匀变速直线运动规律的应用(习题课)1
- 格式:doc
- 大小:69.50 KB
- 文档页数:9
匀变速直线运动课堂强化练习1.一辆车由静止开始作匀变速直线运动,在第8 s 末开始刹车,经4 s 停下来,汽车刹车过程也是匀变速直线运动,那么前后两段加速度的大小之比和位移之比x 1 ׃ x 2分别是( )A .=1׃ 4,x 1 ׃ x 2=1׃ 4B .=1׃ 2,x 1 ׃ x 2=1׃ 4 C.=1׃ 2,x 1 ׃ x 2=2׃ 1 D .=4׃ 1,x 1 ׃ x 2=2׃ 12.汽车在平直公路上由静止开始做加速度为a 1的匀加速直线运动,经过时间t 1,汽车刹车做匀减速运动,加速度大小为a 2,经过时间t 2后停下,则汽车在全程的平均速度为( )A .1121t a B .2221t a C .))((212121t t a a ++D .)(221222211t t t a t a ++3.如图所示,甲、乙、丙、丁是以时间为横轴的匀变速直线运动的图象,下列说法正确的是( )A .甲是a -t 图象B .乙是x -t 图象C .丙是x -t 图象D .丁是v -t 图象4.如图所示为一质点运动的位移随时间变化的规律,图线是一条抛物线,方程为t t s 4052+-=。
下列说法正确的是( )A .质点做匀减速直线运动,最大位移是80mB .质点的初速度是20 m/sC .质点的加速度大小是5 m/s 2D .t=4s 时,质点的速度为零5.在某高处A 点,以v 0的速度同时竖直向上与向下抛出a 、b 两球,不计空气阻力,则下列说法中正确的是( )A .两球落地的时间差为v 0/gB .两球落地的时间差为2v 0/gC .两球落地的时间差与高度有关D. 条件不足,无法确定6.如图所示,小球从竖直砖墙某位置静止释放,用频闪照相机在同一底片上多次曝光,得到了图中1、2、3、4、5…所示小球运动过程中每次曝光的位置.连续两次曝光的时间间隔均为T ,每块砖的厚度为d 。
根据图中的信息,下列判断错误..的是 ( ) A .位置“1”是小球释放的初始位置 B .小球做匀加速直线运动 C .小球下落的加速度为dT2D .小球在位置“3”的速度为7d2T7.一个质点正在做匀加速直线运动,用固定在地面上的照相机对该质点进行闪光照相,由甲乙丙丁闪光照片得到的数据,发现质点在第一次、第二次闪光的时间间隔内移动了2m;在第三次、第四次闪光的时间间隔内移动了8m。
第二章 匀变速直线运动的规律习题课1.平均速度关系公式: 。
2.中点瞬时速度公式: 。
3.初速度为0的匀加速直线运动是一种特殊的匀变速直线运动,它有着自己所具有的独特的规律,熟知这些规律对解决很多运动学问题有极大的帮助:(1)1T 秒末,2T 秒末,3T 秒末……瞬时速度之比为:(2)1T 秒内,2T 秒内,3T 秒内……位移之比为:(3)第一个T 秒内,第二个T 秒内,第三个T 秒内,……第n 个T 秒内位移之比为:(4)从静止开始通过连续相等的位移所用时间之比为:4.在确定的匀变速直线运动中,在连续相等的时间间隔T 内位移之差为恒量,这个恒量是:知识点一:平均速度公式的应用1.我国自行研制的“枭龙”战机已在四川某地试飞成功.假设该战机起飞前从静止开始做匀加速直线运动,达到起飞速度v 所需时间为t ,则起飞前的运动距离为( )A .vt B.vt 2C .2vtD .不能确定2.沿直线做匀变速运动的质点在第一个0.5 s 内的平均速度比它在第一个1.5 s 内的平均速度大2.45 m/s ,以质点初始时刻的运动方向为正方向,则质点的加速度为( )A.2.45 m/s 2B.-2.45 m/s 2C.4.90 m/s 2D.-4.90 m/s 23.一质点从静止开始做匀加速直线运动,第3 s 内的位移为2 m ,那么( )A.这3 s 内平均速度是1.2 m/sB.第3 s 末瞬时速度是2.2 m/sC.质点的加速度是0.6 m/s 2D.质点的加速度是0.8 m/s 2知识点二:比例公式的应用4.如图所示,完全相同的三块木块并排固定在水平面上,一颗子弹以速度v 水平射入,若子弹在木块中做匀减速运动,且穿过第三块木块后速度恰好为零,则子弹依次射入每块木块时的速度之比和穿过每块木块的时间之比分别为( )A .v 1:v 2:v 3 =3:2:1B .C .D .5.一个物体从静止开始做匀加速直线运动,它在第1 s内与第2 s内的位移之比为x1∶x2,在走完第1 m时与走完第2 m时的速度之比为v1∶v2.以下说法正确的是()A.x1∶x2=1∶3,v1∶v2=1∶2B.x1∶x2=1∶3,v1∶v2=1∶2C.x1∶x2=1∶4,v1∶v2=1∶2D.x1∶x2=1∶4,v1∶v2=1∶26.从静止开始做匀加速直线运动的物体,在第1 s内、第2 s内、第3 s内的平均速度之比为()A.1∶3∶5B.1∶4∶9C.1∶2∶3D.1∶2∶3知识点三:位移差公式的应用7.如图所示,物体做匀加速直线运动,A、B、C、D为其运动轨迹上的四点,测得AB=2 m,BC=3 m,且物体通过AB、BC、CD所用的时间均为0.2 s,则下列说法正确的是()A.物体的加速度为20 m/s2B.物体的加速度为25 m/s2C.CD=4 mD.CD=5 m8.一个做匀加速直线运动的物体,在前4 s内经过的位移为24 m,在第4个4 s内经过的位移是60 m,求这个物体的加速度和初速度各是多少?第二章 匀变速直线运动的规律习题课1.一个物体由静止开始做匀加速直线运动,第1 s 末的速度达到4 m/s ,物体在第2 s 内的位移是( )A.6 mB.8 mC.4 mD.1.6 m2.物体从静止开始做匀加速直线运动,第3 s 内通过的位移是3 m ,则( )A.第3 s 内的平均速度是3 m/sB.物体的加速度是1.2 m/s 2C.