加至现在的115天。
同时,伴随着改革开放向纵深推进,我国经济持续快速发展,国民收入更是稳步增长。
中国人的“钱袋子”真正鼓起来了。
居民人均收入从1949年的49.7元,增加至2018年的28228元,实际增长近60倍。
人们不仅有“闲”了,而且有“钱”了,生活水平和质量大幅提升。
几十年来,中国的旅游业也从无到有、从小到大、从弱到强,而且成为国民经济的战略性支柱产业,成为大众的生活常态和全面建成小康社会的重要标志。
在70年发展历程中,中国人的假期不仅有假日经济,还折射出人民群众生活质量和国人素质的提升,更体现出中国共产党坚持“以人民为中心”“发展成果由人民共享”理念的开花结果。
从乘坐绿皮火车自带干粮出行,到早上在西安吃羊肉泡馍、中午到成都吃个火锅,从出远门怀揣介绍信,到如今出门只带一部手机,中国旅游业的兴旺发展,旅游消费的火爆升级,靠的是综合国力的不断增强,靠的是社会民生的不断改善,这是时代的巨变,也是中国老百姓日子越过越好、生活越来越幸福的有力见证。
(尹贵龙《70年,中国人拥有更多的“诗意和远方”》)材料二:一张小小的旅游年卡,把景区、游客、年卡运营公司及主管部门连接在一起。
据介绍,部分旅游卡是福利性质,由政府主导,交给运营公司以PPP的方式操作。
“我们认为这种模式能实现多方共赢。
2020-2021学年江苏省苏州中学高一(上)月考数学试卷(1)试题数:17.满分:01.(填空题.5分)如果全集U={1.2.3.4.5.6.7.8}.A={2.5.8}.B={1.3.5.7}.那么(∁U A )∩B 等于___ .2.(填空题.5分)设集合A={x|1<x <2}.B={x|x <a}满足A ⫋B.则实数a 的取值范围是___ .3.(填空题.5分)函数f (x )= √x +1 + 13−x 的定义域为___ .4.(填空题.5分)满足条件{1.2.3}⫋M ⫋{1.2.3.4.5.6}的集合M 的个数为___ .5.(填空题.5分)函数 f (x )={x +1, x >0π, x =00, x <0.则f (f (-1))=___ . 6.(填空题.5分)已知集合A={m+2.2m 2+m}.若3∈A .则m 的值为___ .7.(填空题.5分)已知A={x|a-4<x <a+4}.B={x|x <-1或x >5}.且A∪B=R .则实数a 的取值范围为 ___ (用区间表示).8.(填空题.5分)如图所示的对应中.能构成A 到B 的映射的序号是___ .9.(填空题.5分)已知集合 P ={x|y =0√x+1} .集合Q={y|y=-x 2+4}.则P∩Q=___ . 10.(填空题.5分)下列函数中.表示同一函数的是___ .(1)f (x )=|x|.g (x )= √x 2 ;(2)f (x )= √x 2 .g (x )= (√x)2 ;(3)f (x )= x 2−1x−1 .g (x )=x+1;(4)f (x )= √x +1•√x −1 .g (x )= √x 2−1 .11.(填空题.5分)已知 f (2x −1)=2x+√2x−1 .则f (x )=___ .12.(填空题.5分)若实数x.y 满足x 2+4y 2=4x.则S=x 2+y 2的取值范围是___ .13.(问答题.8分)已知A={x|3x 2-mx+2m <0}.(1)若3∈A .求m 的取值范围;(2)若0∈A 且1∈A .求m 的取值范围.14.(问答题.8分)求下列函数的值域:(1)y=x2+2x-3.x∈[-2.2];.x∈[-1.0)∪(0.2).(2)y=−2x的图象.并直接作答下列问题:15.(问答题.8分)作出函数f(x)=2x+1x−1① f(x)的图象与x轴的交点坐标为___ .与y轴的交点坐标为___ ;② 不等式f(x)<3的解集为___ .16.(问答题.8分)(1)已知二次函数f(x).且满足f(0)=1.f(x+1)-f(x)=2x.求f(x)的表达式;(2)已知f(x)是一次函数.且f(f(x))=4x-1.求f(x)的表达式.17.(问答题.8分)(1)求函数y=x−1+√3−x的值域;(x−m)2+1在[1.2]上的最大值g(m).(2)求函数f(x)=−122020-2021学年江苏省苏州中学高一(上)月考数学试卷(1)参考答案与试题解析试题数:17.满分:01.(填空题.5分)如果全集U={1.2.3.4.5.6.7.8}.A={2.5.8}.B={1.3.5.7}.那么(∁U A )∩B 等于___ .【正确答案】:[1]{1.3.7}【解析】:由全集U 和补集的定义求出C U A.再由交集的运算求出(C U A )∩B .【解答】:解:∵全集U={1.2.3.4.5.6.7.8}.A={2.5.8}.∴C U A={1.3.4.6.7}.由B={1.3.5.7}得.(C U A )∩B={1.3.7}.故答案为:{1.3.7}.【点评】:本题的考点是集合的混合运算.直接利用运算的定义求出.由于是用列举法表示的集合故难度不大.2.(填空题.5分)设集合A={x|1<x <2}.B={x|x <a}满足A ⫋B.则实数a 的取值范围是___ .【正确答案】:[1]a≥2【解析】:根据真子集的定义、以及A 、B 两个集合的范围.求出实数a 的取值范围.【解答】:解:由于 集合A={x|1<x <2}.B={x|x <a}.且满足A ⫋B.∴a≥2.故答案为:a≥2.【点评】:本题主要考查集合间的关系.真子集的定义.属于基础题.3.(填空题.5分)函数f (x )= √x +1 +13−x的定义域为___ . 【正确答案】:[1]{x|x≥-1且x≠3}【解析】:根据二次根式的性质以及分母不为0求出函数的定义域即可.【解答】:解:由题意得: {x +1≥03−x ≠0.解得:x≥-1且x≠3. 故函数的定义域是:{x|x≥-1且x≠3}.故答案为:{x|x≥-1且x≠3}.【点评】:本题考查了求函数的定义域问题.考查二次根式的性质.是一道基础题.4.(填空题.5分)满足条件{1.2.3}⫋M ⫋{1.2.3.4.5.6}的集合M 的个数为___ .【正确答案】:[1]6【解析】:根据题意M 中必须有1.2.3这三个元素.因此M 的个数应为集合{4.5.6}的非空真子集的个数.【解答】:解:根据题意:M 中必须有1.2.3这三个元素.则M 的个数应为集合{4.5.6}的非空真子集的个数.所以是6个故答案为:6【点评】:本题主要考查子集、真子集的概念及运算.5.(填空题.5分)函数 f (x )={x +1, x >0π, x =00, x <0.则f (f (-1))=___ . 【正确答案】:[1]π【解析】:求出f (-1)=0.从而f (f (-1))=f (0).由此能求出结果.【解答】:解:∵函数 f (x )={x +1, x >0π, x =00, x <0.∴f (-1)=0.f (f (-1))=f (0)=π.故选:π.【点评】:本题考查函数值的求法.考查函数性质等基础知识.考查运算求解能力.是基础题.6.(填空题.5分)已知集合A={m+2.2m 2+m}.若3∈A .则m 的值为___ .【正确答案】:[1]- 32【解析】:根据集合元素的特征.即可求出.【解答】:解:∵集合A={m+2.2m 2+m}.若3∈A .∴m+2=3.且2m 2+m≠3.或m+2≠3.且2m 2+m=3.解得m=1.或m=- 32.当m=1时.∴m+2=3.2m2+m=3.故1舍去.故答案为:- 32【点评】:本题考查了元素与集合的关系.属于基础题.7.(填空题.5分)已知A={x|a-4<x<a+4}.B={x|x<-1或x>5}.且A∪B=R.则实数a的取值范围为 ___ (用区间表示).【正确答案】:[1](1.3)【解析】:由已知结合两集合端点值间的关系列不等式组求得答案.【解答】:解:∵A={x|a-4<x<a+4}.B={x|x<-1或x>5}.若A∪B=R.则{a−4<−1a+4>5.即1<a<3.∴实数a的取值范围为(1.3).故答案为:(1.3).【点评】:本题考查并集及其运算.关键是对两集合端点值关系的处理.是基础题.8.(填空题.5分)如图所示的对应中.能构成A到B的映射的序号是___ .【正确答案】:[1](2)(3)【解析】:由题意利用映射的定义.判断各个选项是否符合条件.从而得出结论.【解答】:解:按照映射的定义.集合A中的每一个元素在集合B中都有唯一确定的象. 而对于选项(1).集合A中的元素b在集合B中没有象.故排除选项(1);显然.(2)(3)满足条件;选对于项(4).集合A中的元素2在B中有2个元素b、c和它对应.故排除选项(4). 故选:(2)(3).【点评】:本题主要考查映射的定义.属于基础题.9.(填空题.5分)已知集合P={x|y=0√x+1} .集合Q={y|y=-x2+4}.则P∩Q=___ .【正确答案】:[1](-1.2)∪(2.4]【解析】:可以求出集合P.Q.然后进行交集的运算即可.【解答】:解:∵P={x|-1<x<2或x>2}.Q={y|y≤4}.∴P∩Q=(-1.2)∪(2.4].故答案为:(-1.2)∪(2.4].【点评】:本题考查了描述法的定义.交集的定义及运算.考查了计算能力.属于基础题.10.(填空题.5分)下列函数中.表示同一函数的是___ .(1)f(x)=|x|.g(x)= √x2;(2)f(x)= √x2 .g(x)= (√x)2;(3)f(x)= x 2−1x−1.g(x)=x+1;(4)f(x)= √x+1•√x−1 .g(x)= √x2−1.【正确答案】:[1](1)【解析】:判断函数的定义域与对应法则是否相同.即可判断两个函数是否相同.【解答】:解:(1)f(x)=|x|.g(x)= √x2 =|x|.利用函数的定义域相同.对应法则相同.所以是相同的函数.(2)f(x)= √x2的定义域是R.g(x)= (√x)2的定义域是x≥0;两个函数的定义域不相同.所以不是相同的函数.(3)f(x)= x 2−1x−1的定义域是x≠1.g(x)=x+1的定义域是R.两个函数的定义域不相同.所以不是相同的函数;(4)f(x)= √x+1•√x−1的定义域是x≥1.g(x)= √x2−1的定义域是x≥1或x≤-1.两个函数的定义域不相同.不是相同的函数.故答案为:(1).【点评】:本题考查函数的基本知识的应用.判断两个函数是否相同.关键是定义域与对应法则相同.11.(填空题.5分)已知f(2x−1)=2x+√2x−1.则f(x)=___ .【正确答案】:[1]x+√x+1x≥0)【解析】:先求出函数f(2x-1)定义域为{x|x≥ 12}.令t=2x-1(t≥0).代入f(2x−1)=2x+√2x−1.即可得出答案.【解答】:解:函数f(2x-1)定义域为{x|x≥ 12}.令t=2x-1(t≥0).代入f(2x−1)=2x+√2x−1中.得f(t)=t+1+√t(t≥0).所以f(x)=x+1+√xx≥0).故答案为:f(x)=x+1+√x(x≥0).【点评】:本题考查换元法求函数解析式.属于基础题.12.(填空题.5分)若实数x.y满足x2+4y2=4x.则S=x2+y2的取值范围是___ .【正确答案】:[1][0.16]【解析】:把S表示为关于变量x的二次函数.由y2≥0可求得x的范围.在x的取值范围内利用二次函数的性质即可求得其最值.从而得其范围.【解答】:解:由x2+4y2=4x.得y2= 14(4x−x2) .由y2= 14(4x−x2)≥0.解得0≤x≤4.