bombera tool for estimating water quality
- 格式:pdf
- 大小:556.48 KB
- 文档页数:6
环保科学技术工具法英文In recent years, there has been a growing emphasis on environmental conservation and the development of tools and technologies to aid in this pursuit. These tools play a crucial role in understanding and addressing environmental issues.One such tool is remote sensing technology, which allows scientists to observe and monitor the Earth's surface from a distance using sensors and satellites. Remote sensing provides valuable data on climate change, deforestation, land use patterns, and other environmental factors. This information helps policymakers and researchers make informed decisions and develop strategies to protect and restore the environment.Another important technological advancement is renewable energy. With the increasing concern over fossil fuel depletion and climate change, renewable energy sources such as solar, wind, and hydroelectric power have gained significant attention. These energy sources are clean and sustainable, reducing greenhouse gas emissions and minimizing environmental impacts.Furthermore, advanced waste management systems have been developed to reduce pollution and promote recycling. Bioremediation, for example, uses living organisms to clean up contaminated environments. It has proven effective in treating polluted soil, water, and air by breaking down or neutralizing harmful substances.The field of environmental science also benefits from the use of Geographic Information System (GIS) technology. GIS allows scientists to collect, analyze, and visualize spatial data, enabling them to identify patterns and make evidence-based decisions. It aids in mapping and monitoring ecosystems, identifying areas of conservation priority, and managing natural resources more efficiently.Additionally, there has been a surge in the development of eco-friendly materials and technologies. For example, bio-based plastics are produced from renewable sources instead of petroleum, reducing carbon emissions and waste. Green building materials and techniques, such as energy-efficient insulation and solar panel systems, are being widely adopted to minimize the environmental footprint of construction.In conclusion, environmental science and technology have witnessed significant advancements in recent years. These tools and technologies have allowed scientists and policymakers to better understand and address environmental challenges. From remote sensing and renewable energy to waste management systems and eco-friendly materials, the ongoing development of these tools is crucial for a sustainable future.。
钻井工程常用名词术语钻井总论钻井drilling 钻井方法drilling method 顿钻钻井cable drilling杆式顿钻rod tool drilling 绳式顿钻cable tool drilling轻便钻井portable drilling 直井straight hole 深井deep well超深井super deep well 地热井geothermal well热采井thermal production well 工程井engineering rejection well 工程报废井abandoned well 弃井abandoned well钻井设计well design 钻井质量drilling quality岩石的物理机械性质physical-mechanical properties of rock矿物的微硬度micro—hardness of rook肖氏岩石硬度Shores hardness 史氏岩石硬度Shi's hardness 矿物的弹性模量elastic modulus of mineral岩石的弹性模量elastic modulus of rock矿物的泊松比Poissons ratio mineral岩石的泊松比Poissons ratio rock矿物的切变模量shear modulus of mineral岩石的切变模量shear modulus of rock矿物和岩石的体积压缩模量bulk compressibility mineral and rock 岩石的体积压缩系数coefficient of bulk compressibility mineral and rock岩石的抗拉伸强度tensile strength of rock岩石的直接拉伸试验direct tensile test of rock岩石的巴西劈裂拉伸实验Brazilian test of rock·岩石的筒形抗内压胀裂试验burst test of hollow cyling by internal pressure岩石的常规抗压缩强度compressive strength of rock岩石的抗剪切强度shear strength of rock岩石的抗剪切强度试验shear test of rock岩石的三轴强度试验tri—axial test of rock岩石的常规三轴试验ordinary tri-axial test of rock岩石的真三轴试验true tri-axial test of rock脆性岩石brittle rock 塑性岩石plastic rock岩石的假塑性破坏pseudo-plastic breakage of rock岩石塑性系数coefficient of plasticity of rock岩石的脆塑性转变压力(临界压力)brittle plastic transitional pressure of rock岩石的库仑纳维尔强度准则Conlomb-Navier strength criterion of rock 岩石的内磨擦角和内磨擦系数angle of interal friction and coefficient of interal friction of rock岩石的莫尔强度准则Mohr strength criterion of rock岩石的格里菲斯脆性破坏准则Griffith criterion of brittle failure of rock统计强度理论statistical strength theory岩石的表面破碎surface fracture of rock岩石的疲劳破碎fatigue fracture of rock岩石的体积破碎volumetric fracture of rock岩石的单位体积破碎pecific volumetric fracture work of rock地应力in situ stress岩层的水平测向应力horizontal stress of strata测向系数coefficient of lateral pressure围压confining pressure 有效应力effective stress压持效应chip hold effect 岩石硬度减低剂rock hardness reducer岩石的可钻性drill ability of rock 岩石的研磨性rock abrasiveness钻具drilling tool 钻柱drill stem 复合钻柱combination string满眼钻柱packed hole assembly 踏式钻铤组合tapered drill collar string 钟摆钻具pendulum assembly 偏重钻铤unbalanced drill collar钻柱弯曲buckling of drill string钻具的扭转震动twisting vibration of drill string钻杆疲劳破坏fatigue-failure of drill string 上紧矩make-up torque应力减轻槽stress-relief groove 减震器vibration dampener稳定器stabilizer 井眼大扩器reamer 钻井液drilling fluids水基钻井液water—base drilling fluids淡水钻井液fresh-water drilling fluids低固相钻井液low solids fluids低固相不分散钻井液low solids non-dispersed polymer drilling fluids抑制性钻井液inhibitive drilling fluids盐水钻井液salt—water drilling fluids饱和盐水钻井液saturated salt-water drilling fluids钙处理钻井液calcium treated drilling fluids钾盐钻井液potassium drilling fluids混油钻井液oil—emulsion drilling fluids生物聚合物钻井液biodegrability drilling fluids油基钻井液oil base drilling fluids反相乳化钻井液invert-emulsion drilling fluids平衡活度钻井液balanced activity drilling fluids泡沫钻井液foam drilling fluids 密闭液sealing fluids完井液completion fluids 封隔夜packer fluids解卡浸泡液stuck freeing spotting fluids钻井液性能properties of drilling fluids滤失filtration API滤失量API filtration高温高压滤失量high temperature and high pressure filtration动滤失量dynamic filtration 滤饼filter cake 含砂量sand content 钻井液固相含量solids content in drilling fluids亚甲基兰实验methylene blue test石灰含量lime content estimation钻井液的酚酞碱度P m alkalinity 滤液酚酞碱度P t alkalinity 滤液甲基橙碱度M f alkalinity 造浆率yield破乳电压emulsion-breaking voltage钻井液流变性drilling fluids rheology 漏斗粘度funnel viscosity触变性thixotropic behavior 静切力gel strength初切力initial gel strength 终切力10—minuto gel strength 剪切降粘特性shear—thinning behavior钻井液受污染contamination of drilling fluids粘土侵clay contamination 盐侵salt contamination盐水侵salt water contamination 钙侵calcium contamination砂侵sand contamination 水侵water contamination气侵gas contamination 钻井液处理剂mud additives降失水剂filtrate or reduction agents 增粘剂thickening agent膨润土增效剂agents of increasing bentonite降粘剂thinning agents 加重剂weighting agents堵漏剂lost circulation materials 水敏性页岩water-sensitive shale膨润土的预水化pre—hydrated bentonite 固相控制solid control 钻屑cutting 砂sand 泥silt 胶体颗粒colloidal solids钻进drilling 钻进技术drilling technology钻进技术参数drilling parameters 钻压weight on bit悬重和钻重string suspending weight and drilling weight转速rpm—revolution per minute 排量rate of flow零轴向点zero axial stress point 中性点neutral point开钻spud in 完钻finishing drilling 送钻bit feed方余和方入kelly-up and kelly-in 进尺footage机械钻速penetration rate 鳖钻bit bouncing 跳钻bit jumping干钻drilling at circulation break 打倒车reverse rotation table钻头泥包bit balling 划眼redressing 扩眼reamin1放空drilling break 吊打easing the bit in 纠斜hole straightening 侧钻sidetracking 单根single 双根double立根stand 接单根king a connection 起下钻trips知起下钻short tripping 活动钻具move the drill string上卸扣make up and break out 换钻头change bit鼠洞rat hole 小鼠洞mouse hole 喷射钻井jet—bit drilling射流jet flow 冲击射流impact jet flow 汽蚀射流·cavitation jet 射流扩散角和扩散系数spread angle and spread coefficient of jet射流等速·patential core of jet 漫流cross flow 射流喷速jet velocity 射流速度降低系数decreasing coefficient of jet velocity射流动压力dynamic pressure of jet flow射流压力降低系数coefficient of jet—flow pressure drop射流冲击力jet impact force 射流水功率jet hydraulic-power喷射距离jet length 清洗井底bottom-hole cleaning钻头压降bit pressure—drop 钻头水功率bit hydraulic horse—power喷嘴nozzle 等变速喷嘴nozzle with iso-variable velocity流线形喷嘴streamline nozzle 喷嘴流量系数nozzle orifico coefficient钻井液循环系统drilling fluids circulating system钻井液流态flow pattern 平板层流flat plate laminar flowZ值Z—value 喷射钻井的工作方式The working regime of jet drilling最大钻头水功率工作方式The regime of the maximum bit hydra-ulic horse—power最大射流冲击力方式the regime of the maximum jet-impact force最大射流喷速工作方式The regime of the maximum jet velocity经济水功率工作方式the regime of the economic hydraulic horse—powerjet bit 喷射式钻头optimum rate of mud flow 最优喷嘴直径optimum nozzlo diameter临界井深和极限井深critical well depth and limited well depth钻井泵的工作状态the working regime of drilling pump钻井泵的最大排工作状态(额定工作功率工作状态)the maximum flow rate regime of the drilling pump (the rated power regime of the drilling pump)钻井泵的调节排量工作状态(允许压力工作状态)the regulated flow rate regime of the drilling pump(the rated power regime of the drilling pump)携带岩屑cutting carrying 岩屑运移比cutting transport ratio环空岩屑浓度solid concentration in annular space钻井泵效率rate of utilized power of the drilling pump钻井泵水功济利用率rate of utilized hydraulic power of the drilling pump优化钻井技术optimum drilling technology 控制井control well钻井可控参数controllable drilling variables钻井不可控参数non controllable drilling variables钻井目标函数(钻井泛函)objective function of drilling procedure钻进过程的数学模型mathematical model for drilling procedure钻速方程equation for drilling rate二元钻速方程drilling rate equation in two variables多元钻速方程multi—variable drilling rate equation最大允许钻压maximum allowable weight on bit最优钻压optimum weight on bit 钻速系数factor of penetration rate 地层研磨性系数factor of formation abrasiveness牙齿磨损系数tooth wear coefficient轴承工作系数working coefficient of bearing五点法钻速试验“five spot” drill—off test井下动力钻井hole bottom power drilling涡轮钻井turbo—drilling 涡轮钻具turbo-drill 电动钻具electric drill 螺杆钻具positive displacement