前3 s 内的位移是6 mD.3 s 末的速度是3.6 m/s3.火车的速度为8 m /s ,关闭发动机后做匀减速直线运动,前进70 m 时速度减为6 m/s.若再经过40 s ,火车又前进的距离为( )A.80 mB.90 mC.120 mD.160 m4.如图所示,木块A 、B 并排且固定在水平桌面上,A 的长度是L ,B 的长度是2L .一颗子弹沿水平方向以速度v 1射入A ,以速度v 2穿出B .子弹可视为质点,其运动视为匀变速直线运动.则子弹穿出A 时的速度为( )A.2v 1+v 23B.2v 21-v 223C.2v 21+v 223D.23v 1 5.物体以初速度v 0做匀减速直线运动,第1 s 内通过的位移为x 1=3 m ,第2 s 内通过的位移为x 2=2 m ,又经过位移x 3物体的速度减小为0,则下列说法中不正确的是( )A.加速度a 的大小为1 m/s 2B.初速度v 0的大小为2.5 m/sC.位移x 3的大小为98m D.位移x 3内的平均速度大小为0.75 m/s6.一个做匀加速直线运动的物体先后经过A 、B 两点时的速度分别为v 1和v 2,则下列结论中正确的有( )A.物体经过AB 位移中点的速度大小为v 1+v 22B.物体经过AB 位移中点的速度大小为v 21+v 222C.物体通过AB 这段位移的平均速度为v 1+v 22D.物体通过AB 这段位移所用时间的中间时刻的速度为v 1+v 227.质点从静止开始做匀加速直线运动,在第1个2 s 、第2个2 s 和第5个2 s 内三段位移之比为( )A.1∶4∶25B.2∶8∶7C.1∶3∶9D.2∶2∶18.如图所示,一个滑块从斜面顶端A由静止开始沿斜面向下做匀加速直线运动到达底端C,已知AB=BC,则下列说法正确的是()A.滑块到达B、C两点的速度之比为1∶2B.滑块到达B、C两点的速度之比为1∶2C.滑块通过AB、BC两段的时间之比为1∶2D.滑块通过AB、BC两段的时间之比为(2+1)∶19.物体沿一直线做匀加速直线运动,已知它在第2 s内的位移为4.0 m,第3 s内的位移为6.0 m,则下列说法中正确的是()A.它在第2 s初到第3 s末的平均速度的大小是5.0 m/sB.它在第1 s内的位移是2.0 mC.它的初速度为零D.它的加速度大小是2.0 m/s210.向东行驶的汽车,刹车后做匀减速直线运动,第6 s末到第8 s末运动了20 m,第12 s末到第14 s末运动了8 m.求:(1)汽车的初速度和加速度;(2)汽车前20 s的位移大小.11.一辆汽车从静止开始做匀加速直线运动,已知途中先后经过相距27 m的A、B两点所用时间为2 s,汽车经过B点时的速度为15 m/s.求:(1)汽车经过A点时的速度大小和加速度大小;(2)汽车从出发点到A点经过的距离;(3)汽车经过B点后再经过2 s到达C点,则BC间距离为多少?。
习题课 匀变速直线运动的推论〔一〕[随堂达标]1.(多项选择)(2016·湖北黄冈中学高一检测)物体做匀变速直线运动,某时刻速度的大小为4 m/s,2 s 后速度的大小变为10 m/s ,在这2 s 内该物体的( )A .位移的大小一定是14 mB .位移的大小可能是6 mC .加速度的大小可能是3 m/s 2D .加速度的大小可能大于7 m/s 2解析:选BC.(1)取初速度方向为正方向,如果末速度与初速度同向,如此加速度:a =v -v 0t =10-42m/s 2=3 m/s 2位移:x =v 0+v 2t =4+102×2 m=14 m.(2)取初速度方向为正方向,如果末速度与初速度反向,如此加速度:a =v -v 0t =-10-42m/s 2=-7 m/s 2位移:x =v 0+v 2t =4+-102×2 m=-6 m故位移大小为14 m 或6 m ,加速度大小为3 m/s 2或7 m/s 2; 故A 、D 错误,B 、C 正确.2.(多项选择)做初速度不为零的匀加速直线运动的物体,在时间T 内通过位移x 1到达A 点,接着在时间T 内又通过位移x 2到达B 点,如此以下判断正确的答案是( )A .物体在A 点的速度大小为x 1+x 22TB .物体运动的加速度为2x 1T2C .物体运动的加速度为x 2-x 1T 2D .物体在B 点的速度大小为3x 2-x 12T解析:选ACD .根据匀变速直线运动某段时间内的平均速度等于中间时刻的瞬时速度知:v A =x 1+x 22T ,故A 正确.根据x 2-x 1=aT 2得物体运动的加速度为:a =x 2-x 1T2,故B 错误,C正确.在该加速运动过程中有:v B =v A +aT =x 1+x 22T +x 2-x 1T =3x 2-x 12T,故D 正确. [课时作业]一、单项选择题1.(2016·苏州高一检测)一物体做匀加速直线运动,在第1个t s 内位移为x 1,第2个t s 内位移为x 2,如此物体在第1个t s 末的速度是( )A.x 1-x 2t B .x 2+x 1t C.x 2-x 12tD .x 2+x 12t解析:选D .v =v t 2,所以第1个t s 末的速度v 1=x 1+x 22t,D 正确.2.在军事演习中,某空降兵从飞机上跳下,先做自由落体运动,在t 1时刻,速度达较大值v 1时打开降落伞,做减速运动,在t 2时刻以较小速度v 2着地.他的速度图象如下列图.如下关于该空降兵在0~t 2和t 1~t 2时间内的平均速度v 的结论正确的答案是( )A.0~t 2,v =v 12B.t 1~t 2,v =v 1+v 22C .t 1~t 2,v >v 1+v 22D.t 1~t 2,v <v 1+v 22解析:选D.由v -t 图象可知,在0~t 1时间内的平均速度为v 12.在t 1~t 2时间内,加速度越来越小,其平均速度v <v 1+v 22,应当选项D 正确.3. 