代入S=x2+y2得.S=x2+ 14(4x−x2) = 34x2 +x= 34(x+23)2- 13.x∈[0.4].S在[0.4]上单调递增.当x=0时S取得最小值为0;当x=4时S取得最大值为16.故S的取值范围为[0.16].故答案为:[0.16].【点评】:本题考查二次函数在闭区间上的最值问题.考查学生运用知识分析解决问题的能力.属中档题.13.(问答题.8分)已知A={x|3x2-mx+2m<0}.(1)若3∈A.求m的取值范围;(2)若0∈A且1∈A.求m的取值范围.【正确答案】:【解析】:(1)根据3∈A .可得出27-3m+2m <0.解出m 的范围即可;(2)根据0∈A 且1∈A .可得出 {2m <03−m +2m <0.解出m 的范围即可.【解答】:解:(1)∵3∈A .∴27-3m+2m <0.解得m >27.∴m 的取值范围为(27.+∞);(2)∵0∈A .且1∈A .∴ {2m <03−m +2m <0.解得m <-3. ∴m 的取值范围为(-∞.-3).【点评】:本题考查了元素与集合的关系.考查了计算能力.属于基础题.14.(问答题.8分)求下列函数的值域:(1)y=x 2+2x-3.x∈[-2.2];(2) y =−2x .x∈[-1.0)∪(0.2).【正确答案】:【解析】:(1)y=x 2+2x-3=(x+1)2-4.结合定义域.求出y 的最大值和最小值即可;(2)分x∈[-1.0)和x∈(0.2)两段.根据反比例函数 y =−2x 的单调性.求出y 的最大值或最小值即可.【解答】:解:(1)y=x 2+2x-3=(x+1)2-4.∵x∈[-2.2].∴当x=-1时.y 取得最小值-4;当x=2时.y 取得最大值5.∴函数的值域为[-4.5].(2)当x∈[-1.0)时. y =−2x 单调递增.y∈[2.+∞);当x∈(0.2)时. y =−2x 单调递增.y∈(-∞.-1).∴函数的值域为(-∞.-1)∪[2.+∞).【点评】:本题考查函数值域的求法.考查学生的逻辑推理能力和运算能力.属于基础题.15.(问答题.8分)作出函数 f (x )=2x+1x−1 的图象.并直接作答下列问题: ① f (x )的图象与x 轴的交点坐标为___ .与y 轴的交点坐标为___ ;② 不等式f (x )<3的解集为___ .【正确答案】:(- 12 .0); (0.-1); (-∞.1)∪(4.+∞)【解析】:先画出函数的图象.根据图象.即可求出相对应的答案.【解答】:解:图象如图所示:① 令f (x )=0.即 2x+1x−1 =0.解得x=- 12 .令x=0.则f (0)=-1.故f (x )的图象与x 轴的交点坐标为(- 12 .0).与y 轴的交点坐标为(0.-1); ② 不等式f (x )<3.即 2x+1x−1 <3.结合图象可得解集为(-∞.1)∪(4.+∞).故答案为:① (- 12.0).(0.-1);② (-∞.1)∪(4.+∞).【点评】:本题考查了函数图象的画法和应用.属于基础题.16.(问答题.8分)(1)已知二次函数f(x).且满足f(0)=1.f(x+1)-f(x)=2x.求f(x)的表达式;(2)已知f(x)是一次函数.且f(f(x))=4x-1.求f(x)的表达式.【正确答案】:【解析】:(1)设f(x)的表达式为f(x)=ax2+bx+c(a≠0).由f(0)=1.可得c=1.由f (x+1)-f(x)=2x.可列出关于a和b的方程组.解之即可;(2)设f(x)的表达式为f(x)=kx+m(k≠0).由f(f(x))=4x-1.可列出关于k和m的方程组.解之即可.【解答】:解:(1)设f(x)的表达式为f(x)=ax2+bx+c(a≠0).∵f(0)=1.f(x+1)-f(x)=2x.∴c=1.[a(x+1)2+b(x+1)+c]-(ax2+bx+c)=2x.化简得.2ax+a-b=2x.∴ {2a=2a+b=0 .解得{a=1b=−1.∴f(x)=x2-x+1.(2)设f(x)的表达式为f(x)=kx+m(k≠0). ∵f(f(x))=4x-1.∴k(kx+m)+m=4x-1.即k2x+m(k+1)=4x-1.∴ {k 2=4m (k +1)=−1 .解得 {k =2m =−13或 {k =−2m =1 . ∴f (x )=2x- 13 或f (x )=-2x+1.【点评】:本题考查利用待定系数法求函数的解析式.考查学生的逻辑推理能力和运算能力.属于基础题.17.(问答题.8分)(1)求函数 y =x −1+√3−x 的值域;(2)求函数 f (x )=−12(x −m )2+1 在[1.2]上的最大值g (m ).【正确答案】:【解析】:(1)利用换元法.令t= √3−x ≥0.则x=3-t 2.故y=-t 2+t+2.再结合配方法即可得解;(2)分m <1.1≤m≤2和m >2三类.讨论f (x )在[1.2]上的单调性.从而得解.【解答】:解:(1)令t= √3−x ≥0.则x=3-t 2.∴y=3-t 2-1+t=-t 2+t+2=- (t−12)2 + 94 . ∵t≥0.∴当t= 12 时.y 取得最大值 94 .∴函数的值域为(-∞. 94 ].(2) f (x )=−12(x −m )2+1 的开口方向向下.对称轴为x=m.当m <1时.f (x )在[1.2]上单调递减.g (m )=f (1)= −12 (m-1)2+1;当1≤m≤2时.f (x )在[1.m )上单调递增.在(m.2]上单调递减.g (m )=f (m )=1; 当m >2时.f (x )在[1.2]上单调递增.g (m )=f (2)= −12 (m-2)2+1.综上.g (m )= { −12(m −1)2+1,m <11,1≤m ≤2−12(m −2)2+1,m >2 .【点评】:本题考查利用换元法求函数值域和二次函数的动轴定区间问题.考查分类讨论思想、逻辑推理能力和运算能力.属于中档题.。
九台师范高中2020-2021学年度第一学期第一阶段考试高一数学试题考生注意:本试题考试时间90分钟,满分120分。
一、单项选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合A={1,2,3},B={x|-1<x<2,x∈Z},则A∪B=( ) A.{1} B.{1,2}C.{0,1,2,3} D.{-1,0,1,2,3}2.函数y= x2的定义域为( )A. RB.(-∞,0)C. ()(),00,1-∞⋃ D. (0,+∞)3.“⎩⎨⎧x>0,y>0”是“1xy>0”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件4.设全集U是实数集R,{}{}2|4,|13M x x N x x=>=<<,则图中阴影部分所表示的集合是( )A. {|}x x-≤<21 B. {}|22x x-≤≤ C. {}|12x x<≤ D. {}|2x x< 5.命题“关于x的方程ax 2 -x-2=0在(0,+∞)上有解”的否定是( ) A.∃x∈(0,+∞),ax 2-x-2≠0 B.∀x∈(0,+∞),ax 2-x-2≠0 C.∃x∈(-∞,0),ax 2-x-2=0 D.∀x∈(-∞,0),ax 2 -x-2=0 6.函数16(0)y x xx=++>的最小值为( )A.6 B.7 C.8 D.97.设函数⎩⎨⎧≥-<=1,11,2)(xxxxf,则)1((ff)=( )A .0 B. 2 C .1 D .28.不等式220ax bx ≥+-的解集为1|24x x ⎧⎫-≤≤-⎨⎬⎩⎭,则( ) A.8,10a b =-=- B.1,9a b =-= C.4,9a b =-=- D.1,2a b =-=9.在如图所示的锐角三角形空地中,欲建一个面积不小于3002m 的内接矩形花园(阴影部分),则其边长x (单位:m)的取值范围是( )A.{1520}x x ≤≤B.{1225}x x ≤≤C.{1030}x x ≤≤D.{2030}x x ≤≤10.已知实数a ,b 满足a>b>0,则下列不等式不成立的是 ( )A.a 2 > b 2B.22b a a b < C.a 2 b>a b 2 D.11a b< 二、多项选择题(本大题共2小题,每小题5分,共10分.在每小题给出的四个选项中,有多个选项符合题目要求,全部选对得5分,部分选对得3分,有选错的得0分)11.下列命题正确的是 ( )A .存在x <0,x 2-2x -3=0 B .对于一切实数x <0,都有|x |>xC .∀x ∈R ,x 2 =xD .“∃n ∈N *,2n 2+5n +2能被2整除”是真命题12.命题“∀1≤x ≤3,x 2-a ≤0”是真命题的一个充分不必要条件是( )A .a ≥9B .a ≥11C .a ≥10D .a ≤10三、填空题(本大题共4小题,每小题5分,共20分.把★★★★答案★★★★填在题中横线上)13.命题“∀x ∈R ,x 2-2x +1≥0”的否定是_ _______.14. 集合{3,1}A =-,2{2,1}B m m =--,且A B =,则实数m =______.15.若0,0>>y x ,且14=+y x ,则yx 11+的最小值为__________ 16.已知函数()()12-++=m mx mx x f 的值恒为负数,则m 的取值范围是__________四、解答题(本大题共4小题,共40分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分12分)已知集合A ={x |1<x <3},集合B ={x |2m <x <1-m }.(1)若A ⊆B ,求实数m 的取值范围;(2)若A ∩B =∅,求实数m 的取值范围.18.(本小题满分8分)已知p :-1<x <3,q :-1<x <m +1,若q 是p 的必要不充分条件,求实数m 的取值范围。