motor涡轮工作特性characteristics of turbine涡轮的水力载荷hydraulic load on turbo—drill涡轮钻具井底工作特性hole-bottom working characteristics of turbo—drill涡轮钻具最优工作区optimized working zone of turbo—drill涡轮钻具合理转速optimum revolution of turbo—drill涡轮钻具最优排量optimum capacity of turbo-drill涡轮不稳定工作区unstable working range turbo—drill有效钻压effective bit—weight涡轮钻具井底功率传递系数transfer coefficient of bottom hole power of turbo—drill涡轮钻具特性系数characteristic coefficient of turbo—drill涡轮的水力效率hydraulic efficiency of turbo—drill涡轮钻具合理钻进深度optimum drill depth of turbo-drill涡轮-泵组联合特性combined characteristics of turbo-drill—pump涡轮钻具轴向间隙的调节axial clearance regulation of turbo-drill钻具滤清器drill pipe filter 启动阀starter gate valve低速大扭矩涡轮钻具love-speed high-torque turbo-drill复式涡轮钻具compound turbo-drill定向井directional well 定向要素directional elements井斜角inclination 方位角azimuth 井斜变化率rate of inclination change方位变化率rate of azimuth change 井眼曲率hole curvature垂深和测深vertical depth and measured 水平投影长度hole deviation 水平位移displacement or closure distance 多底井multi-bore well水平井horizontal well 丛式井cluster well or multiple wells救除井relief well 双筒井dual wells套管开窗starting window on casing 造斜deflecting or building angle 增斜increasing hole angle or build—up hole angle降斜decreasing hole angle or build—off hole angle稳斜maintain angle井身垂直投影图vertical projection of borehole井身水平投影图horizontal projection of borehole正切法tangential method 平衡正切法balanced tangential method 平均角法average angle method曲率半径法radius of curvature method 圆弧法arc method 最小曲率法minimum curvature method圆柱螺线法cylinder helix method 悬链线轨迹·catenary shape profile 控制圆柱control cylinder 造斜工具deflecting tool槽式变向器whip—stock 短涡轮short turbo—drill钻铤造斜短节short bent collar 涡轮偏心短节turbo—eccentric sub 复式弯涡轮bent multi-turbo-drill水力斜接头hydraulic bent sub Dyna-flex 瓦片变向器rebel tool造斜工具面tool face 造斜率rate of over—all angle change井眼方位漂移walk of hole 装置角tool of rotation工具面角tool face azimuth 动力钻具反扭角reactive torque定向方位角tool face bearing or tool face setting磁偏角magnetic declination 随钻测量measurement while drill(MWD)单点测斜仪single shot instrument多点测斜仪multi—shot instrument 陀螺测斜仪gyroscopic instrument 定向orientation定向下钻orientation while going in hole磁力定向法magnetic orientation method斜口管鞋定向法mule—shoe orientation method取心coring 岩心core 岩心收获率recovery of core取心方法coring method局部反循环取心coring with local inverse circulation长筒取心core drilling with long core barrel密闭取心sealing core drilling保压取心core drilling with keeping formation pressure定向取心orientation coring 绳索取心wire line coring取心工具coring tools 岩心筒core barrel单筒式岩心筒single type core barrel双筒式岩心筒core barrel of double tube swivel type内岩心筒inside core barrel 外岩心筒outside core barrel喷射式岩心筒core barrel of jet type 取心钻头coring bit牙轮取心钻头coring cone bit 金钢石取心钻头diamond coring bit硬质合金取心钻头hard metal coring bit 涡轮取心钻头turbo—core bit 涡轮取心钻具turbo-core drill 岩心爪core gripper卡瓦式岩心爪core gripper with slip卡簧式岩心爪core gripper with slip-spring板簧式岩心爪卡core gripper with slip—spider箍式岩心爪core gripper with slip-collar割取岩心core breaking机械加压割心法core breaking by mechanical loading投球割心core breaking by hydraulic pressure投砂割心core breaking by pumping down顶岩心core extracting各种压力概念concept of pressure 静液压力hydrostatic pressure钻井液压力drilling fluid column pressure孔隙压力pore pressure (formation pressure)上覆岩层压力overburden pressure 颗粒压力grain to grain pressure 压力梯度pressure gradient 压力监控pressure detection and control 异常压力及其形成abnormal pressure and it’s formation压力异常abnormal pressure 压实作用compaction欠压实imcompaction 不渗透围栅·permeabillity barrier快速沉积rapid deposition构造型异常高压structural abnormal pressure 地层压力检测方法method of formation pressure detection地震资料法seismic data method机械钻速法penetration rate method d指数法d—exponent method dc指数法dc-exponent method标准化钻速法normalized penetration rate页岩密度法shale density溢流观测法take a kick 天然气录井检测法gas logging氯化物检测法chloride log 钻井液录井法drilling fluid log返出钻井液温度检测法flow-line temperature化石资料法paleo—information 地球物理检测法wire-line logs中途测试drill—stem testing 完井测试well completing test综合录井仪computerlized apply drilling technology地层破裂压力formation fracture pressure地层破裂压力预报方法formation fracture pressure prediction漏失试验法leak—off test胡伯特-威利斯法Hubbert and Willis approach马修斯—凯利法method of Matthews and Kelly伊顿法method of Eaton 安德森法Anderson’s method艾克斯劳格法Exlog method 黄荣樽法Huang’s method地层井眼系统的压力平衡balance of formation-borehole system地层压力当量钻井液密度equivalent drilling fluid density钻井液当量循环密度equivalent circulating density附加压力当量钻井液密度additional pressure equivalent density当量深度equivalent depth 钻柱排代量drilling fluid displacement 波动压力(激动压力)surge pressure 抽汲压力swabbing pressure气体上窜gas channeling天然气偏差因子the coefficient of gas compressibility溢流overflow 井涌kick 井喷well blowout地下井喷underground blowout 井喷失控out of control for blowout 循环池液体增量pit gain 压力过渡带pressure transition zone压井killing well 关井closing well 硬关井hard closing软关井soft closing 压井方法killing well method工程师法(等待加重量法)engineer’s method司钻法(二次循环法)driller’s method边加重边循环法concurrent method 空井压井empty well control 置换式压井法(顶部压井法)displacement method反循环inverse circulating 循环周circulating circle节流循环circulating with choke防喷设备和工具blowout prevention tools and equipments防溢管·bellnipple 钻井液流量计drilling fluid flowing indicator 泵冲数计pump-stroke counter钻井液液面指示器pit—volume indicator真空除气器·vacum degasser 硫化氢监测仪H2s detector井控模拟装置well control simulator井喷失控的处理well blowout control 抢装井口installing wellhead 扣装法抢装井口buckling-up—installing wellhead翻转法抢装井口turning—up-installing wellhead整体吊装法抢装井口whole hanging method for installing wellhead带帽子压井法·hatting kill well method下封隔器压井killing well with packer method换井口套管casing replacing 灭火extinguishing喷射水流灭火法jet fire extinguishing method爆炸灭火法explosion method 灭火剂extinguisher固井well cementing 套管程序casing program 导管conductor 表层套管surface casing 技术套管intermediate casing strings生产套管production casing 套管柱casing string套管柱下部结构casing accessories 引鞋guiding shoe套管鞋casing shoe 套管扶正器·centralizer 泥饼刷·wall scratcher 浮籀float collar 套管承托环cement baffle collar 旋流短节vortex sub 浮鞋cementing float collar 水泥伞cementing basket注水泥胶塞cementing plugs 通径规drift diameter gauge套管的外载荷outside casing load 套管内压力burst套管外挤压力collapse pressure 套管轴向力axial load套管强度casing strength 套管抗挤强度collapse resistance套管抗拉强度tensile resistance 套管抗内压强度burst resistance下套管running casing 活动套管moving casing预应力preceding stress 人工井底artificial bottom of a well磁性定位短节magnetic locator sub固井工具与设备tools and equipments for running casing and cementing 套管吊钳casing tong 套管吊卡casing elevator卡盘casing spider 联顶节top connecting collar水泥头connect head 水泥车connecting truck井口装置wellhead equipment 注水泥?connect油井水泥oil well connecting 低密度水泥light weight connect膨润土水泥·bentonite connect 速凝水泥accelerated cement膨胀水泥expansion cement 纤维质水泥fiber cement树脂水泥(浆)resin cement 油基水泥(浆)diesel-oil cement橡胶水泥(浆)latex cement 酸溶性水泥acid dissoluble cement 石膏水泥混合物·gypsam cement 火山灰水泥·pozzolan cement 抗盐水泥salt-resisting cement双凝水泥浆separable setting cement slurry冷井水泥和热井水泥ordinary and hot cementAPI水泥分级API cement classification水泥浆性能及其调节cement properties and adjustments of them稠度仪consist—meter 水泥浆流动性mobility of slurry水泥浆密度slurry density 水泥浆滤失量slurry filtration出口温度井底温度和循环温度flow—line temperature bottom temperature and circulation temperature水泥浆失重losing weight slurry 水泥石强度cement strength水泥石渗透性permeability of set cement水泥石的射孔性perforating quality 水泥浆外加剂cement additive 速凝剂accelerator 缓凝剂retardant 减阻剂friction reducer降密度剂light weight additive 降失水量filtrate reducer水泥浆加重剂heavy weight additive 隔离液spacer fluid前置液ahead fluid 尾随液tail fluid 注水泥方法cementing methods 常规注水泥法typical primary cementing双级注水泥法two stage cementing插入注水泥法inner pipe cementing 多管注水泥法·multi—plezone completion cementing打水泥塞cementing plug平衡法打水泥塞balance method for cementing plug倾筒法打水泥塞dump bailer method 挤水泥squeeze method井口挤水泥法·braden head squeeze method封隔器挤水泥法squeeze packer method高压挤水泥法high—pressure squeeze method低压挤水泥法low-pressure squeeze method尾管固井drilling liner cementing 尾管悬挂器drilling liner hanger 窜槽cement channeling 完井方法completion methods裸眼完井法open hole completion先期裸眼完井法initial open hole completion后期裸眼完井法final open hole completion射孔完井法perforation completion单管射孔完井法single pipe perforation completion多管射孔完井法multiple pipe perforation completion无油管完井法·tubingless completion永久完井法permanent completion无封隔器单层永久完井法single pipe permanent completion without packer单封隔器永久完井法permanent completion with single packer封隔器射孔完井法permanent completion with packer负压射孔perforating with negative pressure过油管射孔perforating through tubing贯眼完成法perforated pipe completion衬管完井法liner perforation completion砾石充填完井法gravel packer completion深井完井法deep hole completion高含硫气井完井法high H2s gas well completion地层损害程度formation damage degree地层损害带formation damage zone水动力学程度不完善井hydrodynamic degree incompleteness well水动力学性质不完善井油井hydrodynamic property incompletion well 完善系数well completeness factor 损害比damage ratio趋肤效应shin effect 开采比production ratio损害系数damage factor 完井系数completion factor钻井设备drilling equipment 设备安装rig up钻前工作preliminary work for spudding 井场布置layout平井场levelling 圆井cellar 基础ground foundation base活动基墩removable foundation 井架安装derrick installation扒杆gin pole 井架安装绞车winch 穿钢丝绳string up死绳固定器dead line anchor 设备校正alignment井口找中center for well 整体搬迁skidding the rig成组安装package installation 泥浆管汇mud pipeline猫头绳cat—line 高悬猫头绳drill rope大钳尾绳safety line 大门绷绳front guy(lines)井架绷绳derrick guy 接链器chain spanner钻井数据系统drilling data system钻井数据采集装置drilling data acquisition钻井数据实时处理装置drilling data processing钻井数据库drilling data base 钻井信息drilling information钻井参数传感装置drilling parameter sensing unit指重表传感器weight sensor 进尺传感器drilling footage sensor转盘扭矩传感器rotary table torque sensor转盘转速传感器R.P。
高二英语地质勘探单选题40题1.Geologists use a variety of tools for exploration. One of the essential tools is a _____.passB.hammerC.satelliteD.microscope答案:B。