如下列图,小球从竖直砖墙某位置静止释放,用频闪照相机在同一底片上屡次曝光,得到了图中1、2、3、4、5…所示小球运动过程中每次曝光的位置,连续两次曝光的时间间隔均为T ,每块砖的厚度为d .根据图中的信息,如下判断不正确的答案是( )A .位置“1〞是小球释放的初始位置B .小球做匀加速直线运动C .小球下落的加速度为d T2 D .小球在位置“3〞的速度为7d2T解析:选A.由题图可以知道每两个相邻的点之间的距离差是一样的,由Δx =aT 2可知,a =Δx T 2=dT2,所以B 、C 正确.点3的瞬时速度的大小为2、4之间的平均速度的大小,所以v 3=x 242T =7d 2T ,D 正确.由于v 3=v 1+a ·2T ,故v 1=v 3-2aT =7d 2T -2×d T 2×T =3d2T,故A 错误.4.汽车由静止开始做匀加速直线运动,速度达到v 时立即做匀减速直线运动,最后停止,运动的全部时间为t ,如此汽车通过的全部位移为( )A.13vt B .12vt C.23vt D .14vt 解析:选B .汽车全程的平均速度v =v 2,故x =v t =12vt ,B 正确.二、多项选择题5.(2016·遵化高一检测)物体做匀变速直线运动,如下说法中正确的答案是( ) A .第1 s 内速度的变化量小于第2 s 内速度的变化量 B .第1 s 内的位移小于第2 s 内的位移C .第1 s 内速度的变化量等于第2 s 内速度的变化量D .相邻两段相等时间内位移之差等于一个恒量解析:选CD .由v =v 0+at 可知,一样时间内速度的变化量相等,故A 错误,C 正确;匀加速直线运动一样时间内位移越来越大,匀减速直线运动反之,故B 错误;由Δx =aT 2可知,D 正确.6.(2016·郑州高一检测)汽车自O 点出发从静止开始在平直公路上做匀加速直线运动,途中在6 s 内分别经过P 、Q 两根电杆,P 、Q 电杆相距60 m ,车经过电杆Q 时的速率是15 m/s ,如此如下说法正确的答案是( )A .经过P 杆时的速率是5 m/sB .车的加速度是1.5 m/s 2C .P 、O 间的距离是7.5 mD .车从出发到Q 所用的时间是9 s解析:选ACD .由于汽车在P 、Q 间的平均速度等于它经过两点时瞬时速度的平均值,即x t =v P +v Q 2,故v P =2x t -v Q =5 m/s ,A 对.车的加速度a =v Q -v P t =53m/s 2,B 错.O 到P 用时t ′=v Pa =3 s ,P 、O 间距离x 1=v P2·t ′=7.5 m ,C 对.O 到Q 用时t ′+t =3 s +6 s =9 s ,D 对.7.如下列图,物体自O 点由静止开始做匀加速直线运动,A 、B 、C 、D 为其运动轨迹上的四点,测得AB =2 m ,BC =3 m ,且物体通过AB 、BC 、CD 所用的时间均为0.2 s ,如此如下说法正确的答案是( )A .物体的加速度为20 m/s 2B .CD =4 mC .OA 之间的距离为1.125 mD .OA 之间的距离为1.5 m解析:选BC.由匀变速直线运动的规律相邻相等的时间内位移之差为常数,即Δx =aT 2可得:a =BC -AB t 2=10.04m/s 2=25 m/s 2,故A 错误;根据CD -BC =BC -AB =1 m ,可知CD =3 m +1 m =4 m ,故B 正确;v B =v AC =AB +BC 2t =12.5 m/s ,t B =v Ba=0.5 s ,可得t A =t B-0.2 s =0.3 s .由OA =12at 2A 得OA =12×25×0.32m =1.125 m ,故C 正确,D 错误.三、非选择题8.在测定匀变速直线运动的加速度的实验中,使用打点计时器测量小车做匀变速直线运动的加速度,实验得到的一条纸带如下列图,0、1、2、3、…是选用的计数点,每相邻的计数点间还有4个打出的点没有在图上标出.图中还画出了某次实验将刻度尺靠在纸带上进展测量的情况,如此小车在打2计数点时的瞬时速度为__________m/s ,小车的加速度的大小是__________m/s 2(保存两位有效数字).解析:v 2=x 132T =22.60-12.60×10-22×0.1m/s =0.50 m/sx 01=(12.60-10.00)×10-2 m =2.60×10-2 m x 34=(30.00-22.60)×10-2 m =7.40×10-2 m x 34-x 01=3aT 2得a =x 34-x 013T 2=7.40-2.60×10-23×0.12m/s 2=1.6 m/s 2. 答案:0.50 1.69.从车站开出的汽车,做匀加速直线运动,走了12 s 时,发现还有乘客没上来,于是立即做匀减速直线运动至停车,总共历时20 s ,行进了 50 m ,求汽车的最大速度.解析:法一(公式法):设最大速度为v m ,由题意可得方程组x =12a 1t 21+v m t 2-12a 2t 22①t =t 1+t 2② v m =a 1t 1③0=v m -a 2t 2④由①②③④整理得:v m =2x t 1+t 2=2×5020m/s =5 m/s. 法二(图象法):做出汽车运动全过程的v -t 图象如下列图,v -t 图线与t 轴围成的三角形的面积与位移相等,故x =v m t2,所以v m =2xt=2x t 1+t 2=2×5020m/s =5 m/s. 答案:5 m/s10. 如下列图是用某监测系统每隔2.5 s 拍摄火箭起始加速阶段的一组照片.火箭的长度为40 m ,现在用刻度尺测量照片上的长度关系,结果如下列图.请你估算火箭的加速度a 和火箭在照片中第2个像所对应时刻的瞬时速度大小v .解析:从照片上可得,刻度尺的1 cm 相当于实际长度20 m .