2020-2021学年江西省南昌市第二中学高一上学期第一次月考数学试题一、单选题1.方程组31x y x y +=⎧⎨-=-⎩的解集可表示为( )A .{}1,2B .()1,2C .(){},1,2x y x y ==D .()3,1x y x y x y ⎧⎫+=⎧⎪⎪⎨⎨⎬-=⎩⎪⎪⎩⎭【答案】C【解析】根据集合的表示方法确定正确选项. 【详解】方程组31x y x y +=⎧⎨-=-⎩的解为12x y =⎧⎨=⎩,根据集合的表示方法可知方程组31x y x y +=⎧⎨-=-⎩的解集可表示为(){},1,2x y x y ==或()3,1x y x y x y ⎧⎫+=⎧⎪⎪⎨⎨⎬-=-⎩⎪⎪⎩⎭.所以C 选项正确. 故选:C 【点睛】本小题主要考查集合的表示方法,属于基础题.2.已知集合A ={a ,|a |,a -2},若2∈A ,则实数a 的值为( ) A .-2 B .2 C .4 D .2或4【答案】A【解析】根据元素和集合的关系以及集合元素的互异性确定正确选项. 【详解】 依题意2A ∈,若2a =,则2=a ,不满足集合元素的互异性,所以2a ≠;若2=a ,则2a =-或2a =(舍去),此时{}2,2,4A =--,符合题意; 若22a -=,则4a =,而4a =,不满足集合元素的互异性,所以4a ≠. 综上所述,a 的值为2-. 故选:A 【点睛】本小题主要考查元素与集合的关系,考查集合元素的互异性,属于基础题.3.已知集合{}220,A xax x a a R =++=∈∣,若集合A 有且仅有两个子集,则a 的值是( ) A .1 B .-1 C .0,1 D .-1,0,1【答案】D【解析】根据集合A 有且仅有两个子集,由方程220ax x a ++=只有一个解求解. 【详解】因为集合A 有且仅有两个子集,即为∅和集合A 本身, 故集合A 中的元素只有一个, 即方程220ax x a ++=只有一个解,当0a =时,原方程为20x =,即0x =,符合题意; 当0a ≠时,令22240a ∆=-=,1a ∴=±综上,1a =-,0a =或1a =可符合题意. 故选:D. 【点睛】本题主要考查集合的子集,还考查了分类讨论思想,属于基础题. 4.下面的对应是从集合A 到集合B 的一一映射( ) A .,,A R B R ==对应关系1:,,;f y x A y B x=∈∈ B .,X R Y =={非负实数},对应关系4:,,;f y x x X y Y =∈∈C .{}{}1,2,3,4,N ,M ==2,4,6,8,10对应关系:2,,;f n m n N m M =∈∈D .A ={平面上的点}(){},,,,B x y x y R =∈对应关系:f A 中的元素对应它在平面上的坐标. 【答案】D【解析】根据一一映射的知识对选项逐一分析,由此确定正确选项. 【详解】对于A 选项,集合A 中元素0,在集合B 中没有元素与其对应,故A 选项错误. 对于B 选项,集合X 中的元素1和1-,在集合Y 中对应的元素为1,所以不是一一映射,故B 选项错误.对于C 选项,集合N 中的元素10,在集合M 中没有元素与其对应,故C 选项错误. 对于D 选项,平面上的点都对应一个坐标,任意一个坐标都对应平面上的一个点,所以D 选项符合题意. 故选:D 【点睛】本小题主要考查一一映射的知识,属于基础题. 一一映射一般指双射.既是单射又是满射的映射称为双射,亦称“一一映射”.5.对于全集U 的子集M ,N ,若M 是N 的真子集,则下列集合中必为空集的是( ) A .()UM N ⋂B .()UM N ⋂C .()()UU M N ⋂ D .M N ⋂【答案】B【解析】由题意画出韦恩图,由韦恩图可直接分析出答案. 【详解】由题意,可画出韦恩图如下图所示:由图可知,()UM N ⋂=∅所以选B 【点睛】本题考查了集合与集合的基本关系,用韦恩图分析集合间包含关系的应用,属于基础题.6.已知2,m <-点()()()1231,,,,1,m y m y m y -+都在二次函数22y x x =-的图象上,则( )A .123y y y <<B .321y y y <<C .132y y y <<D .213y y y <<【答案】B【解析】根据二次函数22y x x =-的对称轴、开口方向和单调性确定正确选项. 【详解】二次函数22y x x =-的对称轴为1x =,开口向上,在(),1-∞上递减, 由于2m <-,则13,2,11m m m -<-<-+<-, 且11m m m -<<+, 所以321y y y <<. 故选:B 【点睛】本小题主要考查函数的单调性,属于基础题. 7.已知定义在R 上的函数()f x 的值域为33,28⎡⎤-⎢⎥⎣⎦,则函数()()1g x f x =+ )A .17,28⎡⎤⎢⎥⎣⎦B .7,18⎡⎤⎢⎥⎣⎦C .1,12⎡⎤⎢⎥⎣⎦D .170,,28⎛⎤⎡⎫+∞ ⎪⎥⎢⎝⎦⎣⎭【答案】C 【解析】先求得()1f x +的值域,利用换元法求得()g x 的值域.【详解】由于定义在R 上的函数()f x 的值域为33,28⎡⎤-⎢⎥⎣⎦, 所以()1f x +的值域为33,28⎡⎤-⎢⎥⎣⎦.依题意()()1g x f x =+()()()331321,213,1214444f x f x f x -≤+≤-≤-+≤≤-+≤,所以122≤≤,令t =,122t ≤≤,则()2112t f x -+=,所以()g x 可化为2211122222t t y t t t -⎛⎫=+=-++≤≤ ⎪⎝⎭, 此函数的对称轴为1t =,所以1t =时,max 111122y =-++=, 2t =时,2min2112222y =-++=.所以()g x 的值域为1,12⎡⎤⎢⎥⎣⎦. 故选:C 【点睛】本小题主要考查函数值域的求法.8.某年级先后举办了数学、历史、音乐的讲座,其中有85人听了数学讲座,70人听了历史讲座,61人听了音乐讲座,16人同时听了数学、历史讲座,12人同时听了数学、音乐讲座,9人同时听了历史、音乐讲座,还有5人听了全部讲座.则听讲座的人数为( ) A .181 B .182C .183D .184【答案】D【解析】将已知条件用Venn 图表示出来,由此确定听讲座的人数. 【详解】将已知条件用Venn 图表示出来如下图所示,所以听讲座的人数为62751145450184++++++=. 故选:D【点睛】本小题主要考查Venn 图,属于基础题. 9.已知函数()()2221f x m x mx =+++的值域是[)0,+∞,则实数m 的取值范围是( )A .[]22-,B .[]1,2-C .[][)2,12,--+∞D .(][),12,-∞-⋃+∞【答案】C【解析】由题意可知函数()2221y m x mx =+++的值域包含[)0,+∞,分20m +=与20m +≠两种情况讨论,可得出关于实数m 的不等式,进而可求得实数m 的取值范围. 【详解】 由于函数()()2221f x m x mx =+++的值域是[)0,+∞,则函数()2221y m x mx =+++的值域包含[)0,+∞.当20m +=时,2m =-,此时函数41y x =-+的值域为R ,合乎题意;当20m +≠时,2m ≠-,要使得二次函数()2221y m x mx =+++的值域包含[)0,+∞.则()()2220442420m m m m m +>⎧⎪⎨∆=-+=--≥⎪⎩,解得21m -<≤-或2m ≥. 综上所述,实数m 的取值范围是[][)2,12,--+∞.故选:C. 【点睛】本题考查复合型二次函数的值域求参数,考查分类讨论思想的应用,考查计算能力,属于中等题.10.已知函数()f x =,则不等式()()12f x f x +>的解集为( )A .(),1-∞B .(],1-∞C .1,02⎡⎤-⎢⎥⎣⎦D .1,12⎡⎫-⎪⎢⎣⎭【答案】C【解析】先求出()f x =()()12f x f x +>答案.【详解】函数()f x =1010x x +≥⎧⎨-≥⎩,解得11x -≤≤,因为()1f x =是单调递增函数,()2f x =是单调递增函数, 所以()f x =[1,1]x ∈-上的单调递增函数,由不等式()()12f x f x +>得11112112x x x x-≤+≤⎧⎪-≤≤⎨⎪+>⎩,解得102x -≤≤,故选:C. 【点睛】本题考查了函数的定义域的求法,利用函数的单调性解不等式,属于基础题.11.已知函数()4f x x =+当[]1,4x ∈时,()1f x >恒成立,则实数m 的取值范围为( ) A .[)4,-+∞ B.)⎡-+∞⎣C .()4,-+∞D.()-+∞【答案】D【解析】结合换元法、分离常数法、基本不等式求得实数m 的取值范围. 【详解】令t =,由于14x ≤≤,所以12t ≤≤,依题意()1f x >恒成立,即241t mt ++>在区间[]1,2上恒成立, 则3m t t ⎛⎫>-+ ⎪⎝⎭在区间[]1,2上恒成立,由于3t t ⎛⎫-+≤-=- ⎪⎝⎭,当且仅当3t t =,即t =时等号成立,所以m >-故选:D 【点睛】本小题主要考查基本不等式求最值,属于中档题.12.若存在n R ∈,且存在[]1,x m ∈,使得不等式2123mx nx x ++≤成立,则实数m 的取值范围是( ). A .[]1,2 B .(],2-∞ C .(]1,2 D .[)2,+∞【答案】C【解析】令1x =,则存在n R ∈使得,132m n +≤-,只需()max1323m n +≤-=,再结合m 为区间右端点,即可求出实数m 的取值范围. 【详解】令1x =,则存在n R ∈使得123m n ++≤, 即存在n R ∈使得132m n +≤-, 则只需()max1323m n +≤-=,即:313m -≤+≤ 解得:42m -≤≤,又因为m 为区间右端点,则1m ,所以12m <≤, 故选:C 【点睛】本题主要考查了不等式有解和恒成立问题,属于中档题.二、填空题13.设函数()()f xg x ==函数()()⋅f x g x 的定义域为________. 【答案】3,2⎛⎫+∞⎪⎝⎭【解析】根据函数的解析式,只需要()f x ,()g x 同时有意义即可求解.要使()()⋅f x g x 有意义, 则230x ->即可, 解得32x >, 所以函数()()⋅f x g x 的定义域为3,2⎛⎫+∞ ⎪⎝⎭,故答案为:3,2⎛⎫+∞ ⎪⎝⎭【点睛】本题主要考查了给出解析式的函数的定义域的求法,属于容易题.14.函数248y kx x =--在区间[]5,10上单调递增,则实数k 的取值范围为________. 【答案】2,5⎡⎫+∞⎪⎢⎣⎭【解析】分0,0k k =≠两种情况讨论,由一次函数及二次函数的图象与性质可求解. 【详解】当0k =时,48y x =--在R 上单调递减,不符合题意, 当0k ≠时,要使二次函数248y kx x =--在[]5,10上单调递增,则025k k>⎧⎪⎨≤⎪⎩,解得25k ≥, 故答案为:2,5⎡⎫+∞⎪⎢⎣⎭【点睛】本题主要考查了一次函数,二次函数的单调性,分类讨论的思想,属于中档题. 15.已知集合,,A B C ,且,,A B A C ⊆⊆若{}{}1,2,3,4,0,1,2,3B C ==,则所有满足要求的集合A 的各个元素之和为______. 【答案】24【解析】由题意推出集合A 是两个集合的子集,求出集合B ,C 的公共元素得到集合A ,进而求出结论.因为集合,,A B C ,且,,A B A C ⊆⊆{}{}1,2,3,4,0,1,2,3B C ==, 所以集合A 是{}1,2,3BC =的子集,故A 可能为∅,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}, 所以集合A 的各个元素之和为()41+2+3=24, 故答案为:24 【点睛】本题主要考查集合的基本运算,集合的子集的运算,考查基本知识的应用,属于中档题. 16.已知函数()()()10,1f x ax a g x x=>=--,若方程()()f x g x =有两个实根为12,,x x 且121,,33x tx t ⎡⎤=∈⎢⎥⎣⎦,则实数a 的取值范围为_______ .【答案】31,164⎡⎤⎢⎥⎣⎦【解析】由()()f x g x =化简得210ax x ++=(0x ≠),结合根与系数关系求得a 关于t 的表达式,由此求得a 的取值范围. 【详解】由()()f x g x =化简得210ax x ++=(0x ≠), 此方程有两个实根为12,,x x 且121,,33x tx t ⎡⎤=∈⎢⎥⎣⎦,所以1140,4a a ∆=-≥≤. ()212222122221111111x x x tx x a t a ax x tx x tx a a a ⎧⎧⎧=-+=-+=-⎪⎪⎪+⎪⎪⎪⇒⇒⎨⎨⎨⎪⎪⎪⋅=⋅==⎪⎪⎪⎩⎩⎩, ()()21101t a a t a ⎡⎤⋅-=>⎢⎥+⎣⎦,化简得211312132t a t t t t t⎛⎫==≤≤ ⎪++⎝⎭++,函数12 y tt=++在1,13⎡⎤⎢⎥⎣⎦上递减,在[]1,3上递增,当13t=或3t=时,163y=;当1t=时,4y=,所以11624,3y tt⎡⎤=++∈⎢⎥⎣⎦,所以131,11642tt⎡⎤∈⎢⎥⎣⎦++,也即a的取值范围是31,164⎡⎤⎢⎥⎣⎦.