hammer(锤子)是地质学家进行地质勘探时常用的工具之一,可以用来敲碎岩石进行观察。
compass( 指南针)主要用于确定方向,在地质勘探中不是最主要的工具。
satellite( 卫星)通常用于大范围的地理信息获取,不是直接用于地质勘探的工具。
microscope 显微镜)一般用于微观观察,在地质勘探现场不是主要工具。
2.In geological exploration, a _____ is often used to measure the thickness of rock layers.A.rulerB.tape measureC.sonar deviceD.protractor答案:B。
tape measure( 卷尺)可以用来测量岩石层的厚度。
ruler 尺子)一般较短,不太适合测量较厚的岩石层。
sonar device(声呐设备)主要用于水下探测,与测量岩石层厚度关系不大。
protractor( 量角器)主要用于测量角度。
3.When studying the structure of the earth, geologists often rely on a _____.A.televisionputerC.telescopeD.ground-penetrating radar答案:D。
ground-penetrating radar 探地雷达)可以帮助地质学家研究地球的结构。
television(电视)主要用于娱乐和信息传播,与地质勘探无关。
computer(电脑)可以用于数据处理,但不是直接用于研究地球结构的工具。
小学上册英语第3单元测验卷英语试题一、综合题(本题有100小题,每小题1分,共100分.每小题不选、错误,均不给分)1.What do you call the act of moving quickly on foot?A. WalkingB. RunningC. JumpingD. DancingB2.What is the main ingredient in sushi?A. RiceB. NoodlesC. BreadD. PotatoesA3.How many colors are there in a rainbow?A. 5B. 6C. 7D. 84.The chemical formula for barium sulfate is _______.5. A __________ is a tool used to measure volume.6.What do we call a scientist who studies the Earth?A. BiologistB. GeologistC. ChemistD. AstronomerB7. A ____ is known for its hopping and quick movements.8.My ________ (朋友) is planning a birthday party this weekend.9. A ________ (气候带) refers to the climate of an area.10.The Grand Canyon was formed by the erosion of the Colorado ______.11.The _____ (生态系统服务) includes clean air and water.12.The chemical formula for ammonium sulfate is ______.13.My brother is my best _______ because we play together.14.They go to school __________.15.My mom enjoys __________ (与朋友共度时光).16.What do you call a person who travels into space?A. PilotB. AstronautC. ScientistD. Engineer17.Which fruit is usually red and round?A. BananaB. AppleC. OrangeD. GrapeB18.__________ (分子动力学) studies how molecules move and interact.19.What is the shape of a basketball?A. SquareB. TriangleC. OvalD. Sphere20.The weather is _______ (非常好).21.What is the primary color that, when mixed with blue, creates green?A. YellowB. RedC. OrangeD. PurpleA22.I enjoy making ________ (手工艺品) for my family.23.Which animal is known as "man's best friend"?A. CatB. DogC. RabbitD. BirdB24.The capital of Zambia is ________ (赞比亚的首都是________).25. A ____(stakeholder) is anyone affected by environmental decisions.26.How many continents are there?A. FiveB. SixC. SevenD. EightC27.The ancient Greeks held _______ to celebrate their gods. (运动会)28.What do you call a group of wolves?A. PackB. FlockC. SwarmD. HerdA29.What do you call the person who helps you learn in school?A. DoctorB. TeacherC. CookD. Driver30.What do we call the area of land that is surrounded by water?A. PeninsulaB. IslandC. ArchipelagoD. AtollB Island31.The chemical symbol for gold is ______.32.The _______ (The Great Society) aimed to reduce poverty in the 1960s.33.What do you call a large, fluffy animal that lives in the Arctic?A. Polar BearB. Grizzly BearC. Black BearD. Kodiak BearA34.What instrument has keys and is played by pressing them?A. GuitarB. DrumsC. PianoD. Flute35.What do we call the study of the earth?A. BiologyB. GeographyC. AstronomyD. ChemistryB36.What do we call a baby elephant?A. CalfB. FawnC. CubD. JoeyA37.The ______ (鸟) chirps happily in the trees.38.The falcon is a _________ bird. (猛禽)39.The ______ is known for her artistic flair.40.My toy ____ helps me learn new things. (玩具名称)41.The rain is ___. (falling)42. A _______ provides food and shelter for animals.43.What is the name given to the first human-made object to orbit the Earth?A. Apollo 11B. Voyager 1C. Sputnik 1D. Hubble Space Telescope44.What is the opposite of beautiful?A. UglyB. PrettyC. AttractiveD. LovelyA45.She is _____ (studying) for her test.46.How many bones are in a child's body?A. 206B. 205C. 300D. 25047.The rainbow has ______ colors. (many)48.My friend has a ______ dog. (我的朋友有一只______狗。
水利英语高级试题及答案一、选择题(每题2分,共20分)1. Which of the following is a common method in water resource management?A. Flood controlB. Drought preventionC. Water quality protectionD. All of the above2. The term "runoff" refers to:A. The flow of water over the surface of the landB. The flow of water undergroundC. The flow of water in a riverD. The flow of water in a reservoir3. What is the primary purpose of a dam?A. To store water for irrigationB. To generate hydroelectric powerC. To prevent floodingD. Both A and B4. In the context of water management, "evaporation" is the process by which:A. Water is turned into vapor and leaves the surface of the water bodyB. Water is filtered through soilC. Water is diverted from one area to anotherD. Water is treated to remove impurities5. The acronym "WQI" stands for:A. Water Quality IndexB. Water Quantity IndicatorC. Water Quality ImprovementD. Water Quality Information6. What is the role of a spillway in a dam?A. To allow excess water to flow over the damB. To control the flow of water through the damC. To generate electricityD. To store water for later use7. The process of "infiltration" in hydrology refers to:A. Water seeping into the soilB. Water flowing over the surfaceC. Water evaporating from the surfaceD. Water being discharged from a reservoir8. What does "precipitation" mean in the field of hydrology?A. The amount of water that falls from the skyB. The process of water being purifiedC. The process of water being storedD. The process of water being distributed9. The term "transpiration" is associated with:A. The release of water vapor from plantsB. The evaporation of water from a body of waterC. The flow of water through a pipeD. The process of water being filtered10. A "watershed" is defined as:A. An area of land that drains all the streams andrainfall to a common outletB. A dam used to store waterC. A method of water purificationD. A device for measuring water flow二、填空题(每空1分,共10分)11. The process of water moving through the soil and reaching underground water sources is known as ________.12. A ________ is a natural or artificial embankment built across a watercourse to control the flow of water.13. The ________ is a measure used to describe the amount of water in a given area.14. A ________ is a device used to measure the flow rate of water in a stream or pipe.15. The ________ is the study of the distribution, movement, and quality of water on Earth.三、简答题(每题10分,共20分)16. Explain the concept of "sustainable water management" and its importance in modern society.17. Describe the role of a reservoir in water resource management and its environmental impacts.四、论述题(每题15分,共30分)18. Discuss the challenges faced in water resource management in developing countries and propose potential solutions.19. Analyze the impact of climate change on water resources and the strategies that can be employed to mitigate these effects.五、翻译题(每题5分,共10分)20. Translate the following sentence from English to Chinese: "Effective water management is crucial for the health of ecosystems and human societies."21. Translate the following sentence from Chinese to English: "水文循环是自然界中水分子在大气、地表和地下之间不断循环的过程。
2 position3 way air control valve3 position,4 way reset operating valve 4-class wind6 sets chainabandoned wellac drive cubiclesac induction motorAC.generatorAC.motoraccelerated velocityaccelerating wellaccelerationaccess dooraccessoriesaccessory supporting poleaccessory’ manifoldaccumulatoraccumulatoraccumulator unitacid numberactive boreactive tankactuatoradapteradapteradditional equipmentadjustable nozzleadjustable support seatadjusting screw nutadjusting screw rodadjusting shimadjusting washeradjustmentaerated drilling fluid drillingA-frame of substructureageing crackaging treatmentair lockair balloonair breaker’s coverair cement gunair chamberair charging hose assy.air compressorair compressor houseair compressor roomair conditioned roomair conditioningair connectorair control boxair control systemair cooled cabinet.air cooled force ventilation. air coolerair cylinder reverse valveair dryerair filterair gunair hoistair hoisterair holder’s frameair hornair inlet shut offair intake filterair leakageair operated ratio pumpair pipelineair receiverair receiver tankair receiversair ride suspensionair rotary connectorair silencerair sourceair source cleaning deviceair spaceair spiderair systemair tankair tube clutchair tuggerair tuggersair tyreair valveair vent holeair way valvesair winchair(gas) drillingair-break switchair-control limit valveairlosingair-tube clutch shiftalarm panel hornalbany lube greasealigning pinalignment ringAlison transmisionsalligator-hide crackalloy steelalter-cooledalternative designalternatively magnetic contactor alternatoraluminum foilA-mastamber lampambient temperatureambient temperatureammeteranalog pumpanchor pin lock nutancillary equipmentancillary equipment.angle and position deviationangle braceangle steelangle supportangular contact ball bearingannealing heat treatmentannual currentannular blowout preventorsannular radiating air channelannular spaceansul carbon dioxideanti-adhesivesanti-bacteria materialsanti-clash ( crown block saver ) valve anticlineanti-collision release valveanti-condensations heatersanti-corrosionanti-corrosion treatmentanti-rust greaseappendixappointed delegateappraisal wellarctic rigarm leverarmoredarmourd cablearound the fundamentalarresting nutarresting pinA-shaped derrickassemble the mastassembling pinassembly