量出前后两段位移分别为4.00 cm 和6.50 cm ,对应的实际位移分别为80 m 和130 m .由Δx =aT 2可得a =8 m/s 2,再根据这5 s 内的平均速度等于中间时刻的瞬时速度,可得照片中第2个像所对应时刻的瞬时速度v =80+1302×2.5m/s =42 m/s.答案:8 m/s 242 m/s11. 从斜面上某一位置,每隔0.1 s 释放一个一样的小球.在连续放下n 个小球以后,给在斜面上滚动的小球拍摄照片,如下列图,测得AB =15 cm ,BC =20 cm ,试求:(1)小球滚动的加速度; (2)拍摄时B 球的速度; (3)D 与C 之间的距离.解析:因为每隔0.1 s 放下一个一样的小球,所以斜面上任何相邻两球的运动时间差都相等,都是0.1 s ,这些小球所构成的运动情景与打点计时器在纸带上留下的物体运动的点迹相似,因此可以用一样的方法处理数据.(1)令T =0.1 s ,由公式Δx =aT 2得 小球滚动的加速度a =Δx T 2=BC -ABT2=20-150.12 cm/s 2=500 cm/s 2=5 m/s 2. (2)此时B 球的速度v B =v AC =AB +BC2T=15+202×0.1cm/s =175 cm/s =1.75 m/s. (3)此时C 球的速度v C =v B +aT =(1.75+5×0.1) m/s=2.25 m/s ;同理,此时D 球的速度v D =v C +aT =(2.25+5×0.1) m/s=2.75m/s ; D 与C 间的距离 x CD =v T =T v C +v D2=0.1×2.25+2.752m =0.25 m.答案:(1)5 m/s 2(2)1.75 m/s (3)0.25 m。
习题课:匀变速直线运动的规律应用[目标定位] 1.进一步熟练掌握匀变速直线运动的两个基本公式和三个导出公式及其特点并能熟练应用其解决问题.2.能推导初速度为零的匀变速直线运动的几个比例式.3.会分析简单的追及和相遇问题.一、匀变速直线运动基本公式的应用1.两个基本公式v =v 0+at 和x =v 0t +12at 2,涉及5个量,原则上已知三个量可求另外两个量,两个公式联立可以解决所有的匀变速直线运动问题. 2.逆向思维法的应用:把末速度为0的匀减速直线运动,可以倒过来看成是初速度为0的匀加速直线运动. 3.解决运动学问题的基本思路为:审题→画过程草图→判断运动性质→选取正方向(或选取坐标轴)→选用公式列方程→求解方程,必要时对结果进行讨论.例1 一个物体以v 0=8 m /s 的初速度沿光滑斜面向上滑,加速度的大小为2 m/s 2,到达最高点之后,又以相同的加速度往回运动.则( ) A .1 s 末的速度大小为6 m/s B .3 s 末的速度为零C .前2 s 内的位移大小是12 mD .前5 s 内的位移大小是15 m解析 由t =v -v 0a ,物体到达最高点的时间是4 s ,又根据v =v 0+at ,物体1 s 末的速度为6m/s ,A 对,B 错.根据x =v 0t +12at 2,物体前2 s 内的位移是12 m,4 s 内的位移是16 m ,第5 s 内的位移是沿斜面向下的1 m ,所以前5 s 内的位移是15 m ,C 、D 对. 答案 ACD二、三个导出公式的应用1.速度与位移的关系v 2-v 20=2ax ,如果问题的已知量和未知量都不涉及时间,利用此式往往会使问题变得简单.2.与平均速度有关的公式有v =x t 和v =2t v =v 0+v 2.其中v =x t普遍适用于各种运动,而v=2t v =v 0+v 2只适用于匀变速直线运动.利用v =xt和v =2t v 可以很轻松地求出中间时刻的瞬时速度.3.匀变速直线运动中,任意连续相等的时间间隔T 内的位移差为常数,即x 2-x 1=aT 2. 例2 一列火车做匀变速直线运动,一人在轨道旁边观察火车运动,发现在相邻的两个10 s 内,火车从他跟前分别驶过8节车厢和6节车厢,每节车厢长8 m(相邻车厢连接处长度不计),求:(1)火车加速度的大小;(2)这20 s 内中间时刻的瞬时速度; (3)人刚开始观察时火车速度的大小.解析 (1)由题知,火车做匀减速运动,设火车加速度大小为a ,人开始观察时火车速度大小为v 0,车厢长L =8 m ,则 Δx =aT 2,8L -6L =aT 2,解得a =2L T 2=2×8100m /s 2=0.16 m/s 2(2)由于2t v =v =8L +6L 2T =14×820m /s =5.6 m/s(3)由2t v =v 0-aT 得v 0=2t v +aT =(5.6+0.16×10) m /s =7.2 m/s答案 (1)0.16 m /s 2 (2)5.6 m/s (3)7.2 m/s 三、初速度为零的匀变速直线运动的几个比例式1.初速度为0的匀加速直线运动,按时间等分(设相等的时间间隔为T )的比例式 (1)T 末、2T 末、3T 末、…nT 末的瞬时速度之比为: v 1∶v 2∶v 3∶…∶v n =1∶2∶3∶…∶n .(2)T 内、2T 内、3T 内、…nT 内的位移之比为: x 1∶x 2∶x 3∶…∶x n =12∶22∶32∶…∶n 2.(3)第一个T 内、第二个T 内、第三个T 内、…第n 个T 内的位移之比为: x 1∶x 2∶x 3∶…∶x n =1∶3∶5∶…∶(2n -1). 2.按位移等分(设相等的位移为x )的比例式 (1)通过前x 、前2x 、前3x …前nx 时的速度之比为: v 1∶v 2∶v 3∶…∶v n =1∶2∶3∶…∶n .(2)通过前x 、前2x 、前3x …前nx 的位移所用时间之比为: t 1∶t 2∶t 3∶…∶t n =1∶2∶3∶…∶n .(3)通过连续相同的位移所用时间之比为:t 1′∶t 2′∶t 3′∶…∶t n ′=1∶(2-1)∶(3-2)∶…∶(n -n -1).