故答案为:31,164⎡⎤⎢⎥⎣⎦【点睛】本小题主要考查根据方程的根的个数(分布)求参数的取值范围,属于中档题.三、解答题17.已知集合23|05xA xx-⎧⎫=≤⎨⎬+⎩⎭,{}2|320B x x x=-+<,全集U=R.(1)求集合A B;(2)求集合()UC A B⋂.【答案】(1){}|52x x-<<;(2)3|22x x⎧⎫<<⎨⎬⎩⎭.【解析】试题分析:(1)根据分式不等式的解法化简集合23|05xA xx-⎧⎫=≤⎨⎬+⎩⎭,根据一元二次不等式的解法化简集合{}2|320B x x x=-+<,利用集合并集的定义可得集合A B⋃;(2)根据化简后的集合A可得U C A,在根据交集的定义可得集合()UC A B⋂.试题解析:(1).(2)或, .18.(1)已知()f x 满足()()3214,f x f x x +-=求()f x 解析式;(2)已知函数()()21,0,0,,02,0x x x x f x g x xx x x x ⎧⎧+>>⎪==⎨⎨-≤⎩⎪≤⎩,当0x >时,求()()g f x 的解析式.【答案】(1)()845f x x =-;(2)()()21g f x x x ⎛⎫=+ ⎪⎝⎭.【解析】(1)首先用1x -换x ,构造出()()()31241f x f x x -+=-,再利用解方程组的方法求解函数()f x 的解析式;(2)先求0x >时,函数()f x 的值域,再代入求值. 【详解】(1)用1x -换x ,则()()()31241f x f x x -+=-,所以()()()()()321431241f x f x xf x f x x ⎧+-=⎪⎨-+=-⎪⎩,解得:()845f x x =-;(2)当0x >时,()10f x x x =+>,所以()()21g f x x x ⎛⎫=+ ⎪⎝⎭.【点睛】本题考查函数解析式的求法,复合函数,属于基础题型. 19.已知集合{|02}A x x =≤≤,{|32}B x a x a =≤≤-. (1)若()UA B R ⋃=,求a 的取值范围; (2)若AB B ≠,求a 的取值范围.【答案】(1)1,2⎛⎤-∞ ⎥⎝⎦;(2)1,2a ⎡⎫+∞⎢⎣∈⎪⎭.【解析】(1)先计算UA ,再利用数轴即可列出不等式组,解不等式组即可.(2)先求出A B B =时a 的取值范围,再求其补集即可.【详解】(1)∵{}|02A x x=≤≤,∴{|0UA x x=<或}2x>,若()UA B R⋃=,则32322a aaa-≥⎧⎪⎨⎪-≥⎩,即12a≤∴实数a的取值范围是1,2⎛⎤-∞⎥⎝⎦.(2)若A B B=,则B A⊆.当B=∅时,则32-<a a得1,a>当B≠∅时,若B A⊆则322aa≥⎧⎨-≤⎩,得1,12a⎡⎤∈⎢⎥⎣⎦,综上故a的取值范围为1,2a⎡⎫+∞⎢⎣∈⎪⎭,故A B B≠时的范围为1,2⎡⎫+∞⎪⎢⎣⎭的补集,即1,.2⎛⎫-∞⎪⎝⎭【点睛】本题主要考查了集合的交并补运算,属于中档题.20.已知二次函数()2f x ax bx c=++,()()01,10,f f==且对任意实数x均有()0f x≥成立.(1)求()f x解析式;(2)若函数()()()21g x f x m x=+-在[)2,+∞上的最小值为7,-求实数m的值.【答案】(1)()221f x x x=-+;(2)2 2.m=【解析】(1)利用函数值以及函数的值域,转化求解a,b,c,即可得到函数的解析式.(2)求出函数的解析式,通过函数的最小值,求解m的值即可.【详解】(1)二次函数2()f x ax bx c=++,(0)1f=,f(1)0=,所以1c =,1a b +=-, 对任意实数x 均有()0f x 成立,240b a =-≤,()220b +≤解得1a =,2b =-,所以函数的解析式为:2()21f x x x =-+;(2)2()21g x x mx =-+,函数的对称轴为x m =,①当2m <时,()min g x g =(2)547m =-=-,则3m =(舍);②当2m 时,2()()17min g x g m m ==-=-,得m =-(舍) .综上,m =. 【点睛】本题主要考查函数的解析式的求法,二次函数的最值的求法,考查转化思想以及计算能力,属于中档题.21.已知定义在R 上的函数()f x 对任意12,x x R ∈都有等式()()()12121f x x f x f x +=+-成立,且当0x >时,有()1f x >.(1)求证:函数()f x 在R 上单调递增;(2)若()34f =,关于x 不等式)3f t f+>恒成立,求t 的取值范围.【答案】(1)证明见解析;(2)()1,t ∈-+∞.【解析】(1)取特殊值可得()01f =,()1y f x =-,再利用函数的单调性定义可得答案;(21t >转化为恒成立的问题可求解. 【详解】(1)令120x x ==,所以()()()0001f f f =+-,所以()01f =,令12,x x x x ==-,则()()()011f f x f x =+--=,()()()11f x f x -=---, 所以()1y f x =-是奇函数,任取12,,x x R ∈且12x x <,则210,x x ->()211,f x x ∴-> 因为()()()12121f x x f x f x +=+-,所以()()()()()()()211221211[1]1f x x f x f x f x f x f x f x -=-+-=---=-+,当0x >时,有()1f x >,所以()()()212111f x x f x f x -=-+>, 所以()()21f x f x >,故()f x 在R 上是单调递增函数.(2)()()()()()()()312111111312f f f f f f f =+-=-++-=-,()12,f ∴= 原不等式等价于))()121ft fft f +-=>=,因为()f x 在R 1t >恒成立,令[])2,2,y x =∈-即1t y >-恒成立,[]0,2,所以[]244,8,y =+,y ⎡∴∈⎣11,1,y ⎡⎤∴-∈--⎣⎦()1,.t ∴∈-+∞【点睛】本题考查了抽象函数奇偶性的判断、单调性的判断,及恒成立的问题. 22.已知函数()23f x x m x =+-.(1)当0m =时,求函数()y f x =的单调递减区间;(2)当01m <≤时,若对任意的[),x m ∈+∞,不等式()()12f x m f x m --≤-恒成立,求实数m 的取值范围.【答案】(1)单调递减区间为:3,2⎛⎫-∞-⎪⎝⎭和30,2⎛⎫⎪⎝⎭;(2)2⎡⎤-+⎣⎦. 【解析】(1)当0m =时,将()f x 表示为分段函数的形式,结合二次函数的性质求得()f x 的单调递减区间.(2)将不等式()()12f x m f x m --≤-恒成立转化为24613(1)0x x m x m -+-+-+≥在[),x m ∈+∞上恒成立,由此构造函数()g x ,将()g x 表示为分段函数的形式,结合()g x 的最小值,由此求得m 的取值范围.【详解】(1)因为0m =,所以()2223,033,0x x x f x x x x x x ⎧-≥=-=⎨+<⎩,因为函数()23f x x x =-的对称轴为32x =,开口向上;所以当302x <<时, 函数()23f x x x =-单调递减;当32x >时,函数()23f x x x =-单调递增; 又函数()23f x x x =+的对称轴为32x =-,开口向上;所以当302x -<<时,函数()23f x x x =+单调递增;当32x <-时,函数()23f x x x =+单调递减;因此,函数()y f x =的单调递减区间为:3,2⎛⎫-∞- ⎪⎝⎭和30,2⎛⎫ ⎪⎝⎭;(2)由题意,不等式()()12f x m f x m --≤-可化为22(1)3126x x m x x m ----≤--,即24613(1)0x x m x m -+-+-+≥在[),x m ∈+∞上恒成立,令2()4613(1)g x x x m x m =-+-+-+,则只需min ()0g x ≥即可;因为01m <≤,所以112m <+≤,因此222792,1()4613(1)34,1x x m m x m g x x x m x m x x m x m ⎧-++≤≤+=-+-+-+=⎨-+->+⎩,当1m x m +≤≤时,函数2()792g x x x m =-++开口向上,对称轴为:712x m =>+,所以函数()g x 在[],1m m +上单调递减;当1x m >+时,函数2()34g x x x m =-+-开口向上,对称轴为112x m =<+; 所以函数()g x 在[)1,m ++∞上单调递增;因此2min ()(m 1)44g x g m m =+=+-,由min ()0g x ≥得2440m m +-≥,解得2m ≥-+2m ≤--01m <≤,所以21m -+≤≤.即实数m 的取值范围为2⎡⎤-+⎣⎦.【点睛】本小题主要考查分段函数的性质,考查含有绝对值的不等式恒成立问题的求解.。
(新教材)2020-2021学年上学期高一第一次月考备考金卷化 学(B )注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
相对原子质量:H 1 C 12 N 14 O 16 Cl 35.5 Fe 56 Mn 55 Ba 137一、选择题(每小题2分,共20分,每小题只有一个选项符合题意)1.日常生活中的许多现象与化学反应有关,下列现象与氧化还原反应无关的是A .铜铸塑像上出现铜绿[Cu 2(OH)2CO 3]B .铁制菜刀生锈C .大理石雕像被酸雨腐蚀毁坏D .铝锅表面生成致密的氧化膜2.化学与生产、生活密切相关。