drawingassembly floorassembly handrailassembly platformassembly supportassistant motormanattachmentsaudio deviceaudio visuai alarmsausteniteauto disk brake.automatic back pressure requlator automatic drillerautomatic feed drillerautomatic pipe rackautomatic transmissionauxiliary brakeauxiliary pedestal craneauxiliary sheaveauxililary hoistaxial clearanceaxial directionaxialityaxil loadaxle pinback baseback beam of drawworksback floor boardback offback pressure valveback pressure valvesback up protection.backing pinback-offbackupback-up attechmenbafferbafflebaffle platebaffle platebail’s pinbail’s seatbailerbailing drumbalancebalance boxbalance sheavebalanced drillingball barball valveballastBar for pin retreatbare drumbarefootbarefoot weelbarrelbarrelbarrel linerbarrel-drainbasal crackbase beamsbase framebase girdersbase holebase on fundamentbase sectionbasketbead crackbeam of variable cross section beam pumpbeam pumping unitBearingbearing brokenbearing capBearing carrierbearing coverbearing enclosurebearing external ringbearing housingbearing inner ringbearing matbearing ratingbearing seatbearing seat coverbearing’sbearing’s lube oilbearing’s motion spacebearing’s roller and housing ring beginning spotsbelay slingbell guidebell nipplebell nipplesbelly boardbelt brakebelt guardbelt guardbelt sheave guardbench sectionbench testbench workerbend housing mud motorbend pipebend subbending crackbending subbent beambevel gearbidderbig geared ringbig inch pipebit HHPbit bouncingbit breakerbit conebit coursebit dresserbit edgebit footagebit freezingbit guidebit hitbit holderbit hydrauliesbit inclinationbit jumpingbit lifebit loadbit side forcebit subbit thrustbit tiltbittom plugbladderbladder for clutchblast gunblind ditchblind flangeblind flangesblind headblind plateblind ramblind-shear ramblock phenomenon.blowoutblowoutblowout controlblowout hookupblowout oil wellblowout plugblowout preventerblowout preventer stackblue elephantboard fingerbody injuredboilerboilerbolt stickbolts loosenbolts nutsbonnetbonnetboom poleboomerbooster cylinderBop control systemBOP pulley device (hydraulic) BOP stackbop test equipmentbore cutbore holeborehole televiewerbottom flangebottom open sizebottom platebottom plugbottom radiusbottom sidebottom side doorbottom side door hanger chain bottom support ringbottom-hole assemblybottom-linebounce cylinderbow beambowl sizebox and pinbox covebox on boxbox spannerbox tapbox type substructurebracebracebrace framebracing systembracketbrake axlebrake barbrake bandbrake bandbrake blockbrake blockbrake crankbrake discbrake drumbrake drum of sand reelbrake friction blockbrake handlebrake hubbrake leverbrake linkagebrake machanismbrake pedalbrake radiatorbrake rimbrake shoesbrake shoesbrake strapbrake tongsbrake torquebrake valvebraking chopper section. braking resistance section.branch manifoldbrazingbreadboardbreak out catheadbreakdown switchbreakoutbreakout tongbreakout catheadbreak-out tongsbridge linkbridge overbridge steel platebridging beambridlebrief Introductionsbright annealed wirebright wire ropebucketsbufferbuffer devicebuffer hydraulic cylinderbuffer oil-cylinderbugbuild-inbuilt-for-purpose toolsbulkhead jointbumperbumper pinbumper subsbumpersbundlebusbus barbus potential电压 & control transformer. bus tie switchbushingbushing hookbushing’s locking pinbusterbutt weldbutt weldbutt weld hammer unionbutterfly nutbutterfly valvesbuttress threadebuzzerby eyeby pass line.by-pass valvecabinetcablecable drillingcable elevatorcable entrycable glandcable hookupcable tool drillingcable traycable traycable traycable troughcable wireCage laddercalibrationcalipercam mechanismcampcamp generatorcamp kitchencantilevercantilever beamcantilever beam leg mast stem cantilever hoist frame canvasscap pincap rockcap screwcapabilityCapscrewcapsizcapstan headcapstan winchcapsulecapsule guncarbide insert bitcarbon steelcarbon structural wire carburizing steelcardan shaftcarpetcarriercarrier mounted rigcarrier rodcarring capacitycartridge type construction case hardencased holeCasing programcasing adaptercasing anchorcasing bowlcasing bridge plugcasing centralizercasing check valvecasing clampcasing collarcasing couplingcasing cuttercasing dogcasing drift swagecasing elevatorcasing fill up linecasing gradecasing guide shoecasing headcasing head spoolcasing holecasing hungercasing jobcasing mandrelcasing millcasing milling toolcasing nipplecasing packercasing protectorcasing rollercasing roller chaincasing shoecasing slipcasing spoolcasing stabbing board casing stabbing board casing steckingcasing subcasing swivelcasing tapcasing tongcasing wallcasing whipstockcasingless completion castellated shaftcasting and welded structures casting crackcasting headcastingscat linecat line sheave bracketscat walkscataloguescatch framecatchallcaterpillar diesel engine catheadcatilever mastcatworkscave-inceiling frameCellarcementcement plugcement slurrycementing jobcementing plugcenter distanceCenter heightcenter linecenter pipecenter shaftcenteringcentifying anencycentilever polecentral control room centralizercentrifugal pumpcentrifugecertain slopecfmchain wheelchain casechain drive caseschain hoistchain pinchain platechain pumping unitchain sprocketchain tightnesschain tongschain transmissionchain’s platechain’s ringchains in oilfieldchair stopchamberchamberchamberchange gearchannel powerdchannel steelchannelschannel-section steelcharging hosecharging pumpcharging pumpchart recordercheck aeratingcheck valvecheck windowchecker platecheckered platechemical heat treatmentcherry pickerchev(e)ron gearchill crack(s)choke and kill linechoke manifoldchoke valvechopper switchchristmas treechromate treatmentcircle jackcircuit breakercircuit breakerscircular ended wrenchcircular gearcircular tooth gearcirculating watercirculation manifoldCirculation Systemcirculation tankcircumferential crackclamping headclampsand cables.classification for hazardous area clean out coverclean out gates.cleaning gateclear head roomClear heightclear working height clearanceclear-water drilling cleavage crackclevisclevis pinclimbing Safety Device climbing safety device close circuit camera closed circuit radiator closed loopclosing unitclosurecluster shveavescluster wellclutchclutch guardcoach wrenchcoat paintcoatingcode devicecoil factorcoiled tubingcoiled tubing connecor coiled tubing string coiled tubing unit coilled tubing drlling colapsingcold air capacitycold crackcold rolled steelcold startcold start compressor cold treatmentcold-finishedcollarcollecting platform collisioncombi BOPcombination drilling commutationswitch companion flange compartmentcompasscomplementary procedure complete checkCompound adapter chain compound boxcompound corrosion remover compount driven compressed air compression nut compulsory lubrication concerte platform conductor pipeconnecting angle steel connecting beamconnecting bolts Connecting frame connecting nutconnecting parts connecting surface Connection base Connection floor connection lineconnection plate connection rodConnectorconnectorconnector threadconstant section beam contactorcontactorcontainercontinuous drilling torque contour forging contraction crack contractorcontrol panelcontrol air linecontrol cablescontrol consoleControl down speedcontrol handlecontrol interfaceControl levelcontrol panelcontrol pipelinescontrol roomcontrol valvecontrol valve partscontrolled atmosphere heat treatment controlswitchconventional beam pumping unit convertorcool liquidcoolantcooled water circuitcooling coil(ed) pipecooling fancooling water circulating device coplanerCopper Pipecopper washercopper woundcopying lathecordex compressioncorecore traycore barrelcore barrels.core boxcore cablecore drillcore drilling rigcore holecore pincore runcore slicercored intervalcorner postcorrect driftcorrected parametercorrosion fatigue breakcorrosion resistant alloycorrugated platecotter keycotter pincounter balancecounter nutcounter shaftcounter weightcounter weightscountershaftcouplingcouplingcover assy.cover gate of guardcover or eye hole cover cover platecovibrationcowlcrackmetercradlecranecranecranecrane boom supportcrankcrank pincrank-balanced pumping unit crank-quide blue elephant crankshaftcrankshaft assemblycraze crackcreeping crackcrevasse crackcrimpcrimped steelcrimped-steelcritical conditioncrooked holecross beamcross bracecross bracingcross checkcross crackcross girdercross membercross pin headcross sectioncross shaftcross-countrycrossheadcrosshead bearing crosshead doorcrosshead extension crosshead guideCrosshead guide (Lower) Crosshead guide (upper) Crosshead pinCrosshead pin bearing Crosshead pin retainercrosshead wrist pin nut crossing direction crossover flanges crossover subcross-over subcrossover subscross-pin type joint crow‘s nestcrown assemblecrown blockcrown block beamcrown block cranecrown block platform crown block protector crown blocks saver crown drillcrown jibcrown platformcrown protectioncrown pulleycrown pulleycrown safety platform crown sheavescrown valvecrown-0-maticcrown's nestcrude oilcryogenic properties cryogenic steelcubiclescupscurve of functioncurved box beamcurved experiment custom-build angle steel cut-away drawingcut-off valvecutting liftingcutting sleevecyclonecylinder linercylinder blockcylinder bodycylinder covercylinder flangecylinder Headcylinder headcylinder Head Seal cylinder linercylinder manifold cylindrical pin