注意 以上比例式成立的前提是物体做初速度为零的匀加速直线运动,对于末速度为零的匀减速直线运动,可把它看成逆向的初速度为零的匀加速直线运动,应用比例关系,可使问题简化.例3 做匀减速直线运动的物体经4 s 后停止,若在第1 s 内的位移是14 m ,则最后1 s 内的位移是( )A .3.5 mB .2 mC .1 mD .0解析 物体做匀减速直线运动至停止,可以把这个过程看做逆向的初速度为零的匀加速直线运动,则相等时间内的位移之比为1∶3∶5∶7,所以由14 m 7=x 11得,所求位移x 1=2 m.答案 B四、追及相遇问题讨论追及、相遇的问题,其实质就是分析讨论两物体在相同时间内能否到达相同的空间位置的问题.(1)一个条件:即两者速度相等.它往往是物体间能否追上、追不上或(两者)距离最大、最小的临界条件,也是分析判断此类问题的切入点.(2)两个关系:即时间关系和位移关系.位移关系可通过画草图得到.例4 一辆汽车以3 m /s 2的加速度开始启动的瞬间,另一辆以6 m/s 的速度做匀速直线运动的自行车恰好从汽车的旁边通过.(1)汽车一定能追上自行车吗?若能追上,汽车经多长时间追上?追上时汽车的瞬时速度多大?(2)汽车追上自行车前哪个时刻与自行车相距最远?此时的距离是多大?解析 (1)因为汽车做加速运动,故汽车一定能追上自行车.汽车追上自行车时,两者位移相等,x 汽=x 自,即12at 2=v 自t ,得:t =2v 自a =2×63 s =4 sv 汽=at =3×4 m /s =12 m/s(2)开始阶段,v 汽<v 自,两者间的距离逐渐变大.后来v 汽>v 自,两者间的距离又逐渐减小.所以当v 汽=v 自时,两者距离最大.设经过时间t 1,汽车速度等于自行车速度,则 at 1=v 自,代入得t 1=2 s此时x 自=v 自t 1=6×2 m =12 m x 汽=12at 21=12×3×22 m =6 m最大距离Δx =x 自-x 汽=6 m 答案 见解析1.熟练掌握匀变速直线运动的两个基本公式 (1)v =v 0+at (2)x =v 0t +12at 22.对应题目中的场景灵活选用三个导出公式 (1)v 2-v 20=2ax (2)v =2t v =v 0+v2(3)Δx =aT 2 3.会推导和应用初速度为零的匀变速直线运动的几个比例式. 4.追及相遇问题要抓住一个条件、两个关系 (1)一个条件:速度相等.(2)两个关系:位移关系和时间关系,特别是位移关系.1.(基本公式的应用)飞机的起飞过程是从静止出发,在直跑道上加速前进,当达到一定速度时离地升空.已知飞机加速前进的路程为1 600 m ,所用时间为40 s ,若这段运动为匀加速运动,用a 表示加速度,v 表示离地时的速度,则( ) A .a =2 m /s 2,v =80 m/s B .a =2 m /s 2,v =40 m/s C .a =1 m /s 2,v =40 m/s D .a =1 m /s 2,v =80 m/s 答案 A解析 题目所给的有用信息为x =1 600 m ,t =40 s ,灵活选用公式x =12at 2,可求得a =2xt 2=2×1 600402m /s 2=2 m/s 2,则v =at =80 m/s.故选A. 2.(初速度为零的比例式的应用)从静止开始做匀加速直线运动的物体,在第1 s 内、第2 s 内、第3 s 内的平均速度之比为( ) A .1∶3∶5B .1∶4∶9C.1∶2∶3 D.1∶2∶ 3答案 A解析由于第1 s内、第2 s内、第3 s内的位移之比x1∶x2∶x3=1∶3∶5,而平均速度v=xt,三段时间都是1 s,故三段时间的平均速度之比为1∶3∶5,故A正确.3.(导出公式的应用)一物体做匀减速直线运动,初速度为10 m/s,加速度大小为1 m/s2,则物体在停止运动前1 s内的平均速度为()A.5.5 m/s B.5 m/sC.1 m/s D.0.5 m/s答案 D解析物体做匀减速直线运动到静止相当于反向的匀加速直线运动,停止运动前1 s内的平均速度,相当于匀加速运动第1秒内的平均速度,v=0+v2=0+1×12m/s=0.5 m/s.故选D.4.(追及相遇问题)A、B两列火车,在同一轨道上同向行驶,A车在前,其速度v A=10 m/s,B车在后,其速度v B=30 m/s,因大雾能见度低,B车在距A车x0=85 m时才发现前方有A车,这时B车立即刹车,但B车要经过180 m 才能停止,问:B车刹车时A车仍按原速度行驶,两车是否会相撞?若会相撞,将在B车刹车后何时相撞?若不会相撞,则两车最近距离是多少?答案不会 5 m解析B车刹车至停下来过程中,由v2-v20=2ax,得a B=-v202x=-2.5 m/s2假设不相撞,设经过时间t两车速度相等,对B车有v A=v B+a B t解得t=8 s此时,B车的位移为x B=v B t+12a B t2=160 mA车位移为x A=v A t=80 m因x B<x0+x A故两车不会相撞,两车最近距离为Δx=5 m.题组一 基本公式的应用1.一辆汽车以2 m/s 2的加速度做匀减速直线运动,经过2 s(汽车未停下),汽车行驶了36 m .汽车开始减速时的速度是( )A .9 m /sB .18 m/sC .20 m /sD .12 m/s 答案 C解析 由位移公式x =v 0t +12at 2得,汽车的初速度v 0=2x -at 22t =2×36-(-2)×222×2 m /s =20m/s ,C 正确.2.用相同材料做成的A 、B 两木块的初速度之比为2∶3,它们以相同的加速度在同一粗糙水平面上沿直线滑行直至停止,则它们滑行的( ) A .时间之比为1∶1 B .时间之比为2∶3 C .距离之比为4∶9 D .