下列叙述正确的是A .二水氯化钙(CaCl 2·2H 2O)属于混合物B .葡萄糖注射液不能产生丁达尔效应C .食盐水属于浊液D .氯化铵不属于盐类3.下列叙述正确的是A .NaOH 溶液在电流作用下电离成Na +与OH −B .NaHSO 4电离方程式为NaHSO 4=Na ++H ++SO 2-4,故NaHSO 4既是酸又是盐C .纯硫酸不导电,溶于水导电,但纯硫酸是电解质D .导电性强的溶液里自由移动离子数目一定比导电性弱的溶液里自由移动离子数目多4.分类方法在化学学科的发展中起到了非常重要的作用,下列5种分类标准中合理的有①根据分散系中分散质粒子直径的大小,将分散系分为溶液、胶体和浊液②根据反应中是否有电子的转移,将化学反应分为氧化还原反应和非氧化还原反应 ③根据酸分子能电离出的氢离子个数将酸分为一元酸、二元酸等 ④根据氧化物中是否含有金属元素,将氧化物分为酸性氧化物和碱性氧化物 ⑤根据物质在水溶液里或熔融状态下能否导电,将化合物分为电解质和非电解质 A .4种 B .3种 C .2种 D .1种 5.在一定条件下KClO 3与I 2按下式反应:2KClO 3+I 2=2KIO 3+Cl 2,下列判断正确的是 A .该反应属于置换反应 B .氧化性:I 2>KClO 3 C .还原性:KIO 3>I 2 D .还原产物为KIO 3,氧化剂为I 2 6.下表所列各组物质中,物质之间按箭头方向不能通过一步反应实现如图所示转化的是 物质 选项 甲 乙 丙 A CuO CO 2 H 2O B C CO CO 2 C CaCO 3 CaO Ca(OH)2 D H 2SO 4 H 2O H 2 7.下列关于胶体的叙述错误的是 A .胶体区别于溶液和浊液的本质特征是分散质粒子直径为1~100nm B .通过过滤操作,能将混合物中的溶液和胶体分离 C .用激光笔分别照射CuSO 4溶液和Fe(OH)3胶体时,观察到的现象不同 D .向沸水中滴入几滴FeCl 3饱和溶液,继续煮沸至液体呈红褐色,停止加热,即可得到Fe(OH)3胶体 8.下列各组离子一定能大量共存的是 A .在无色溶液中:Na +、Fe 3+、Cl −、SO 2−4 B .在含大量Fe 3+的溶液中:NH +4、K +、NO −3、OH − C .在强碱溶液中:Na +、K +、NO −3、CO 2−3 D .滴加紫色石蕊溶液显红色的溶液中:K +、Fe 2+、Cl −、CO 2−3 9.需要加入氧化剂才能实现下列转化的是 A .Cl 2→Cl − B .Zn→Zn 2+ C .MnO 2→Mn 2+ D .H + →H 2 10.下列化学反应中溴元素仅被氧化的是 A .2NaBr+Cl 2=2NaCl+Br 2 B .Br 2+2NaI=2NaBr+I 2此卷只装订不密封 班级姓名准考证号考场号座位号C .3Br 2+6NaOH====△5NaBr+NaBrO 3+3H 2O D .HBr+NaOH=NaBr+H 2O二、不定项选择题(每小题4分,共5小题)11.下列离子方程式中,不正确的是A .稀硫酸滴在铁片上:2Fe+6H +=2Fe 3++3H 2↑B .铜片插入硝酸银溶液中:Cu+2Ag +=Cu 2++2AgC .碳酸氢钠溶液与醋酸溶液混合:HCO −3+H +=H 2O+CO 2↑D .NH 4HSO 4溶液中滴加足量Ba(OH)2溶液:H ++SO 2−4+Ba 2++OH −=BaSO 4↓+H 2O12.有下列三个氧化还原反应:①2FeCl 3+2KI=2FeCl 2+2KCl+I 2②2FeCl 2+Cl 2=2FeCl 3③2KMnO 4+16HCl=2KCl+2MnCl 2+8H 2O+5Cl 2↑若溶液中有Fe 2+、I −、Cl −共存,要除去I −而不影响Fe 2+和Cl -共存,可加入的试剂是A .Cl 2B .KMnO 4C .FeCl 3D .HCl13.在焊接铜器时可用NH 4Cl 溶液除去铜器表面的氧化铜以便焊接,其反应为:CuO+NH 4Cl→ Cu+CuCl 2+N 2↑+H 2O(未配平)。
江苏省启东中学2020-2021学年度第一学期第一次月考高一数学第Ⅰ卷一、单项选择题:本大题共8小题,在每小题给出的四个选项中,只有一项符合题目要求.1. 若集合{}1,0,1,2P =-,{}0,2,3Q =,则P Q 的元素个数为( )A. 1B. 2C. 3D. 4【答案】B 【解析】 【分析】利用集合的交集运算求解PQ ,即可得出结论.【详解】由{}1,0,1,2P =-,{}0,2,3Q =, 得{}0,2P Q =,故PQ 的元素个数为2.故选:B.【点睛】本题主要考查了集合的交集运算以及集合的元素个数问题.属于容易题. 2. 若44a a -=+-,则a 的值是( ) A. 任意有理数 B. 任意一个非负数 C. 任意一个非正数 D. 任意一个负数【答案】C 【解析】 【分析】由绝对值的意义即可得解.【详解】若要使44a a -=+-,则40a -≥, 所以a 的值是任意一个非正数. 故选:C.【点睛】本题考查了绝对值意义的应用,灵活应用知识是解题关键,属于基础题.3. 已知命题p :0R x ∃∈,200104x x -+≤,则p ⌝为( ) A. 0R x ∃∈,200104x x -+> B. 0R x ∃∈,20104x x -+< C .R x ∀∈,2104x x -+≤ D. R x ∀∈,2104x x -+> 【答案】D 【解析】 【分析】根据特称命题的否定变法,即可得到所求答案 【详解】因为:命题p :0R x ∃∈,200104x x -+≤ 所以:R x ∀∈,2104x x -+> 故选:D【点睛】考查特称命题的非命题等价与命题的否定 4. 下面关于集合的表示:①{}{}2,33,2≠;②(){}{},11x y x y y x y +==+=;③{}{}11x x y y >=>;④{}0∅=,正确的个数是( ) A. 0 B. 1C. 2D. 3【答案】B 【解析】 【分析】根据集合相等的条件逐一判断即可得结果.【详解】根据集合的无序性可得{}{}2,33,2=,即①不正确;(){},1x y x y +=表示点集,{}1y x y +=表示数集,故(){}{},11x y x y y x y +=≠+=不成立,即②不正确;{}1x x >和{}1y y >均表示大于1的数集,故{}{}11x x y y >=>,即③正确;∅表示空集,故{}0∅≠,即④不正确;故正确的个数是为1个, 故选:B.【点睛】本题主要考查了判断两集合是否相等,属于基础题. 5. 已知正数a 、b 满足1a b +=)A. 最小值12B.C. 最大值12D.【答案】C 【解析】 【分析】利用基本不等式的性质即可得出结果. 【详解】∵正数a 、b 满足1a b +=,122a b +=,当且仅当12a b ==有最大值12,故选:C.【点睛】本题主要考查了基本不等式的性质,属于基础题. 6. 已知m ,n 是方程x 2+5x +3=0的两根,则n nm的值为( ) A. -C. ±D. 以上都不对【答案】A 【解析】 【分析】根据韦达定理得到5m n +=-,3mn =,且0m <,0n <,利用m =n =果【详解】因为m ,n 是方程x2+5x +3=0的两根, 所以5m n +=-,3mn =,所以0m <,0n <, 所以n n m ===-=-故选:A.【点睛】本题考查了韦达定理,属于基础题.7. 已知R 是实数集,集合{}12A x x =<<,302B x x ⎧⎫=<<⎨⎬⎩⎭,则阴影部分表示的集合是( )A. []0,1B. (]0,1C. [)0,1D. ()0,1【答案】B 【解析】 【分析】由题意可知,阴影部分区域所表示的集合为()RA B ⋂,利用补集和交集的定义可求得所求集合.【详解】已知R 是实数集,集合{}12A x x =<<,302B x x ⎧⎫=<<⎨⎬⎩⎭,则(][),12,R A =-∞+∞,阴影部分表示的集合是()(]0,1RA B =.故选:B.【点睛】本题考查补集与交集的混合运算,同时也考查了利用韦恩图表示集合,考查计算能力,属于基础题.8. “a ,b 为正实数”是“2a b ab +>的( ) A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件 D. 既不充分也不必要条件【答案】D 【解析】 【分析】可以取特殊值讨论充分与必要性都不成立.【详解】解:a ,b 为正实数,取1a =,1b =,则2a b ab +=,则“a ,b 为正实数” 不是“2a b ab +>”的充分条件;若2a b ab +>取1a =,0b =,则b 不是正实数,则“2a b ab +>” 不是 “a ,b 为正实数''的必要条件; 则“a ,b 为正实数”是“2a b ab +>”的既不充分也不必要条件, 故选:D .【点睛】本题考查命题充分条件与必要条件的定义,以及不等式的性质,属于基础题.二、多项选择题:在每小题给出的四个选项中,有多项符合题目要求.9. 下列命题的否定中,是全称命题且为真命题的有( )A. 0x R ∃∈,200104x x -+< B. 所有的正方形都是矩形C. 0x R ∃∈,200220x x ++=D. 至少有一个实数x ,使210x +=【答案】AC 【解析】 【分析】由条件可知原命题为特称命题且为假命题,以此判断即可得解. 【详解】由条件可知:原命题为特称命题且为假命题,所以排除BD ;又因为2211()042x x x -+=-≥,x 2+2x +2=(x +1)2+1>0, 所以AC 均为特称命题且为假命题, 故选:AC.【点睛】本题主要考查了全称命题和特称命题的概念及判断真假,属于较易题. 10. 下列各组函数是同一个函数的是( ) A. ()221f x x x =--与()221g t t t =--B. ()0f x x =与()01g x x =C. ()1f x x =与()2g x x= D. ()()21f x x x =-∈Z 与()()21g x x x =+∈Z 【答案】AB 【解析】 【分析】根据函数的定义域和对应法则是否相同,逐项判断即可得解.【详解】对于A ,()221f x x x =--与()221g t t t =--对应法则和定义域均相同,所以两函数是同一函数,故A 正确; 对于B ,()()01,0f x x x ==≠,()()011,0g x x x ==≠,对应法则和定义域均相同, 所以两函数是同一函数,故B 正确;对于C ,()1f x x =与()2g x x=的对应法则不同,所以两函数不是同一函数,故C 错误; 对于D ,()()21f x x x =-∈Z 与()()21g x x x =+∈Z 的对应法则不同, 所以两函数不是同一函数,故D 错误. 故选:AB.【点睛】本题考查了同一函数的判断,牢记知识点是解题关键,属于基础题. 11. 若0a b >>,0d c <<,则下列不等式成立的是( ) A. ac bc > B. a d b c ->-C.11d c< D. 33a b >【答案】BD 【解析】 【分析】根据不等的基本性质可判断BD 的真假,取2a =,1b =,2d =-,1c =-可判断AC 的真假. 【详解】0d c <<,0d c ∴->->,∴当0a b >>时,a d b c ->-,故B 正确;由0a b >>可得33a b >,故D 正确;由0a b >>,0d c <<取2a =,1b =,2d =-,1c =-则可排除AC . 故选:BD .【点睛】本题考查不等式的基本性质,属基础题.12. 已知()223f x x x =--,[]0,x a ∈,a 为大于0的常数,则()f x 的值域可能为( )A. []4,3-- B. RC. []4,10-D. []3,10-【答案】AC 【解析】 【分析】对二次函数进行配方,得最低点,计算出()03f =-,根据二次函数的性质可得结果. 【详解】因为()()222314f x x x x =--=--,()03f =-,当1a =时,()f x 的值域为[]4,3--, 由二次函数的性质可得值域不可能是R ,当1a >且满足()10f a =时,()f x 的值域为[]4,10-,无论a 取任何正实数,二次函数的最小值定小于3-,即值域不可能为[]3,10-, 故可得()f x 的值域可能为[]4,3--,[]4,10-, 故选:AC.【点睛】本题主要考查了二次函数的值域问题,考查了数形结合思想,属于中档题.第Ⅱ卷(非选择题)三、填空题:13. 已知函数()y f x =用列表法表示如下表,则[(2)]f f =______【答案】0 【解析】 【分析】由表格给出的数据有(2)1f =,则[(2)](1)f f f =可求出答案. 