cylindrical shelldaily checkdamagedamp pumpdasanderdata of weight indicator dc bus over voltage.DC electric drive mode DC motorDC.generatordead linedead line clampsdead loaddead loaddead volume fluiddead windowdead zonedead-enddeadline anchordeadline pulleydeadline sheavedeadline stablizaze dead-melted steel deadweightdecanting compartment deckarddecompression tapdeep welldeflecordeflection tool deflectordefoamerdefrosterdegaserdegaser pumpsdegasserdegassing equipment dehumidifierdelivery linedelivery manifold delivery valve dependabilitydeposit tankdepth gaugederiated wellderrickderrick base sizederrick bracederrick cellarderrick crownderrick floorderrick floor sillsderrick guy linederrick handling truckderrick legderrick memberderrick norminal heightderrick panelderrick subderrickmandesanderdesanderdescalerdescend of pipeline pressuredesert drilling rigdesert tiredesign criteriadesilterdesilterdevelopment welldeviated holedew pointdewaxing tooldiagnostic of faultdial gaugedial indicatordialsdiameter of linerdiamond tread platediaphragm stuffing boxdidcharge assembly & acc’manifold diesel compounddiesel day tankdiesel electric setdiesel enginediesel pneumatic motordifferflange beamdiffusing heat treatmentdigimatic operating platedigimatic traveling block protectordigital datadigital gaugesdigital readoutsdigital spm indicatordimensional measurements.diode bridgedipstickdirect gear/chain drivendirect overflow valvedirectional drillingdirectional welldisalignmentdisassembly blindlydisasterdisc brake systemdischarge Moduledischarge elbow assy.discharge end of pumpdischarge hole baffledischarge line pulsation dampener discharge manifolddischarge pipedischarge pressuredischarge stand pipedischarge strainerdischarge strainer assy. discharge traydischarge valvedisk brakedisk clutchdismantle the bearing striking dismantle the sprocket displacementdisplacement efficiency distribution boardsdistribution boxdistribution transformersditchdiversion ditchdiverterdiverterdiverter valvedividerdog housedog house position device doghousedome-shoped structuredouble actingdouble drumdouble function swiveldouble helical (spur) geardouble hookerdouble lip oil sealdouble pipe clampdouble row self-alignine spherical roll bearing double scale pressure gaugedouble spiral geardouble studdeddouble-acting hydraulic jackdouble-bevel groove welddouble-reduction bevel-spur geardouble-row conical roller bearingsdouble-row roller bearingdown hole motor drillingdownhanddownhilldownholedown-hole drill toolDP elevatordraindrain cockdrain valvedrainage ditchdrawer file cabinetdrawer filing cabinetdrawers.draw-in boltdrawingdrawing boarddrawing toolsdrawworksdrawworks brakedrawworks drivedraw-works dynamic brake systemdrawworks framedrawworks front beamdrawworks powedrawworks window openingdresserdrift diametredrift indicatordrill footagedrill column jackdrill floordrill floor girdersdrill floorsdrill holedrill -hole returnsdrill line centralizer drill muddrill offdrill pipedrill pipe stickngdrill pipe clampdrill pipe clampdrill pipe couplingdrill pipe frozendrill pipe holedrill pipe hooketdrill pipe power tong drill pipe protector drill pipe pup joints drill pipe releasedrill pipe releasedrill pipe spinnerdrill pipe standdrill pressuredrill ropedrill scoutdrill spooldrill stem bushingdrill tooldrill towerdrill truckdrill unitdrill vesseldrill waterdrillerdriller consoledriller control cabinet driller standDriller umbrella driller’s cabin driller’s console driller’s control box driller's control panel driller's depthdrill-indrillingdrilling linedrilling logdrilling processdrilling riserdrilling aheaddrilling blockdrilling crewdrilling cycledrilling depthdrilling fluiddrilling footagedrilling implementerdrilling intervaldrilling intervaldrilling invasion zonedrilling jardrilling junk basketdrilling linedrilling linedrilling line reeldrilling line spooldrilling linerdrilling loaddrilling mastdrilling mechanizing racking equipment drilling outdrilling parametersdrilling patterndrilling pindrilling pressuredrilling pressuredrilling proceduredrilling ratedrilling recorderdrilling rigdrilling rig instrumentationsdrilling screwdrilling sepervisordrilling sidedrilling sitedrilling softwaredrilling spooldrilling spools and adapter flanges drilling stringdrilling string not well brakeddrilling swiveldrilling unitdrilling waterdrilling wheeldrilling-through equipment drilll aheaddrilll assemblydrilll collar boredrillled drydrillled welldrilller-mouthdrilller's logdrilller's monitordrilller's station drillmeterdrill-off testdrillpipe conveyeddrillshipdrill-steel setdrill-stem testerdrill-stem testingdrim clutchdrip outdripd-proof enclosure drive beltdrive bushingdrive from compounddrive kelly pipedrive linedrive parameter setting drive ratiodrive shaftdrive spockeddrive sprockeddriven shaftdriven shaftdrives cabinetsdriving axledriving bevel geardriving pulleydrop boxdrop-in tooldrop-legdropping headdrum barreldrum flangedrum bodydrum brakedrum clutchdrum coredrum Gear Couplingdrum hoistdrum of air winchdrum shaftdrum shaft assemblydrum sizedrum spooldrumheaddrwwork transmissiondry plate clutchdryerdryweightD-type buckledual pressure valvedual remote input output interface dual turbochargersduck keelductile crackductilitydump brackdump bailerdump gatedump to rope ratiodump valvedunnageduplex design tubular derrick duplex pumpduplex sprocketduribilitydust coverdust wrapperdwon updyna-drillingdynamicdynamic headdynamic positioningdynamic positioning system dynamic sealearthearth fault.earth moving equipmentearthquakeeasily worn partseccentric bearingeccentric geareccentric oscillating shaft eccentric ring gear eccentric shafteddy floweffiencyelastic deformationelastic jointelastic limitelastomerelbowelbow jointelectric arcelectric band spread electric control cable electric distribution electric driveelectric line set packer electric mainelectric setElectric calabashelectric circuitelectric deviceelectric distribution unit electric drillelectric driller‘s panel electric drilling rig electric elevatorelectric feedbackelectric insulating oil electric leakageelectric lineelectric networkelectric oilelectric power supply electric power system electric protection electric recoderelectric relayelectric resistance welding electric resonanceelectric screw driver electric separatorelectric shieldelectric shockelectric sparkelectric spot weldingelectric spray pump system electric starterelectric startingelectric transducerelectric transmission pole tower electric transmiterelectric welding rodelectric winchelectric windlasselectric wiringelectric wrenchelectrical equipmentelectrical insulationelectrical leadelectrical logelectrical specification electrical control panelelectrical magnet valveelectrical submergible pump electrically trippedelectric-drive rod compressor set electric-resistance weldedelectril bakeelectroelectro valveelectrochemistryelectro-galvanized steel wire electrohoistelectrolytic copper bus bar electromagnetic brake electromagnetic eddy brake electromagnetic interference electron microscopeelectrostatic grounding electrostatic screen electrotyped copper bus bars elevatedelevated chain caseelevatorelevator bushingelevator linkelevator pulleyelevator shaftelliptical holeemcemergency bolts.emergency caliperemergency diesel tankemergency escape deviceemergency generatoremergency killemergency lightemergency lighting system.emergency operationemergency push buttonemergency shutdownemergency switchenclosed v-belt guardenclosing boardenclosureenclosure classesend wallend-strength testendurance crackengine exhausts.entranceenvironmental disruptionenvironmental temperatureepicyclic gearequalizerequalizer barequalizer beamerosion resistant tungsten carbide nozzle Escape deviceescape lineescaping equipmentethernet interfaceeue tubingEureka pipe wrencheutectic steeleutectoid steelevery shiftEvgonnomicallyexcavated groundexciting coilexciting powerexecutive mechanismexhaustexhaust fittingsexhaust flangeexhaust manifoldsexhaust stackexising wellexit doorsexpanded metalexpanded metalexpanded tube jointexpanderexpansible jointexpansion jointexploratory wellexplosion proofexplosion proof electric calabashexplosion proof motorsexplosion proof plugexplosion-proof magnet Coilexplosion-proof motorexplosive chargeextending rateextension rodextension rodextension shaftextensionsexternal callipersexternal cutterexternal linesextra fine steelextreme pressure gear oilextreme pressure industrial gear oilextruding machine (horizontal oil hydraulic press) eye hole coverfail safe brakefail-safe returnfall intofalling preventing devicefast guide linefast linefast line clipfast line sheavefast release valvefast ropefastenersfeed offfeed pumpfeed tankfeeders.feeding rectifierfeed-tankfeeler gaugeferritic steelfever leakfiberglassfig.figured steelfilefill upfillerfiller capfillet welding joint filling boxfilling casingfilling gunfilling piecefillup valvefilterfilter corefilter pressfin tube coolersfine-grained steel finger boardfinish coatfire bulkheadfire failurefire alarmfire apparatusfire brigadefire bucketfire controlfire control unitfire dampfire detectorfire doorfire enginefire escapefire exitfire extinguisherfire extinguisher pump fire extinguishersfire fighterfire fighting equipment fire fighting rackfire hydrantfire monitorfire pailfire plugfire proof motorfire retardantfire sandfire