距离之比为2∶3答案 BC解析 两木块以一定的初速度做匀减速直线运动直至停止,由匀变速直线运动的速度公式v =v 0+at ,得t =v -v 0a =-v 0a ,因为加速度相同,因此运动时间之比就等于初速度之比,选项B 正确;将其看成反向的初速度为零的匀加速直线运动,根据位移公式x =12at 2,知位移之比等于运动时间的平方之比,选项C 正确.3.物体由静止做匀加速直线运动,第3 s 内通过的位移是3 m ,则( ) A .第3 s 内平均速度是3 m/s B .物体的加速度是1.2 m/s 2 C .前3 s 内的位移是6 m D .3 s 末的速度是3.6 m/s 答案 ABD解析 第3 s 内的平均速度v =x t =31 m /s =3 m/s ,A 正确;前3 s 内的位移x 3=12at 23,前2秒内的位移x 2=12at 22,故Δx =x 3-x 2=12at 23-12at 22=3 m ,即12a ·32-12a ·22=3 m ,解得a =1.2 m/s 2,B 正确;将a 代入x 3=12at 23得x 3=5.4 m ,C 错误;v 3=at 3=1.2×3 m /s =3.6 m/s ,D正确.题组二 导出公式的应用4.一个做匀加速直线运动的物体先后经过A 、B 两点时的速度分别为v 1和v 2,则下列结论中正确的有( )A .物体经过AB 位移中点的速度大小为v 1+v 22B .物体经过AB 位移中点的速度大小为v 21+v 222C .物体通过AB 这段位移的平均速度为v 1+v 22D .物体通过AB 这段位移所用时间的中间时刻的速度为v 1+v 22答案 BCD解析 设经过位移中点时的速度为2x v ,则对前半段的位移有2a ·x 2=22x v -v 21,对后半段的位移有2a ·x 2=v 22-22x v ,联立两式得2x v =v 21+v 222,选项A 错误,B 正确;对匀变速直线运动而言,总有v =2t v =v 1+v 22,选项C 、D 正确.5.一物体做匀加速直线运动,通过一段位移Δx 所用的时间为t 1,紧接着通过下一段位移Δx 所用时间为t 2.则物体运动的加速度为( ) A.2Δx (t 1-t 2)t 1t 2(t 1+t 2) B.Δx (t 1-t 2)t 1t 2(t 1+t 2) C.2Δx (t 1+t 2)t 1t 2(t 1-t 2) D.Δx (t 1+t 2)t 1t 2(t 1-t 2)答案 A解析 通过第一段位移时,中间时刻的瞬时速度为v 1=Δxt 1,通过第二段位移中间时刻的瞬时速度为v 2=Δxt 2,由于v 2-v 1=a ·t 1+t 22,所以a =2Δx (t 1-t 2)t 1t 2(t 1+t 2),选项A 正确.题组三 初速度为零的匀加速直线运动的比例式及逆向思维法的应用6.如图1所示,完全相同的三个木块并排固定在水平地面上,一颗子弹以速度v 水平射入,若子弹在木块中所受阻力恒定,且穿过第三个木块后速度恰好为零,则子弹依次射入每个木块时的速度之比和穿过每个木块所用时间之比分别为( )图1A.v1∶v2∶v3=3∶2∶1B.v1∶v2∶v3=3∶2∶1C.t1∶t2∶t3=1∶2∶ 3D.t1∶t2∶t3=(3-2)∶(2-1)∶1答案BD解析把子弹的运动看做逆向的初速度为零的匀加速直线运动.子弹由右向左依次“穿出”3个木块的速度之比为1∶2∶ 3.则子弹实际运动依次穿入每个木块时的速度之比v1∶v2∶v3=3∶2∶1,故B正确.子弹从右向左,通过每个木块的时间之比为1∶(2-1)∶(3-2).则子弹实际运动通过连续相等的位移的时间之比为t1∶t2∶t3=(3-2)∶(2-1)∶1,故D正确.7.质点从静止开始做匀加速直线运动,在第1个2 s、第2个2 s和第5个2 s内三段位移之比为()A.1∶4∶25 B.2∶8∶7C.1∶3∶9 D.2∶2∶1答案 C解析质点做初速度为零的匀加速直线运动,在连续相等的时间间隔内位移之比为1∶3∶5∶……∶(2n-1),所以质点在第1个2 s、第2个2 s和第5个2 s内的三段位移之比为1∶3∶9,因此选C.8.一个物体从静止开始做匀加速直线运动,它在第1秒内与第2秒内位移大小之比为x1∶x2,在通过第1米时与通过第2米时的速度大小之比为v1∶v2,则()A.x1∶x2=1∶3,v1∶v2=1∶2B.x1∶x2=1∶3,v1∶v2=1∶ 2C.x1∶x2=1∶4,v1∶v2=1∶2D.x1∶x2=1∶4,v1∶v2=1∶ 2答案 B解析质点从静止开始做匀加速直线运动,它在连续相等的时间内的位移之比x1∶x2∶x3∶……∶x n=1∶3∶5∶……∶(2n-1),所以x1∶x2=1∶3;由v2=2ax得v1∶v2=1∶ 2.9.如图2所示,在水平面上有一个质量为m 的小物块,从某点给它一个初速度沿水平面做匀减速直线运动,途中经过A 、B 、C 三点,到达O 点的速度为零.A 、B 、C 三点到O 点的距离分别为s 1、s 2、s 3,物块从A 点、B 点、C 点运动到O 点所用时间分别为t 1、t 2、t 3,下列结论正确的是( )图2A.s 1t 1=s 2t 2=s 3t 3B.s 1t 1<s 2t 2<s 3t 3C.s 1t 21=s 2t 22=s 3t 23D.s 1t 21<s 2t 22<s 3t 23答案 C解析 由于v =s t =12v ,故s 1t 1=v A 2,s 2t 2=v B 2,s 3t 3=v C 2,所以s 1t 1>s 2t 2>s 3t 3,A 、B 错;小物块的运动可视为逆向的由静止开始的匀加速直线运动,故位移s =12at 2,s t 2=12a =常数,所以s 1t 21=s 2t 22=s 3t 23,C 对,D 错.题组四 追及相遇及综合问题10.