【详解】根据表格中的数据有(2)1f = 所以[(2)](1)0f f f == 故答案为:0【点睛】本题考查根据函数的列表法求函数值,属于基础题.14. 设α:5x ≤-或1x >,β:22x m ≤--或21x m ≥-+,m ∈R ,α是β的充分不必要条件,则实数m 的取值范围是______. 【答案】30,2⎡⎤⎢⎥⎣⎦【解析】 【分析】α:1x >或5x ≤-,表示的集合为{1A x x =>或}5x ≤-,21x m β≥-+:或22,x m m R ≤--∈,表示的集合为{21B x x m =≥-+或}22,x m m R ≤--∈,因为α是β的充分不必要条件,所以集合A 是集合B 的真子集,从而可求出m 的取值范围【详解】解:α:1x >或5x ≤-, 表示的集合为{1A x x =>或}5x ≤-,21x m β≥-+:或22,x m m R ≤--∈,表示的集合为{21B x x m =≥-+或}22,x m m R ≤--∈, 因为α是β的充分不必要条件, 所以集合A 是集合B 的真子集, 所以225211m m --≥-⎧⎨-+≤⎩,解得302m ≤≤, 所以实数m 的取值范围为:30,2⎡⎤⎢⎥⎣⎦.故答案为:30,2⎡⎤⎢⎥⎣⎦【点睛】此题考查由充分不必要条件求参数,转化为集合之间的包含关系求解,属于较易题. 15. 根据下述事实,得到含有量词的全称量词命题或存在量词命题为______.()3331212+=+,()3333123123++=++, ()3333312341234+++=+++, ()3333331234512345++++=++++,……【答案】n *∀∈N ,()33333123123n n +++⋅⋅⋅+=+++⋅⋅⋅+ 【解析】 【分析】观察到从1开始加,连续的几个数的三次方相加,就得其和的三次方,总结一下就是:任意从1开始的连续n 个整数的三次方和等于其和的三次方.【详解】观察到从1开始加,连续的几个数的三次方相加,就得其和的三次方,根据此规律可得:n *∀∈N ,()33333123123n n +++⋅⋅⋅+=+++⋅⋅⋅+. 故答案为:n *∀∈N ,()33333123123n n +++⋅⋅⋅+=+++⋅⋅⋅+.【点睛】本题考查了归纳概括能力,把命题归结为全称命题或者特称命题,属于简易逻辑,属于基础题. 16. 函数()[]f x x =的函数值表示不超过x 的最大整数,例如:[]3,54-=-,[]2,12=.若[][][]{}23,01A y y x x x x ==++≤≤,则A 中元素个数是______个,所有元素的和为______.【答案】 (1). 5 (2). 12 【解析】 【分析】 分103x ≤<,1132x ≤<,1223x ≤<,213x ≤<,1x =,5种情况讨论2,3x x 的范围,计算函数值,即可求A 中元素个数并求元素的和. 【详解】①当103x ≤<时, 220,3x ⎡⎫∈⎪⎢⎣⎭ ,[)30,1x ∈,∴ [][][]230x x x ===,则[][][]230x x x ++= ; ②当1132x ≤<时, 22,13x ⎡⎫∈⎪⎢⎣⎭,331,2x ⎡⎫∈⎪⎢⎣⎭ ,[][]20,x x ∴==[]31x =, [][][]231x x x ∴++=;③当1223x ≤<时, [)21,2x ∈ ,33,22x ⎡⎫∈⎪⎢⎣⎭[]0x ∴=,[]21x = ,[]31x = , [][][]232x x x ∴++=;④213x ≤<时, 42,23x ⎡⎫∈⎪⎢⎣⎭,[)32,3x ∈,[]0x ∴=,[]21x =,[]32x =, [][][]233x x x ∴++=;⑤当1x =时,[]1x =,[]22x =,[]33x = ,[][][]236x x x ∴++= {}0,1,2,3,6A ∴=,故A 中元素个数是5个,则A 中所有元素的和为0123612++++=. 故答案为:5;12.【点睛】本题考查新定义的题型,需读懂题意,并能理解,应用,分类讨论解决问题,本题的难点是分类较多,不要遗漏每种情况.属于中档题.四、解答题:解答应写出文字说明、证明过程或演算步骤.17. 已知全集U =R ,{}240A x x =-≤,{}2280B x x x =+-≥,求: (1)A B ;(2)()()UU A B ⋂.【答案】(1){}2;(2)()4,2--. 【解析】 分析】解一元二次不等式可得集合,A B . (1)直接根据交集的概念可得结果; (2)先求补集,再求交集即可.【详解】因为{}{}24022A x x x x =-≤=-≤≤,{}{22802B x x x x x =+-≥=≥或}4x ≤-.(1)故可得{}2A B ⋂=;(2){ U 2A x x =<-或}2x >,{}U 42B x x =-<<, 所以()()()4,2U U A B ⋂=--.【点睛】本题主要考查了一元二次不等式的解法,集合间交、并、补的混合运算,属于基础题. 18. 解下列不等式:(1)211x x -≤-;(2)()()2210x x x -+≤;(3)3223x x -≤-. 【答案】(1)()3,1,2⎡⎫-∞⋃+∞⎪⎢⎣⎭;(2){}[]10,2-;(3)3,2⎡⎫+∞⎪⎢⎣⎭. 【解析】【分析】(1)将分式不等式转化为一元二次不等式即可得解;(2)分为()210x +=和()210x +>解不等式即可;(3)根据绝对值不等式的解法法则可得结果.【详解】(1)不等式211x x -≤-,即2101x x --≤-, 等价于()31021x x x ⎧⎛⎫-->⎪ ⎪⎝⎭⎨⎪≠⎩解得32x ≥或1x <, 即不等式的解为()3,1,2⎡⎫-∞⋃+∞⎪⎢⎣⎭. (2)因为()()2210x x x -+≤,当()210x +=,即1x =-时,不等式成立;当()210x +>时,不等式等价于()20x x -≤,此时不等式的解为[]0,2, 综上得:不等式()()2210x x x -+≤的解为{}[]10,2-.(3)不等式3223x x -≤-等价于323223x x x -≤-≤-,解得32x ≥, 故不等式3223x x -≤-的解为3,2⎡⎫+∞⎪⎢⎣⎭. 【点睛】本题主要考查了分式不等式,高次不等式以及绝对值不等式的解法,考查了学生的计算能力,属于基础题.19. 已知命题p :方程22240x mx m -+-=有两个正根为真命题.(1)求实数m 的取值范围;(2)命题q :11a m a -<<+,是否存在实数a 使得p ⌝是q ⌝的充分不必要条件,若存在,求出实数a 取值范围;若不存在,说明理由.【答案】(1)()2,+∞;(2)存在;(],0-∞.【解析】【分析】(1)满足命题p 为真命题,则使两解存在且均大于零即可;(2)由题意得q 是p 的充分不必要条件,即{}11m a m a -<<+ {}2m m >,求解实数a 即可.【详解】(1)设方程22240x mx m -+-=的两根为12,x x ,若命题p 为真命题,则()()221221224402040m m x x m x x m ⎧∆=---≥⎪⎪+=>⎨⎪=->⎪⎩,解得2m >,所以实数m 的取值范围为()2,+∞;(2)若p ⌝是q ⌝的充分不必要条件,则q 是p 的充分不必要条件, 所以{}11m a m a -<<+ {}2m m >, 则11a a -≥+或1112a a a -<+⎧⎨-≥⎩, 解得0a ≤,所以存在实数a 使得p ⌝是q ⌝的充分不必要条件,所以实数a 的取值范围为(],0-∞.【点睛】本题主要考查了利用命题的真假求参数的问题以及利用命题的充分不必要条件求参数的问题.属于较易题.20. 设,,a b c ∈R 证明:222a b c ab ac bc ++=++的充要条件是a b c ==.【答案】见解析【解析】【分析】分别证明充分性与必要性即可.【详解】证明:(1)充分性:如果a b c ==,那么222()()()0a b b c a c -+-+-=,2222220,a b c ab ac bc a b c ab ac bc ∴++---=∴++=++.(2)必要性:如果222a b c ab ac bc ++=++,那么2220a b c ab ac bc ++---=,222()()()0,0,0,0a b b c c a a b b c c a ∴-+-+-=∴-=-=-=,a b c ==∴.由(1)(2)知,222a b c ab ac bc ++=++的充要条件是a b c ==.【点睛】本题主要考查了充分必要条件的证明,需要分别证明充分性与必要性,属于中等题型.21. 经过长期观测得到:在交通繁忙的时段内,某公路段汽车的车流量y (千辆/小时)与汽车的平均速度v (千米/小时)之间的函数关系为:27002900v y v v =++(0v >). (1)在该时段内,当汽车的平均速度为多少时,车流量最大?最大车流量为多少?(保留分数形式) (2)若要求在该时段内车流量超过10千辆/小时,则汽车的平均速度应在什么范用内?【答案】(1)当30km /h v =时,车流量最大,最大车流量约为35031千辆/时;(2)汽车的平均速度应大于18km /h 且小于50km /h .【解析】【分析】(1)化简得270070090029002v y v v v v ==++⎛⎫++ ⎪⎝⎭,再利用基本不等式求解; (2)解不等式2700102900v v v >++即得解. 【详解】(1)依题得2700700700350900290062312v y v v v v ==≤==++⎛⎫++ ⎪⎝⎭.当且仅当900v v=,即30v =时,上时等号成立, max 35031y ∴=(千辆/时). ∴当30km /h v =时,车流量最大,最大车流量约为35031千辆/时; (2)由条件得2700102900v v v >++,因为229000v v ++>, 所以整理得2689000v v -+<,即()()18500v v --<,解得1850v <<.如果要求在该时段内车流量超过10千辆/时,则汽车的平均速度应大于18km /h 且小于50km /h .【点睛】本题主要考查基本不等式的应用,考查不等式的应用,意在考查学生对这些知识的理解掌握水平和解决实际问题的能力.22. 设函数()23f x x ax a =-++,()2g x ax a =-. (1)对于任意[]2,2a ∈-都有()()f x g x >成立,求x 的取值范围;(2)当0a >时对任意1x ,[]23,1x ∈--恒有()()12f x ag x >,求实数a 的取值范围;(3)若存在0x ∈R ,使得()00f x <与()00g x <同时成立,求实数a 的取值范围.【答案】(1)2x >-+2x <--(2)105a +<<;(3)7a >. 【解析】【分析】(1)转化条件为()22330x a x -+++>对于任意[]2,2a ∈-恒成立,设()()2233h a x a x =-+++,由一次函数的性质即可得解;(2)转化条件为在区间[]3,1--上,()()min max f x ag x >-⎡⎤⎣⎦,结合二次函数、一次函数的性质求得函数最值后即可得解;(3)按照0a =、0a <、0a >讨论,由一次函数、二次函数的图象与性质结合函数的最值即可得解.【详解】(1)由题意可知对于任意[]2,2a ∈-都有232x ax a ax a -++>-.