truckfire-entry suitfisherfishingfishing bellfishing headfishing spearfishing tapfishing toolfissurefive way valvefixed pinfixed plleyfixtureflag postflame hardenedflangeflange beamflanged bendflanged bottomflanged top and bottomflare linesflare pipingflashboard assy.flashboard pulling toolflat bottomflat gauge sizeflat rollerflat.flat-bottomedflat-die forgingflatness errorfleet angleflex jointflexibleflexilinefloading collarfloat jointfloat subsfloat type accumulator battery flocculatorfloor boardfloor heightfloor platefloor proofflow fill consoleflow indicatorflow lineflow lineflow lineflow line entry.flow regulating valveflow valveflowing wellflowlinefluid bffle back-u platefluid charging valvefluid couplingfluid endfluid End Studded Assy fluorescent lightsflywheelfoam drillingfoam injection pumpfoating ringfoldingfoot throttlefootprintforced lubricationforced of stringforced spray lubrication system forcing pumpforemanforged fittingsforged steelforgingsfork liftfork lift prongs.formation pressureforward rotationfour-pin-drive roller bushing fracturefracturing truckframeframe assemblyframe of fluid endfrayed arearsfree airfree areafree fallfree gasfree positionfree sixtuplex sprocketsfree sprocketfree standingfree-cutting steelfreely supported beam freestandingfree-tripfreeze style drierfriction blockfriction catheadfriction clutchfriction drumfriction liningfriction shoes for clutchfront and back bracesfront and back legsfront axlefront basefront beamfront connecting framefront deckfront legsfront stand polefront steering axlesfront sub.front-mounted beampumping unit frost or cold weatherfuel cut shut offfuel filter packagefuel tanksfuel transfer pumps.fuelerfull sizedfully closed drawworksfully maintainfundamental basefundamental for substructure funnelfuse protectionfused-isolator switchgagegalvanizedganged switchgas bustergas capgas circuitgas cuttinggas detectorsgas drive。
ast 美国标准螺纹ast 声波扫描下井仪ast 自动起动器astable 不稳定色astacolus 龙虾虫属astartoides 类花蛤属astatic balance 无定向平衡astatic galvanometer 无定向电流仪astatic gravity meter 无定向重力仪astatic lake 内陆湖astatic magnetometer 无定向磁力仪astatic multivibrator 自激多谐振荡器astatic needle 无定向磁针astatic pendulum 无定向摆astatic spring 助动弹簧astatic type gravimeter 助动式重力仪astatic 无定向的astaticism 无定向性astatine 砹astatization 助动性astatize 提高重力仪的灵敏度;无定向化astc 自动蒸汽温度控制asteriacites 似海星迹asterichnites 星形迹asterisk 星号;星状物;加星号于asterism 星群;星状图形;三星标;星芒astern power 倒车功率astern turbine 倒车汽轮机astern 向船尾;后退;向后;倒车asteroarchaediscus 星古盘虫属asterocalamotriletes 星芦木孢属asteroconites 星锥箭石属asteroidea 海星纲asterolepis 星鳞鱼属asterolith 星状颗石asterophycus 星瓣迹asthenolith 软流圈岩浆体asthenosphere 软流圈asthenospheric bump 软流圈凸起astian stage 阿斯蒂阶astigmatic aberration 象散差astigmatic focusing 象散聚焦astigmatic lens 象散透镜astigmatic mounting 象散装置astigmatic 象散的astigmatism 散光;象散性astigmatizer 象散器;夜间测距仪astigmometer 象散测定仪astite 红柱云母角岩astm distillation 美国材料试验学会规定的油蒸馏性质试验astm 美国材料试验学会astme 美国工具与制造工程师学会astonishment 惊讶astragal plane 圆缘刨astrakanite 白钠美钒astral era 星云时代astringency 粘滞性astrionics 航天电子学;航天电子设备astroaz 天文方位角astrobiogeoclimatomagnetochronology 天文生物地质气候磁性年代学astrobiology 天体生物学;太空生物学astrobotany 天文植物学astrochemistry 天体化学;太空化学astroclimatology 天体气候学astrocompass 星象罗盘astrodome 天文航行舱;天体astrodynamics 天体动力学astrofix 天文定位astrogeodesy 天体测量说astrogeodetic data 天文大地测量数据astrogeodetic datum 天文大地基准astrogeodetic deflection 天文大地测量偏差astrogeology 天体地质学astrognathus 星颚牙形石属astrograph 天体摄影仪astrogravimetric leveling 天文重力水准测量astrolabe 等高仪;观象仪astrolophi 星射放射虫类astromagnetics 天体磁学astrometric base line 天体测量基线astrometry 天体测量astronaut 宇宙航行员astronautical speed 宇宙速度astronautics 宇宙航行学astronavigation 天文导航;宇宙航行astronomer 天文学家astronomic almanac 天文年历astronomic clock 天文钟astronomic coordinates 天文坐标astronomic geology 天文地质学astronomic latitude 天文纬度;黄纬astronomic longitude 天文经度;黄经astronomic radio source 天体射电源astronomic telescope 天文望远镜astronomic unit 天文单位astronomical age 天文年龄astronomical azimuth 天文方位角astronomical determination 天文测定astronomical fixation 天文定位astronomical observation 天文观测astronomical observatory 天文台astronomical orientation 天文定向astronomical process 天文测定法astronomical sight 天文观测astronomical theodolite 天文经纬仪astronomical tide 天文潮astronomical time 天文时astronomical transit 子午仪astronomical year book 天文年历astronomy 天文学astrophyllite 星叶石astrophysics 天体物理学astrospectroscopy 天体光谱学astrotracker 星象跟踪仪astro天文astro geodetic net adjustment 天文大地网平差asturian movement 阿斯图里运动astylar 无柱式的asymmetric anticline 不对称背斜asymmetric bedding 不对称层理asymmetric climbing ripple 不对称爬升波痕asymmetric dispersion 不对称色散asymmetric drainage 不对称水系asymmetric film mounting 不对称式底片安装asymmetric fold 不对称褶皱asymmetric ghost 不对称的虚反射asymmetric girdle 不对称环带asymmetric impulse function 非对称脉冲函数asymmetric induced copolymerization 不对称诱导共聚asymmetric magnetosphere 不对称磁层asymmetric multiple ray 非对称的多次波射线asymmetric progress 非对称过程asymmetric selection polymerization 不对称选择聚合asymmetric step function 非对称函数asymmetric suspension 不均匀悬浮asymmetric wavefront chart 不对称波前图版asymmetric 非对称的asymmetrical array 不对称组合asymmetrical climbing ripple 不对称爬升波痕asymmetrical frequency weighting 不对称频率加权asymmetrical pattern 不对称井网asymmetrical peak 不对称峰asymmetrical ripple mark 不对称波痕asymmetrical system 不对称系统asymmetry distribution 非对称性分布asymmetry 不对称;不齐asymptote 渐近线asymptotic approximation 渐近逼近asymptotic behavior 渐近特性asymptotic convergence 渐近收敛asymptotic distribution 渐近分布asymptotic expansion 渐近展开asymptotic expression 渐近式asymptotic line 渐近线asymptotic mean 渐近平均数asymptotic point 渐近点asymptotic ray theory 渐近射线理论asymptotic series 渐近级数asymptotic solution 渐近解asymptotic surface 渐近面asymptotic trend 渐近趋势asymptotic velocity 渐近速度asymptotic 渐近的asymptotically minimax test 渐近的极小极大检验asymptotically stable solution 渐近稳定解asynchronism 不同时;异步asynchronous algorithm 异步算法asynchronous communication 异步通信asynchronous computer 异步计算机asynchronous data transfer 异步数据传输asynchronous directcoupled computer 异步直接耦合计算机asynchronous generator 异步发电机asynchronous input 异步输入asynchronous interference suppression 非同步干扰抑制asynchronous io 异步输入输出asynchronous line 异步线asynchronous logic system 异步逻辑系统asynchronous motor 异步电动机asynchronous operation 异步操作asynchronous parallelism 异步并行性asynchronous protocol 异步规约asynchronous reset 异步复位asynchronous serial transmission 异步串行传输asynchronous time division multiplexing 异步分时多路编排asynchronous transmission 异步传输asynchronous variable 异步变量asynchronous 异步的;非同期的as built drawing 竣工图as completed drawing 竣工图as constructed drawing 竣工图as fired basis 应用基at a 绝对大气压at maturity 到期at par 照票面价at wt 原子量at 安匝at 存取时间at 大气的at 大气压at 大气压力at 化验吨at 环境温度at 空气温度at 气密的at 验收试验at 原子时at 砹at. 大气;气压at. 气密的at. 原子的at.no. 原子序数ata 绝对大气压ata 增长库金atacamite 氯铜矿atactic polymer 无规聚合物atactic polymers 无规聚合物atactic polypropylene 无规立构聚丙烯atactic 无规立构的atactopora 变苔藓虫属atactoporella 细变苔藓虫属atactotoechus 变壁苔藓虫属ataxia 运动失调atc 工具自动转位装置atc 空中交通管制atc 无线调谐电容器atc 自动调谐控制atc 自动时间常数atc 自动温度校正atc 自动音调调整atcrbs 空中交通管制雷达信标系统atd 模拟时间数字atd 热扩散各向异性atd 指定总井深atdabanian 阿特达班阶atdm 异步分时多路编排ate 自动测试设备atectite 残留基性物质atectonic dislocation 非构造变位atectonic pluton 非造山运动深成岩体atectonic 非构造的atel regression 阿蒂尔海退atel transgression 阿蒂尔海进atelier 工作室;制作车间atelodictyon 不全网层孔虫属atelophyllum 不等珊瑚属atexite 残留基性物质atf 自动变速箱用油athens shale 阿森斯页岩athermal 无热的athermancy 不透热性athermanous 不透热的athermic 不透辐射热的;不导热的athodyd 冲压喷气发动机athrogenous =athrogenic 火成碎屑的athwart sea 侧面浪athwartship tanks 在中央隔板左右两边的对称油舱atim 累计时间预置值atl 大西洋atlantic connection 大西洋板块接合;大西洋板块接合带atlantic phase 大西洋温湿阶atlantic richfield co. 阿科公司atlantic suite 大西洋岩套atlantic type coastline 大西洋型海岸线atlantic type continental margin 大西洋型大陆边缘atlantic 大西洋atlantite 暗霞碧玄岩atlapulgite 活性白土atlas 地图册;图表集atm 大气;大气压atm 大气压atmidometer =atmometeratmoclast 原地风化岩屑atmodialeima 大气下形成的不整合atmogenic deposit 大气沉积atmogenic rock 大气成岩atmogenic 大气成的atmogeochemistry 大气圈地球化学atmolith 大气沉积岩atmolysis 微孔分气法atmometer 蒸发计;汽化计atmometry 蒸发率测定法atmoseal 气封;气封法;气密性atmosilicarenite 风化崩解硅质砂atmosphere 3rd side cut 常三线atmosphere pressure 大气压力atmosphere radiation 大气辐射atmosphere 大气atmospheric air chamber 大气室atmospheric air 大气atmospheric and vacuum distillation 常减压蒸馏atmospheric brake 气动式制动器atmospheric ceiling 气顶atmospheric chamber 常压舱atmospheric circulation 大气环流atmospheric condenser 大气冷凝器atmospheric degasification 常压脱气atmospheric diffusion 大气扩散atmospheric discharge 大气放电atmospheric distillation 常压蒸馏atmospheric disturbance 大气扰动atmospheric electricity 大气电学;大气电atmospheric envelope 大气层atmospheric evaporation loss 大气蒸发损耗atmospheric exploration 大气探测atmospheric fixed roof tank 常压固定顶油罐atmospheric flashing 常压闪蒸atmospheric gas oil 常压瓦斯油atmospheric gas oil ratio 地面气油比atmospheric haze 大气霾雾atmospheric heating 大气加热atmospheric infrared attenuation 大气红外衰减atmospheric interference 天电干扰atmospheric ionized layer 大气电离层atmospheric line 大气压力线atmospheric loading 大气负载atmospheric metamorphism 大气变质作用atmospheric noise 大气噪声atmospheric opacity 大气不透明度atmospheric optics 大气光学atmospheric pipe still 常压管式炉atmospheric pollution 大气污染atmospheric precipitation 大气降水atmospheric pressure chamber 常压舱atmospheric producing wor 地面生产水油比atmospheric refraction 大气折射atmospheric rock 大气沉积岩atmospheric scattering 大气散射atmospheric sedimentation 大气沉积作用atmospheric still 常压蒸馏容器atmospheric surveillance 大气监测atmospheric swamp 天然沼泽atmospheric temperature 大气温度atmospheric tide 大气潮atmospheric trace gas 大气痕量气体atmospheric transmission 大气传递atmospheric transmittans 大气透射系数atmospheric turbulence 大气湍流atmospheric valve 排气阀atmospheric water 降水atmospheric wave 大气波动atmospheric weathering 大气风化作用atmospheric window 大气窗atmospheric zone 大气区atmospherical drag perturbation 大气阻力摄动atmospherical drag 大气阻力atmospherical model 