超载、超速都会危及人民的生命安全,一货车严重超载后的总质量为50 t ,以54 km /h 的速率匀速行驶,发现红灯时司机刹车,货车即做匀减速直线运动,加速度的大小为 2.5 m/s 2,而不超载时则为5 m/s 2.(1)若前方无阻挡,问从刹车到停下来此货车在超载及不超载时分别前进多远?(2)在一小学附近,限速为36 km /h ,若该货车不超载,仍以54 km/h 的速率匀速行驶,看见正前方有一小孩后立即刹车到停止,幸运的是没有发生车祸,问货车比不超速行驶至少多前进了多远?答案 (1)45 m 22.5 m (2)12.5 m解析 (1)货车刹车时的初速度v 0=15 m /s ,末速度为0,加速度分别为2.5 m/s 2和5 m/s 2,根据速度位移公式得:x =v 202a代入数据解得超载时位移为x 1=45 m 不超载时位移为x 2=22.5 m(2)不超速行驶时刹车后运动的最大距离为: x 3=v ′22a=10 m货车比不超速行驶时至少多前进了Δx =x 2-x 3=12.5 m11.当交叉路口的绿灯亮时,一辆客车以a =2 m /s 2 的加速度由静止启动,在同一时刻,一辆货车以10 m/s 的恒定速度从客车旁边同向驶过(不计车长),则: (1)客车追上货车时离路口多远?(2)在客车追上货车前,两车的最大距离是多少? 答案 (1)100 m (2)25 m解析 (1)客车追上货车的过程中,两车所用时间相等,位移也相等,即v 2t 1=12at 21,代入数据解得t 1=10 s ,x =12at 21=12×2×102 m =100 m. (2)两车距离最大时,两车应具有相等的速度,即v 2=at 2,代入数据解得t 2=5 s. Δx =v 2t 2-12at 22=10×5 m -12×2×52m =25 m. 12.一辆货车以8 m /s 的速度在平直铁路上匀速行驶,由于调度失误,在后面600 m 处有一辆客车以72 km/h 的速度向它靠近.客车司机发觉后立即合上制动器,但客车要滑行2 000 m 才能停止.求:(1)客车滑行的加速度大小为多少? (2)通过计算分析两车是否会相撞. 答案 (1)0.1 m/s 2 (2)见解析 解析 (1)由v2-v 20=2ax得客车刹车的加速度大小为a =v 222x =2022×2 000m /s 2=0.1 m/s 2(2)假设不相撞,设两车达到共同速度用时为t ,则 v 2-at =v 1,解得t =120 s货车在该时间内的位移x 1=v 1t =8×120 m =960 m 客车在该时间内的位移x 2=v 1+v 22t =1 680 m位移大小关系:x 2=1 680 m>600 m +x 1=1 560 m ,故会相撞.。
匀变速直线运动规律的应用(习题课)
时间:2课时
一、教学目标
1、知识目标
(1)进一步熟悉匀变速直线运动的公式,并能正确运用这些公式解决物理问题。
(2)能够熟练应用匀变速直线运动的重要推论式解决物理问题。
2、能力目标
(1)培养学生运用方程组、图像等数学工具解决物理问题的能力;
(2)通过一题多解培养发散思维.
3.科学方法:
(1)渗透物理思想方法的教育,如模型方法、等效方法等;
(2)通过例题的分析,使学生形成解题思路,体会特殊解题技巧,即获得解决物理问题的认知策略.
二、重难点分析
熟练掌握匀变速直线运动的三个基本关系式及其重要推论式并加以应用是重点,能够灵活运用这些规律解决实际运动学问题是难点。
三、教学方法
复习提问、讲练结合
四、教具
幻灯片,投影仪
五、教学过程
(一)复习提问
师:请同学们写出匀变速直线运动的三个基本公式。
生:速度公式:v t=v0+at,
位移公式:s=v0t+at2/2
不含时间的推论式:v t2-v02=2as
师:请同学们写出匀变速直线运动的几个重要推论式。
教师引导学生推导出下面的几个推论式:
(1)任意两个连续相等的时间间隔T 内的位移之差是一个恒量,即
s 2-s 1=s 3-s 2…=Δs=aT 2
或 s n+k -s n =kaT 2
(2)在一段时间t 内,中间时刻的瞬时速度v 等于这段时间的平均速度,即 v=v - AB =s AB /t=(v A +v B )/2
式中s AB 为这段时间内的位移,v A 、v B 分别为这段时间初、末时刻的瞬时速度.
(3)中间时刻瞬时速度等于这段时间内的平均速度:
t
s v v v v t t =+==202/ (4)中间位移处的速度:
2
2202/t s v v v += (4)初速为零的匀加速运动有如下特征
①从运动开始计时起,在连续相等的各段时间内通过的位移之比为
s 1:s 2:s 3:…:s n =1:3:5:…:(2n -1)(n=1、2、3…)
②从运动开始计时起,时间t 内,2t 内,3t 内…Nt 内通过的位移之比为
s Ⅰ:s Ⅱ:s Ⅲ:…:s N =12:22:32:…:N 2
③从运动开始计时起,通过连续的等大位移所用的时间之比为
:)23(:)12(:1:::321--=t t t
以上结论可视情况留给同学们自己证明
(二)例题选讲(规律应用)
【例题1】火车紧急刹车后经7s 停止,设火车匀减速直线运动,它在最后1s 内的位移是2m ,则火车在刹车过程中通过的位移和开始刹车时的速度各是多少?
分析:首先将火车视为质点,由题意画出草图:
从题目已知条件分析,直接用匀变速直线运动基本公式求解有一定困难.大家能否用其它方法求解?
(学生独立解答后相互交流)
解法一:用基本公式、平均速度.
质点在第7s内的平均速度为:
则第6s末的速度:v6=4(m/s)
求出加速度:a=(0-v6)/t= -4(m/s2)
求初速度:0=v0+at,v0=at=4×7=28(m/s)
解法二:逆向思维,用推论.
倒过来看,将匀减速的刹车过程看作初速度为0,末速度为28m/s,加速度大小为4m/s2的匀加速直线运动的逆过程.