即()22330x a x -+++>对于任意[]2,2a ∈-恒成立, 设()()2233h a x a x =-+++,则()()2224902430h x x h x x ⎧=-+>⎪⎨-=+->⎪⎩,所以2x >-+2x <--(2)由题意可知在区间[]3,1--上,()()min max f x ag x >-⎡⎤⎣⎦,因为()23f x x ax a =-++对称轴02a x =>, 所以()23f x x ax a =-++在[]3,1--上单调递减,可得()()min 124f x f a =-=+,因为()222ag x a x a -=-+在[]3,1--上单调递减,所以()2max 5ag x a -=⎡⎤⎣⎦,所以2245a a +>,所以105a <<,故a 的取值范围为105a +<<; (3)若0a =,则()0g x =,不合题意,舍去;若0a <,由()0g x <可得2x >,原题可转化为在区间()2,+∞上存在0x ,使得()00f x <,因为()23f x x ax a =-++在,2a⎡⎫+∞⎪⎢⎣⎭上单调递增, 所以需使()270f a =-<,解得7a >,不合题意;若0a >,由()0g x <可得2x <,原题可转化为在区间(),2-∞上存在0x ,使得()00f x <. 当22a ≥,即4a ≥时,则需使()270f a =-<,可得7a >; 当22a <,即04a <<时,则需使23024a a f a ⎛⎫=-++< ⎪⎝⎭, 解得6a >或2a <-,不满足04a <<,舍去.综上,实数a 的取值范围为7a >.【点睛】本题考查了一次函数、二次函数性质的应用,考查了函数最值的求解及恒成立、有解问题的解决,属于中档题.。
2020-2021学年高一上学期第一次月考数学试题一、选择题(每题5分,共60分)1、下列各组对象中能构成集合的是()A的实数的全体B .数学成绩比较好的同学C .小于20的所有自然数D .未来世界的高科技产品2、下列各曲线中,不能表示y 是x 的函数的是()A .B .C .D .3、下列集合表示同一集合的是()A .M ={(3,2)},N ={(2,3)}B .M ={(x ,y)|x +y =1},N ={y|x +y =1}C .M ={4,5},N ={5,4}D .M ={1,2},N ={(1,2)}4、下列集合中,表示方程组31x y x y +=⎧⎨-=⎩的解集的是()A .{}2,1B .{}2,1x y ==C .(){}2,1D .(){}1,25、图中阴影部分所表示的集合是()A .()U C A CB B .()()A B BC ⋃⋃⋃C .()()U A C C B D .()U C A C B ⋂⋃6、若﹣1∈{2,a 2﹣a ﹣1,a 2+1},则a =()A .﹣1B .0C .1D .0或17、下列各组函数中表示同一函数的是()A .0()1()f x g x x==,B .29()3()3x f x x g x x -=+=-,C .()()f x g x x==D .()()f x x g x ==,8、已知非零实数a ,b ,c ,则代数式||||||a b c b a c ++表示的所有的值的集合是()A .{3}B .{3}-C .{3,3}-D .{3,3,1,1}--9、设U ={1,2,3,4,5},若A B ={2},{}()4U C A B ⋂=,{}()()1,5U U C A C B ⋂=,则下列结论正确的是()A .3A ∉且3B ∉B .3A ∈且3B ∉C .3A ∉且3B∈D .3A ∈且3B∈10、已知集合{}{}2|320,,|05,A x x x x R B x x x N =-+=∈=<<∈,则满足条件A CB ⊆⊆的集合C 的个数为()A .1B .2C .3D .411、已知集合{41,}M xx n n Z ==+∈∣,{21,}N x x n n Z ==+∈∣,则()A .M N⊆B .N M⊆C .M N∈D .N M∈12、定义集合的商集运算为,,B nx x m A n B A m ⎧⎫==∈∈⎨⎬⎩⎭.已知集合{}246A =,,,1,2k B x x k A ⎧⎫==-∈⎨⎬⎩⎭,则集合BB A ⋃中的元素个数为()A .6B .7C .8D .9二、填空题(每题5分,共20分)13、集合A ={x |x ≤5且x ≠1}用区间表示____________.14、集合{|32}x x ∈-<N 用列举法表示是。
(新高考)2020-2021学年上学期高三第一次月考备考金卷数学(A )注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2{20}A x x x =-->,2{430}B x x x =-+<,则A B =( )A .{1x x <-或1}x >B .{23}x x <<C .{13}x x <<D .{12}x x <<2.设复数i z x y =+(其中x ,y 为实数),若x ,y 满足22(2)4x y +-=,则2i z -=( ) A .42i -B .22i -C .2D .43.可知155a -=,41log 5b =,141log 5c =,则( ) A .a c b >>B .a b c >>C .c a b >>D .c b a >>4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是512-(510.6182-≈称为黄金分割比例),已知一位美女身高160cm ,穿上高跟鞋后肚脐至鞋底的长度约103.8cm ,若她穿上高跟鞋后达到黄金比例身材,则她穿的高跟鞋约是( )(结果保留一位小数)A .8.1cmB .8.0cmC .7.9cmD .7.8cm5.函数cos 2()||xf x x =的图象大致为( ) A .B .C .D .6.回文数是指从左往右读与从右往左读都是一样的正整数,如323,5445等,在所有小于200的三位回文数中任取两个数,则两个回文数的三位数字之和均大于5的概率为( ) A .25B .13C .29D .4157.已知非零向量a ,b 满足||3||=a b 且(3)()+⊥-a b a b ,则a 与b 夹角为( ) A .π3B .π6C .π2D .08.已知n S 为等差数列}{n a 的前n 项和,714S =,68a =,则( ) A .310n a n =- B .24n a n =-C .2319n S n n =-D .231344n S n n =-二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.已知直线21:(23)320l m x y --+=和直线2:350l mx y --=平行,则m =( )A .1-B .1C .23D .3210.已知4,n ,9成递增等比数列,则在(4)nx x-的展开式中,下列说法正确的是( ) 此卷只装订不密封班级 姓名 准考证号 考场号 座位号A .二项式系数之和为64B .各项系数之和为1C .展开式中二项式系数最大的项是第4项D .展开式中第5项为常数项11.若椭圆221169x y +=上的一点P 到椭圆焦点的距离之积为a ,当a 取得最大值时,点P 的坐标可能为( ) A .(4,0)-B .(4,0)C .(0,3)D .(0,3)-12.已知函数2222()4()()x x f x x x m m e e--+=-+-+有唯一零点,则m 的值可能为( )A .1B .1-C .2D .2-第Ⅱ卷三、填空题:本大题共4小题,每小题5分.13.曲线2()1x f x xe x =+-在0x =处的切线方程为 . 14.已知π1sin()48α+=,则πcos()4α-= ,3πsin()4α+= . 15.兵乓球单打比赛在甲、乙两名运动员进行,比赛采取五局三胜制(即先胜3局者获胜,比赛结束),假设两人在每一局比赛中获胜的可能性相同,且各局比赛结果相互独立,那么甲以3:2获胜的概率为 .16.已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线分别为直线1l ,2l ,经过右焦点F 且垂直于1l 的直线l 分别交1l ,2l 于A ,B 两点,且3FB AF =,则该双曲线的离心率为 .四、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(10分)若数列{}n a 满足1231111231n n a a a na n ++++=+. (1)求数列{}n a 的通项公式;(2)若 ,求数列{}n b 的前n 项和n T . ①2nn n a a b =,②11n n n b a a +=,③(1)nn n b a =-⋅. (从这三个条件中任选一个填入第(2)问的横线中,并回答问题)18.(12分)在锐角三角形ABC 中,角A ,B ,C 的对边分别为a ,b ,c,已知()(sin sin )c a A C -+ (sin )b B A =-.(1)求角C 的大小; (2)求222cos cos 5A B +=且b a >,求sin 2A .19.(12分)如图,在直三棱柱AED BFC -中,底面AED 是直角三角形,且EA AD ⊥,3AB AE AD ===,其中M ,N 分别是AF ,BC 上的点且13FM CN FA CB ==. (1)求证:MN ∥平面CDEF ; (2)求二面角A CF B --的正弦值.20.(12分)某厂加工的零件按箱出厂,每箱有12个零件,在出厂之前需要对每箱的零件作检验,人工检验方法如下:先从每箱的零件中随机抽取5个零件,若抽取的零件都是正品或都是次品,则停止检验;若抽取的零件至少有1个至多有4个次品,则对剩下的7个零件逐一检验.已知每个零件检验合格的概率为0.9,每个零件是否检验合格相互独立,且每个零件的人工检验费为3元. (1)设1箱零件人工检验总费用为X 元,求X 的分布列;(2)除了人工检验方法外还有机器检验方法,机器检验需要对每箱的每个零件作检验,每个零件的检验费为2元,现有1000箱零件需要检验,以检验总费用的数学期望为依据,在人工检验与机器检验中,应该选择哪一个?说明你的理由.21.(12分)过点(1,0)E 的直线l 与抛物线22y x =交于A ,B 两点,F 是抛物线的焦点. (1)若直线l 的斜率为3,求||||AF BF +的值; (2)若12AE EB =,求||AB .22.(12分)已知函数222()(12)ln f x x a x a x =+--,当1a <<(1)()f x 有唯一极值点; (2)()f x 有2个零点.(新高考)2020-2021学年上学期高三第一次月考备考金卷数学(A )答案第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.【答案】B【解析】由题意可知,{1A x x =<-或2}x >,{13}B x x =<<, 则{23}AB x x =<<,故选B .2.【答案】C【解析】∵i z x y =+,∴2i (2)i z x y -=+-,∴2i 2z -===,故选C . 3.【答案】C 【解析】∵1050551-<<=,41log 05b =<,14441log log 5log 415c ==>=, ∴c a b >>,故选C . 