大气模式atmospherical 大气圈的atmospherics 天电atm degasser 大气除气器atokan 阿托卡统atoleine =atolin 液体石蜡atoll island 环礁岛atoll lagoon 环礁泻湖atoll lake 环礁湖atoll moor 环形泥炭沼泽atoll reef 环礁atoll ring 环礁圈atoll structure 环礁状构造atoll texture 环礁状构造;环状构造atoll 环礁atollon 大环礁圈atom lattice 原子点阵atom smasher 核粒子加速器atom 原子;微粒;极微小的东西atomatic hydrogen 原子氢atomic absorption spectrometry 原子吸收光谱测定法atomic absorption spectroscopy 原子吸收光谱学atomic absorption 原子吸收atomic activated absorption 原子活化吸附atomic binding 原子键;原子耦合atomic charge 原子电荷;原子装料atomic clock 原子钟atomic collision 原子碰撞atomic concentration 原子浓度atomic density 原子密度atomic disintegration 原子蜕变atomic emission spectrometry 原子发射光谱法atomic energy level 原子能级atomic energy 原子能atomic excitation 原子激发atomic fluorescence spectrometry 原子荧光光谱法atomic fluorescence 原子荧光atomic formula 原子结构式atomic frequency standard 原子频标atomic group 原子团atomic heat capacity 原子热容atomic hydrogen torch 氢原子火焰atomic hydrogen welding 原子氢焊atomic hydrogen 原子氢atomic length standard 原子长度标准atomic link 原子键atomic mass number 原子质量数atomic mass unit 原子质量单位atomic mass 原子质量atomic nuclear structure 原子核结构atomic nucleus 原子核atomic number 原子序数atomic photoelectric effect 原子光电效应atomic polarization 原子极化atomic power plant 原子能电站atomic power station 原子能电站atomic spectrum 原子光谱atomic structure 原子结构atomic time 原子时atomic valency 原子价atomic volume 原子容积atomic weight 原子量atomic 原子的;原子能的;原子武器的;强大的;极微的atomicity 原子价atomics 原子工艺学atomic absorption spectrophotometer 原子吸收分光光度计atomism 原子论atomistic 原子论的;原子学家的atomization 喷雾;雾化;原子化atomized acidizing 雾化酸化atomized lubrication 雾化润滑atomized water 雾化水atomizer burner 喷射燃烧器atomizer 喷雾器;雾化器;喷嘴atomizing steam 雾化蒸汽atomizing 雾化作用atop 在…顶上atopochara 奇异轮藻属atopocythere 奇花介属atopophyllum 奇异珊瑚属atoxic 无毒的atp 评价试生产atp 数列转换处理器atpr 年度技术进展报告atreol 磺化油atrophy 萎缩ats 安匝ats 绝对温标ats 应用技术卫星ats 自动电话机ats 自动遥测系统ats 自动转换开关att 辅助遥测下井仪att 附上的att 附着物attached dune 依附沙丘attached groundwater 吸咐地下水attached island 陆连岛attached processor 附加处理机attached support processor 附加支持处理机attached water 附着水attaching nut 连接螺母attaching organism 附着生物attachment flange 连接法兰;连接附装件法兰attachment frame 连装附件框架attachment screw 装合螺钉attachment trace 附着迹attachment 连接物attack crew 灭火作业班attack line 供水线attack rate 发病率;冲击速度attack time 冲击时间attack 侵蚀;起化学反应;袭击attainment 成就attapulgite cement 绿坡缕石胶合剂attapulgite 坡缕石attemperator 温度调节计;温度控制器attempt 尝试attend 照顾attendance rate 出勤率attendance 出席;出席人数attendant 侍从;服务员;出席者;附属物attended operation 连接操作attention interrupt 注意中断attention key 注意键attention signal 注意信号attention 注意attenuant 稀释剂;稀释的attenuation band 衰减频带attenuation constant 衰减常数attenuation curve 衰减曲线attenuation distance 衰减距离attenuation distortion 衰减失真attenuation equalizer 衰减补偿器attenuation equivalent 等效衰减attenuation factor 衰减因数attenuation length 衰减长度attenuation network 衰减网络attenuation of ground motion 地壳运动衰减attenuation of hydromagnetic wave 磁流体波的衰减attenuation range 衰减范围attenuation ratio 衰减比attenuation 衰减attenuation frequency characteristic 衰减频率特性attenuator switch 衰减开关attenuator 衰减器atteration 冲积土atterberg limit 阿氏限度attest 证实atthemoney option 已保本的选择权attic floor 屋顶层attic hand 架工attic ladder 折叠梯attic oil 阁楼油attic orogeny 阿蒂克造山运动attic storey 屋顶层attic 钻台地板及围板attic oil recovery 阁楼油开采attitor 超微磨碎机attitude information 姿态信息attitude of rock 岩石产状attitude of stratum 地层产状attitude sensor 姿态传感器attitude 姿态;态度attitude correction 姿态校正attle 废屑atto 渺attorney 代理人;律师atto微微微attract 吸引attracted continental sea 引缩大陆海attracted mass 吸引质量attracted water 吸着水attraction of gravity 重力attraction 吸引attractive force 吸引力attractive mineral 磁性矿物attractive 有吸引力的attributable 可归因于…的attribute list 属性表attribute listing 属性列表法attribute property 属性特征attribute 把…归因于;品质attributed grammar 属性文法attribution 归因;属性attributive character 属性特征attrinite 细屑体attrital coal 暗煤attrital anthraxylon coal 暗质镜煤attrited 磨损的attriter 磨光器attrition loss of catalyst 催化剂磨耗损失attrition mill 碾磨机attrition rate 磨耗率attrition resistant 耐磨的attrition test 磨损试验attrition value 磨损值attrition 磨损attritor 磨碎机attritus 暗煤atu 辅助测试装置atv 空气动力试验工具atv 全地形车atypical gravity sediment 非正常重力沉积物atypical plant community 异常植物群atypical 非典型的;不规则的;不正常的au 金au 天文单位auct 辅助变流器auction price 拍卖价格auction 拍卖audibility 可闻度audible alarm 可闻报警信号audible noise 声频噪声audible range 声达距离audible signal 声频信号audible sound 可听声audible 听得见的audience 听众audio amplitier 声频放大器audio frequency amplifier 声频放大器audio frequency choke 声频扼流圈audio frequency transformer 声频变压器audio frequency 声频audio logging 声频测井audio modulation 声频调制audio oscillator 声频振荡器audio signal 声频信号audio 听觉的audiogage 超声测厚仪audiogram 声波图audiolocation 声波定位audiolocator 声波定位器audiomagnetotelluric method 声频大地电磁法audiometer 测听器audiometry 测听术;听力测定audiomonitor 监听器audion 三极管audiovisual aids 直观教具audiovisual 听觉视觉的audiovisuals 视听教材audio听;声;音audio frequency harmonic distortion 声频谐波失真audio frequency magnetic field 声频磁场audio frequency magnetic method 声频磁法audio frequency magnetic technique 声频磁场技术audio freqyency oscillator 声频振荡器audio output 声频输出audio visual alarm 视听警报器audiphone 助听器audit certificate 查帐证明书audit 审查;审计auditing administration 审计署auditing 查帐;审计audition 听;听觉;试听auditor 审计员auditor's certificate 审计证明书auditorium 观众席auditory acuity 听力auerbachite 锆石aufeis 冬季泛滥平原上的厚冰层aug. 八月auganite 辉安岩augen gneiss 眼球状片麻岩augen structure 眼球状构造augen 眼球体augend 被加数augensalz 石盐团块augen chert 眼球状燧石auger anchor 钻锚auger bit 麻花钻头auger boring 螺旋钻进auger drill 螺旋钻井装置auger effect 俄歇效应auger master 司钻的绰号auger pulldozer 螺旋推土机auger sampler 螺钻采样器auger spectroscopy 俄歇电子能谱学auger stem 螺旋钻柱;钻头与振击器之间的钻具;钻杆auger tank 搅拌混合罐auger 钻augers 螺旋输送器auger backfiller 螺旋回填机auger drill head 螺旋钻头auger sinker bar guides 冲击钻杆导向器auget 雷管augette =augetaught 任何事物augite 普通辉石augitic 辉石的augitite 玻辉岩augitophyre 辉斑玄武岩augment 增大augmentation 增长augmented injection 增注augmented matrix 增广矩阵augmented operation code 扩充操作码augmented solution 扩张解augmented 增大的augmenter 增强器;增压器;加力装置augmenting facotr 增度因子august 八月aulacogen structure 拗拉谷构造aulacogen 拗拉谷aulisporites 具沟三缝孢属aulocystella 小泡沫喇叭珊瑚属aupt 辅助电压互感器aura 气味;电风;辉光aurae aura的复数aural signal 声响信号aural type beacon 声响信标aureola 接触变质带;晕aureole =aureolaauriferous 含金的;产金的auritulina 锥角孢属auritullnasporites 厚唇孢属aurora 曙光;电晕;极光aurorae aurora的复数auroral absorption 极光带吸收auroral activity 极光活动性auroral zone 极光带auroraspora 卵囊孢属auroserisporites 金缕粉属aurum 金aus 辅助开关ausforging 锻造形变热处理ausform 形变热处理auspice 预兆;赞助ausrouing 轧制形变热处理austausch coefficient 换量系数austausch 交换austemper case hardening 等温淬火表面硬化austemper stress 等温淬火表面应力austemper 奥氏体回火austempering 奥氏体回火austenite cast iron 奥氏体生铁austenite matrix 奥氏体晶体austenite 奥氏体austenitic electrode 奥氏体焊条austenitic stainless steel 奥氏体不锈钢austenitic steel 奥氏体钢austenitizing 奥氏体化austerity 紧缩austinella 奥斯汀贝属austinian stage 奥斯汀阶austral 南方的;向南的;南方生物带australia 澳大利亚australocypris 南星介属australophyllum 澳洲珊瑚属austria 奥地利austrian movement 奥地利运动aut 自动的aut.eq. 自动装置aut.meas. 自动测量autallotriomorphic 原生他形的autecology 个体生态学authalic conical projection 等积圆锥投影authalic map projection 等积投影authentic sample 真实样品authentication 鉴别;证实;认证authenticity 同样性authiclast 自生碎屑authigene 自生矿物authigenesis 自生作用authigenetic cement 自生胶结物authigenetic feldspar overgrowth 自生长石增长authigenic kaolinite 自生高岭石authigenic mineral 自生矿物authigenic sand size material 自生砂粒级物质authigenic 内源的authigenous constituent 自生成分authineomorphic rock 再造岩author 作者authorised pressure 规定压力authorised representative 授权代表authorities 权限authority for operation 运转许可证authority relationship 职权关系authority 权力;职权;权威;根据;当局authorization 授权authorize 授权authorized agent 授权代理人authorized capital 额定资本authorized foreign exchange bank 外汇专业银行authorized shares 额定股份authorized total depth 规定钻井深度authorized user 特许用户authotroph 自养生物auto bias circuit 自偏压电路auto bus 自动母线auto clipping apparatus 自动清丝装置auto cutout 自动截止;自动断路器auto exhaust 汽车排气auto feed 自动给进auto lift 自动升降机auto trigger 自动触发auto lock safety joint 自封安全管接头auto 汽车;自动的;乘汽车auto 自动的autoalarm 自动警报装置autoanalyzer 自动分析器autoarenite 自碎砂屑岩autobalance 自动平衡autobarotropy 自动正压状态autobike 机器脚踏车autobiography 自传;自传文学autoboat 汽艇autobond 自动接合autobrake 自动制动器autobreccia 自碎角砾岩autocap 变容二极管autocar 汽车autocarta 船上计算机和绘图系统autocartograph 自动测图仪autocatalysis 自动催化autocatalytic reaction 自动催化反应autocatalyzed oxidation 自催化氧化autocementation 自生胶结作用autocepstral windowing 自同态谱时窗化autochangeover 自动接通机构autochanger 自动变换器autochrome 彩色底片autochthon 原地岩autochthonal 原地的autochthonic 原地的autochthonous coal 原地生成煤autochthonous cover sequence 原地覆盖层序autochthonous deposit 原地沉积autochthonous fold 原地褶皱autochthonous limestone 原地生成石灰岩autochthonous microorganism 固有微生物autochthonous nappe 原地推覆体autochthonous plankton 原地浮游生物autochthonous rock 原地岩autochthonous sedimentation 原地沉积作用autochthonous soil 原地土壤autochthonous 原地的autoclase 自生裂隙;自碎autoclasis 自碎作用autoclast 自生碎屑autoclastic breccia 自生碎屑角砾岩autoclastic melange 自生碎屑混杂岩autoclastic rock 自生碎屑岩autoclastic 原地破碎的autoclave curing 高压釜养护autoclave expansion 蒸压膨胀autoclave molding 热压罐成型autoclave 高压釜autocode 自动编码autocoder 自动编码器autocoding 自动编码autocollimatic 自准直的autocollimation 自准直autocollimator 自动照准仪autocompensation 自动补偿autocondensation 自动缩合autocontrol 自动控制autoconverter 自耦变压器autocorrection 自动校正autocorrelation analysis 自相关分析autocorrelation coefficient 自相关系数autocorrelation function 自相关函数autocorrelation pulse 自相关脉冲autocorrelation receiver 自相关接收器autocorrelation wavelet 自相关子波autocorrelation 自动校正;自相关autocorrelator 自相关器autocorrelogram 自相关图autocovariance 自协方差autocrane 汽车起重机autocycle 摩托车autodial 自动标度盘autodin 自动数字网络autodyne 自差autoecology 个体生态学autoelectronic 自动电子放射的autoexcitation 自激励autoexciting 自激autofocusing 自动对光autoformer 自耦变压器autofrettage 预应力处理autogenetic plankton 本地浮游生物autogenous cutting 气割autogenous fusing 氧乙炔切割autogenous ignition 