由推论:s1∶s7=1∶72=1∶49
则7s内的位移:s7=49s1=49×2=98(m)
v0=28(m/s)
解法三:逆向思维,用推论.
仍看作初速为0的逆过程,用另一推论:
sⅠ∶sⅡ∶sⅢ∶…=1∶3∶5∶7∶9∶11∶13
sⅠ=2(m)
则总位移:s=2(1+3+5+7+9+11+13)
=98(m)
求v0同解法二.
解法四:图像法作出质点的速度-时间图像质点第7s内的位移大小为阴影部分小三角形面积:
小三角形与大三角形相似,有
v6∶v0=1∶7,v0=28(m/s)
总位移为大三角形面积:
小结:
1.逆向思维在物理解题中很有用.有些物理问题,若用常规的正向思维方法去思考,往往不易求解,若采用逆向思维去反面推敲,则可使问题得到简明的解答;
2.熟悉推论并能灵活应用它们,即能开拓解题的思路,又能简化解题过程;
3.图像法解题的特点是直观,有些问题借助图像只需简单的计算就能求解;
4.一题多解能训练大家的发散思维,对能力有较高的要求.
这些方法在其它内容上也有用,希望大家用心体会.
【例题2】甲、乙、丙三辆汽车以相同的速度同时经过某一路标,从此时开始甲车一直做匀速直线运动,乙车先加速后减速,丙车先减速后加速,它们经过下个路标时速度又相同.则:[]
A.甲车先通过下一个路标
B.乙车先通过下一个路标
C .丙车先通过下一个路标
D .条件不足,无法判断
点拨:直接分析难以得出答案,能否借助图像来分析?
(学生讨论发言,有些学生可能会想到用图像.)
解答:作出三辆汽车的速度-时间图像:
甲、乙、丙三辆汽车的路程相同,即速度图线与t 轴所围的面积相等,则由图像分析直接得出答案B .
根据学生分析情况适当提示.
【例题3】在平直公路上有甲、乙两辆车在同一地点向同一方向运动,甲车以10m/s 的速度做匀速直线运动,乙车从静止开始以1.0m/s 的加速度作匀加速直线运动,问:
(1)甲、乙两车出发后何时再次相遇?
(2)在再次相遇前两车何时相距最远?最远距离是多少?
要求用多种方法求解.
巡回指导.
适当点拨.
学生分析与解答:
解法一:函数求解.
出发后甲、乙的位移分别为
s 甲=vt=10t ①
两车相遇:乙甲s s ③
解出相遇时间为:t=20s
两车相距:△s=乙甲s s =10t-0.5t 2
求函数极值:当t=10s 时,△s 有最大值,△s max =50m
分析、归纳:△s 的变化
当v 乙<v 甲时,△s 增大
当v 乙>v 甲时,△s 减小
当v 乙=v 甲时,△s 最大
根据学生分析情况适当提示.
解法二:结论法求△s max .
当v 乙=v 甲时,△s 最大,
有:at=10,t=10/1=10(s )
△s max =s 甲-s 乙=10t-0.5t 2=50(m )
解法三:图像法.
分别作出甲、乙的速度-时间图像
当甲、乙两车相遇时,有s 甲=s 乙,
由图像可看出:当甲图线与时间轴所围面积=乙图线与时间轴所围面积时,有: t=20s ,即两车相遇的时间.
当v 乙=v 甲时,△s 最大.
由图像可看出:△s max 即为阴影部分的三角形面积,
六、小结
1.物理方法?
2.解决问题的策略?
(即解题思路)
3.特殊解题技巧?
学生小结:
1.物理方法:模型方法,等效方法.
2.解题思路:
(1)由题意建立物理模型;
(2)画出草图,建立物理图景;
(3)分析质点运动性质;
(4)由已知条件选定规律列方程;
(5)统一单位制,求解方程;
(6)检验讨论结果;
(7)想想别的解题方法.
3.特殊解题技巧:
逆向思维;用推论;图像法.
根据学生小结情况简评
附:同步练习
一、选择题
1.物体通过两个连续相等位移的平均速度分别为v1=10m/s,v2=15m/s,则物体在这整个运动过程中的平均速度是[]
A.13.75m/s
B.12.5m/s
C.12m/s
D.11.75m/s
2.物体由A到B做匀变速直线运动,在中间位置的速度为v1,在中间时刻的速度为v2,则v1、v2的关系为[A]
A.当物体做匀加速运动时,v1>v2
B.当物体做匀加速运动时,v1<v2
C.当物体做匀速运动时,v1=v2
D.当物体做匀减速运动时,v1>v2
3.一个物体做匀变速直线运动,某时刻速度大小为4m/s,1s后速度大小变为10m/s,在这1s内该物体的[]
A.位移的大小可能小于4m
B.位移的大小可能大于10m
C.加速度的大小可能小于4m/s2
D.加速度的大小可能大于10m/s2
4.某物体沿x轴运动,它的x坐标与时刻t的函数关系为:x=(4t+2t2)m,则它的初速度和加速度分别是[]
A.0,4m/s2
B.4m/s,2m/s2
C.4m/s,0
D.4m/s,4m/s2
5.如图1-2-10表示甲、乙两物体由同一地点出发,向同一方向运动的速度图线,其中t2=2t1,则[]
A.在t1时刻,乙物在前,甲物在后
B.在t1时刻,甲、乙两物体相遇
C.乙物的加速度大于甲物的加速度
D.在t2时刻,甲、乙两物体相遇
二、非选择题
6.一物体以1m/s2的加速度做匀减速直线运动至停止,则物体在停止运动前4s内的位移是______.
7.汽车A在红绿灯前停止,绿灯亮时A开动,以a=0.4m/s2的加速度做匀加速运动,经t0=30s后以该时刻的速度做匀速直线运动.在绿灯亮的同时,汽车B以v=8m/s的速度从A车旁边驶过,之后B车一直以相同的速度做匀速运动.问:从绿灯亮时开始计时,经多长时间后两车再次相遇?
参考答案:
1.C2.ACD 3.AD 4.D5.CD
6.8m
7.45s。