4.【答案】B【解析】设该美女穿的高跟鞋为cm x ,则103.810.6181602x =+≈,解得8.0x ≈,故选B . 5.【答案】C【解析】∵易知函数cos 2()||xf x x =为偶函数,排除A ,B 选项; ∵πcosπ2()0π44f ==,当π(0,)4x ∈时,cos20x >,即()0f x >,排除D . 6.【答案】B【解析】列出所有小于200的三位回文数如下:101,111,121,131,141,151,161,171,181,191共10个,从中任取两个数共有210C 45=种情况, 其中两个回文数的三位数字之和均大于5有26C 15=种情况,故所求概率为151453P ==,故选B . 7.【答案】C【解析】∵(3)()+⊥-a b a b ,则(3)()0+⋅-=a b a b ,得22||23||0+⋅-=a a b b ,223||||2-⋅=b a a b ,设a 与b 夹角为θ,则223||||cos 02||||θ-==⋅b a a b ,即夹角为π2. 8.【答案】A【解析】由题意得117211458a d a d +=⎧⎨+=⎩,解得173a d =-⎧⎨=⎩,故231722310n n S n na n ⎧=-⎪⎨⎪=-⎩.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.【答案】AD【解析】∵直线21:(23)320l m x y --+=和直线2:350l mx y --=平行,直线1l 的斜率为21233m k -=,直线2l 的斜率为23m k =,则12k k =,即22333m m-=,解得1m =-或32. 10.【答案】ACD【解析】由4,n ,9成递增等比数列可得6n =, 故6(4x -的二项式系数之和为64,A 正确;令1x =,66(4264x==,则6(4x -的各项系数之和为64,B 错误; 6(4x 的展开式共有7项,则二项式系数最大的项是第4项,C 正确;6(4x的展开式中展开式中第5项4246C(4)(151616x=⨯⨯为常数项,D正确,故答案选ACD.11.【答案】CD【解析】记椭圆221169x y+=的两个焦点分别为1F,2F,故12||||8PF PF+=,可得21212||||||||()162PF PFPF PF+≤=,当且仅当12||||4PF PF==时取等号,即点P位于椭圆的短轴的顶点处时,a取得最大值,此时点P的坐标为点(0,3)或(0,3)-.12.【答案】BC【解析】∵22222222()4()()(2)4()()x x x xf x x x m m e e x m m e e--+--+=-+-+=--+-+,令2t x=-,则22()4()()t tg t t m m e e-=-+-+,定义域为R,22()()4()()()t tg t t m m e e g t--=--+-+=,故函数()g t为偶函数,所以函数()f x的图象关于2x=对称,要使得函数()f x有唯一零点,则(2)0f=,即2482()0m m-+-=,解得1m=-或2,故答案选BC.第Ⅱ卷三、填空题:本大题共4小题,每小题5分.13.【答案】10x y--=【解析】()2x xf x e x e x'=+⋅+,(0)1f=-,根据导数的几何意义可知曲线在点(0,1)-处的切线斜率为(0)1k f'==,∴切线方程为1y x+=,即10x y--=.14.【答案】18,【解析】∵π1sin()48α+=,则ππππ1cos()cos[()]sin()42448ααα-=-+=+=,3ππππsin()sin()cos()4244ααα+=++=+,根据22ππsin()cos()144αα+++=,得πcos()48α+=±.15.【答案】316【解析】因为利用比赛规则,那么甲以3:2获胜表示甲在前4局中胜2局,最后一局甲赢,则利用独立重复实验的概率公式可知22241113C()()22216P=⨯⨯⨯=.16.【答案】2【解析】由题意得FA b=,3FB b=,OA a=,由题得tan tanbBOF AOFa∠=∠=,∴24tan tan21()b bb a aBOA BOFbaa+∠==∠=-,整理得222a b=,即2222()a c a=-,∴2232a c=,232e=,即2e=.四、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.【答案】(1)1na n=+;(2)见解析.【解析】(1)1231111231nna a a na n++++=+,当2n≥时,1231111123(1)nna a a n a n-++++=-,两式相减得1111(1)nn nna n n n n-=-=++,∴1na n=+,当1n=时,12a=满足,1na n=+,∴数列{}na的通项公式为1na n=+.(2)选条件① ∵1122n n n a n a n b ++==,∴234123412222n n n T ++=++++,∴34521234122222n n n T ++=++++, 两式相减得123412211(1)121111118212222222212n n n n n n n T -+++-++=++++-=+-- 1223113342242n n n n n +++++=--=-, ∴13322n n n T ++=-. 选条件②: ∵11111(1)(2)12n n n b a a n n n n +===-++++, ∴1111111111233445122224n n T n n n n =-+-+-++-=-=++++. 选条件③:∵(1)nn n b a =-,∴当n 为奇数时,132345(1)11222n n n T n n -=-+-+--+=⨯--=--; 当n 为偶数时,234(1)122n n nT n =-+-+++=⨯=,∴3222n n n T n n ⎧--⎪⎪=⎨⎪⎪⎩,为奇数,为偶数.18.【答案】(1)π4C =;(2)614+. 【解析】(1)由正弦定理得()()(2)c a a c b b a -+=-,故2222c a ab b -=-+,即2222a b c ab +-=,∴2222cos 2a b c C ab +-==, ∵(0,π)C ∈,∴π4C =. (2)∵π4C =,∴3π222B A =-, ∴221cos 21cos 2cos cos 22A BA B +++=+112π2(cos 2cos 2)11(cos 2sin 2)1sin(2)22245A B A A A =++=+-=--=, ∴π32sin(2)45A -=, ∵b a >,∴B A >,即3π4A A ->,得3π8A <, 又∵ABC △为锐角三角形,∴π3ππ442A <-<,∴ππ42A <<.∴π3π48A <<, 则πππ2442A <-<,∴π7cos(2)45A -=, ∴ππππππsin 2sin(2)sin(2)cos cos(2)sin 444444A A A A =-+=-⋅+-⋅ 3227261452210+=⨯+⨯=. 19.【答案】(1)证明见解析;(2)6. 【解析】(1)证明:如下图,分别在FC ,EF 上取点P ,Q ,13CP FQ CF FE ==, 连接NP ,PQ 及MQ ,∵13FM CN FA CB ==,∴13MF FQ MQ AE FA FE ==⇒∥及13MQ AE =,13CN CP NP BF CB CF ==⇒∥且13NP BF =,∴MQ NP ∥,MQ NP =,∴四边形MNPQ 为平行四边形,∴MN QP ∥, 又∵MN ⊄平面CDEF ,QP ⊂平面CDEF ,∴MN ∥平面CDEF .(2)如下图所示,以A 为坐标原点,AE 方向为x 轴正方向,AD 方向为y 轴正方向,AB 方向为z 轴正方向建立空间直角坐标系,则(0,0,0)A ,(3,0,3)F ,(0,3,3)C ,(0,0,3)B ,∴(3,0,3)AF =,(0,3,3)AC =,由题易知平面BCF 的法向量为1(0,0,1)=n , 设平面ACF 的法向量为2(,,)x y z =n ,则2203303300AF x z y z AC ⎧⋅=+=⎧⎪⇒⎨⎨+=⋅=⎩⎪⎩n n ,取1x =,则2(1,1,1)=-n ,∵1212123cos ,3⋅===-⋅n n n n n n ,则二面角A CF B --的正弦值为63.20.【答案】(1)分布列见解析;(2)人工检验,详见解析. 【解析】(1)X 的可能取值为15,36,55(15)0.90.10.590490.000010.5905P X ==+=+=,(36)10.59050.4095P X ==-=,则X 的分布列为(2)由(1)知,()150.5905360.409523.5995E X =⨯+⨯=,∴1000箱零件的人工检验总费用的数学期望为()100023.599523599.5E X =⨯=元.∵1000箱零件的机器检验总费用的数学期望为212100024000⨯⨯=元, 且2400023599.5>,∴应该选择人工检验. 21.【答案】(1)299;(2)352.【解析】设11(,)A x y ,22(,)B x y ,(1)由题意可知直线l 的方程为33y x =-,由2233y x y x ⎧=⎨=-⎩,消去y ,得292090x x -+=,12209x x +=,∴122029||||199AF BF x x p +=++=+=. (2)由12AE EB =,可知212y y =-①, 设直线l 的方程为y kx k =-,由22y x y kx k⎧=⎨=-⎩,消去x ,得2220ky y k --=,2480Δk =+>恒成立, 122y y k+=②,122y y =-③, 由①②③解得1212y y =⎧⎨=-⎩或1212y y =-⎧⎨=⎩,∴122||||1y y k +==,得2114k =,∴135||1184AB =++= 22.【答案】(1)证明见解析;(2)证明见解析. 【解析】(1)()f x 的定义域为(0,)+∞,222222(12)()2(12)a x a x a f x x a x x +--'=+--==2(21)()x x a x+-,当2(0,)x a ∈时,()0f x '<,()f x 单减;当2(,)x a ∈+∞时,()0f x '>,()f x 单增,∴()f x 有唯一极值点.(2)由(1)知()f x 在2(0,)a 单减,在2(,)a +∞单增,∴()f x 在2x a =时取得极小值为2222()(1ln )f a a a a =--, ∵1a e <<21a e <<,2ln 0a >,∴2()0f a <,又∵222221112112()(1)0a f a a e e e e e e-=++=++->, 根据零点存在性定理,函数()f x 在2(0,)a 上有且只有一个零点. ∵ln x x >,222()(12)ln f x x a x a x =+--222(12)x a x a x >+--222(13)(13)x a x x x a =+-=+-,∵1a <<22231210a a a --=->,2231a a ->,∴231x a >-时,()0f x >,根据零点存在性定理,函数()f x 在2(,)a +∞上有且只有一个零点, ∴()f x 有2个零点.。