自燃autogenous welding 气焊法autogenous 自生的autogeny 自生autogeosyncline 残余地槽autogiration 自动旋转autogiro 旋翼飞机autogonal projection 等角投影autograph 亲笔;手稿;自动绘图仪;亲笔写autographic record 自动记录autographic signature 亲笔签字autographometer 自动图示仪autogyro =autogiroautohension 自粘性autoheterodyne 自差autohoist 汽车起重机autoignition 自动点火autoincrement addressing 自动递增寻址autoionization 自电离autokeyer 自动键控器autoland 盲目着陆电子系统autolay 自动开关;自动敷设;自动扭绞autolith 同源包体autolithification 自生石化作用autoloader 自动装载机autoloading 自动加载autoluminescence 自发光autolysis 自溶作用automanual system 半自动式automanual 半自动的automat 自动机automata automaton的复数automated analysis 自动分析automated design 自动设计automated drilling rig 自动化钻机automated grid generation 自动网格生成automated metering site 自动计量点automated trace alignment technique 自动道排齐技术automated analysis approach 自动化试井解释方法automatic actuator lock 自动传动器琐automatic addressing 自动选址automatic alarm 自动报警automatic allocation 自动分配automatic amino acid analyzer 氨基酸自动分析仪automatic amplitude control 自动振幅控制automatic analysis 自动分析automatic analytical plotter 自动解析绘图仪automatic arc welding 自动电弧焊automatic avoidance 自动失效automatic background control 背景噪声自动调整automatic back flushing 自动回流冲洗automatic balance 自动秤automatic balancing 自动置零;自动调零;自动平衡automatic bias circuit 自动偏置电路automatic brake 自动闸automatic buret 自动滴定瓶automatic carry 自动进位automatic cathead 自动猫头automatic centering 自动对中automatic change over 自动转换开关automatic check 自动校验automatic choke 自动节流器automatic chuck 自动卡盘automatic coding 自动编码automatic compensation 自动补偿automatic contour digitizer 自动等值线数字化桌automatic contouring 自动绘等值线automatic control 自动控制automatic coordinatograph 自动坐标仪automatic core breaker 岩心自动卡断器automatic correction 自动校正automatic coupling 自动联接器automatic crude sampler 原油自动取样器automatic cutout 自动断开automatic data link 自动数据传输器automatic data processing 自动数据处理automatic decode 自动译码automatic digit recognition 自动数字识别automatic digital network 自动化数字网络automatic direction finder 全自动无线电罗盘automatic document analysis 自动文献分析automatic doffer 自动落纱装置;自动落卷装置;自动落筒装置automatic doffing 自动落纱;自动落卷;自动落筒;自动落轴automatic drawing grip 自动牵引夹具automatic driller 自动送钻装置automatic drive limiter 自激限幅器automatic eletronic biaxial tiltmeter 自动电子双轴倾斜度测量仪automatic elevator 自动吊卡;自动升降机automatic error correcting code 自动误差校正码automatic exposure unit 自动曝光装置automatic fault finding 故障自动探测automatic feed 自动给进automatic feedoff 自动放钢绳automatic fidelity control 自动保真度控制automatic fill shoe 自动灌注式鞋automatic fill up float 自动灌注式浮鞋automatic fine tuning 自动微调automatic focusing system 自动聚焦装置automatic following control 自动跟踪控制automatic formant analysis 自动共振峰分析automatic fraction collector 自动馏分收集器automatic frequency cintrol 自动频率控制automatic gain control 自动增益控制automatic gas detector 自动泥浆气侵检测器automatic gauge 自动计量automatic grid bias 自动栅偏压automatic gun release sub 射孔器自动丢手接头automatic height stabilizer 自动高度保持仪automatic hole scraper 油井自动刮蜡器automatic identification 自动识别automatic ignitor 自动点火器automatic image analyzer 自动图象分析仪automatic information retrieval system 自动信息检索系统automatic isolating valve 自动隔离阀automatic j slot 自动j型槽automatic lathe 自动车床automatic level gauge 自动液面计automatic leveling 自动调平automatic lookup clutch 自动离合器automatic lubrication 自动润滑automatic mapping 自动绘图automatic marking panel 自动做记号面板automatic message switching 自动信息转换automatic migration 自动偏移automatic mode 自动操作方式automatic mold 自动模automatic monitoring 自动监测automatic noise limiter 噪声自动限制器automatic number normalization 自动数值规格化automatic operation 自动操作automatic paralleling 自动并车automatic picking 自动检测automatic picture control 自动图象控制automatic pilot 自动领航仪automatic pipe rack 自动排管架automatic plotter 自动绘图器automatic positioning equipment 自动定位设备automatic power control 自动功率控制automatic power slips 自动卡瓦automatic pressure butt welding 自动压力对焊automatic processor 自动信息处理机automatic profiler 自动测剖面仪automatic program control 自动程序控制automatic program interrupt 自动程序中断automatic programming 自动程序设计automatic pump governor 泵自动控制器automatic rabbit 刮蜡器automatic ram lock 海下防喷器栓芯automatic range finder 自动测距仪automatic recovery program 自动恢复程序automatic release mechanical firing head 自动丢手机械发火头automatic residual statics 自动剩余静校正automatic rod lifter 油杆自动提升器automatic routine 自动检查例程automatic sampler 自动取样器;自动进样器automatic sampling 自动取样;自动进样automatic scaler 自动定标器automatic scan 自动扫描automatic scanning microdensitometer 自动扫描显微光密度计automatic section flattening 自动剖面拉平automatic selectivity control 自动选择性控制automatic sensitivity control 自动灵敏度控制automatic sequence computer 自动时序计算机automatic slip elevator 自动卡瓦式吊卡automatic speed governor 自动调速器automatic spider 自动夹持器automatic spool 假脱机automatic sprinkler 自动喷水淋头automatic statics 自动静校正automatic steering 自动掌舵automatic submerged arc welding 自动埋弧焊automatic supervisory control 自动监督控制automatic switchover 自动转接automatic tank battery 装有自动计量、切换、记录装置的矿区油罐组automatic tank gage 油罐自动液面计量automatic tape puncher 自动纸带穿孔机automatic tape transmitter 自动读带机automatic termination 自动结止automatic terrain following system 自动地形跟踪系统automatic thermostat 自动恒温器automatic time switch 自动定时开关automatic time step control 自动时间步长控制automatic tracing 自动跟踪automatic transimission 自动变速装置automatic translation 自动翻译automatic trigger 自动触发automatic trouble locating arrangement 故障自动探测装置automatic tuning 自动调谐automatic typesetting 自动排版automatic volume control 自动音量控制automatic water sprinkler systme 自动喷水系统automatic weight control 钻压自动控制automatic welding 自动焊接automatic zero set 自动调零automatic zoning 自动分带automatic 自动的;自动装置automatical lubrication 自动润滑automatically compensate 自动补偿automatics 自动学automatic assembly technique 自动装配技术automatic dump truck 自动卸货车automatic in j slot arrangement 自动就位j型槽机构automatic resetting relief valve 自动复位安全阀automatic track following 自动径迹跟踪automation 自动automatism 自动性automatization 自动化automatograph =autoscopeautomaton 自动机;自动监控器;自动电话automator 自动监控器autometamorphism 自变质作用autometasomatic process 自交代作用autometasomation 自交代作用autometasomatism 汽车速度表automicrometere 自动千分尺automicroradiogram 自动x射线显微照片automicroradiography 自动x射线显微照相术automigration 自动偏移automixer 自动混合器automobile emission 汽车排放物automobile transmission gear oil 汽车传动齿轮油automobile 汽车;开汽车;自动的;汽车的automobilism 开汽车automobilist 汽车司机automodulation 自调制automonitor routine 自动监督程序automonitor 自动监听器automorphic crystal 自形晶automorphic granulartexture 自形粒状结构automorphic 自同构的;自守的;自形的automorphism 自同构automorphous 自形的automotive drilling rig 车装钻机automotive engine oil 车用机油automotive engine 汽车或拖拉机发动机automotive fuel 内燃机燃料automotive grease gun 自动黄油枪automotive service set 汽车维修工具automotive transmission and differential lubricant 汽车传动机构和差速箱润滑剂automotive truck 载重汽车automotive 自动的autonomics 自调系统程序控制研究autonomous channel operation 独立通道操作autonomous control system 独立控制系统autonomous device 独立装置autonomous enterprise 自主企业autonomous entity 自主实体autonomous right of enterprise 企业自主权autonomous submersible 独立潜水器autonomous system 独立系统autonomous working 独立工作autonomous 自治的;自主的;自备的;自激的autonomy 自主autooxidation 自动氧化autopelagic plankton 上层浮游生物autopiler 自动化编译程序装置autopilot coupler 自动驾驶仪耦合器autopilot 自动驾驶仪;自动舵autoplane 自动飞机autoplast 叶绿体autoplotter 自动绘图仪autopolymer 自聚物autopolymerization 自动聚合autopotamic 河流的autopulse 电动燃料油泵autoradiogram 自动x射线照片autoradiograph 自动射线摄影autoradiography 自动射线摄影术autorail 铁路公路两用车autorailer =autorailautoranging 自动偏移校正autoreduction 自动归算autorefrigerated cascade reactor 自冷冻阶梯式反应器autorefrigeration alkylation process 自冷冻烷基化过程autoregression feature extraction 自回归特征抽取autoregression 自回归autoregressive coefficient 自回归系数autoregressive model 自回归模型autoregressive moving average 自回归滑动平均autoregressive pattern recognition 自回归模式识别autoregressive series 自回归级数autoregressive transformation 自回归变换autoregressive 自回归的autoregulation 自动调节autorelay 自动继电器autorun analysis 自往返分析autorun function 自往返函数autosampler 自动取样器autoscan 自动扫描autoscope 点火检查示波器autosegregation 自动分离autoselector 自动选速器autosizing 自动尺寸监控autostability 自稳定性autostable 自动稳定autostarter 自动起动器;自动发射架autostereoscopic display 自动立体显示autosyn 自动同步机;交流同步器;自整角机;自动同步的autosynchronized oscillator 自同步振荡器autotest 自动检测程序;自动检测autothermal butane cracking 自热丁烷裂化autothermic 自热的;热自动补偿的autotimer 自动计时器autotomy 自割autotrack mode 自动跟踪方式。
ÃCorresponding author.Tel.:+44-207-594-6019;fax:+44-207-823-9401.E-mail address:n.mcintyre@(N.R.McIntyre).1364-8152/$-see front matter#2004Elsevier Ltd.All rights reserved. doi:10.1016/j.envsoft.2003.12.003water quality model uncertainty(e.g.Van Straten and Keesman,1991;Portielje et al.,2000;McIntyre et al., 2003b),leads largely to the conclusion that develop-ment and application of the new generation of water quality models needs to be paralleled by research which emphasises and evaluates reliability issues.Evaluations of model prediction uncertainty can then be integrated into methodologies for risk-based management of water resources and the aquatic environment(UK DETR,2000;UK Environment Agency,2002). McIntyre et al.(2003a)discuss modelling in the context of risk,and propose that practical tools,for support of water quality management,should be able to:1.Identify and distinguish between the principal fac-tors affecting risk to water quality status.As well as factors such as land management and effluent treat-ment,this includes influences which are essentially unmanageable such as climatic variability.2.Assess the risk to water quality status associatedwith alternative management interventions.3.Consider alternative management criteria,and inves-tigate compromises between non-commensurate cri-teria(e.g.between water quality status and need for water abstractions).4.Evaluate the decision-making risk that arises fromlimitations in models and data,and from ill-defined water quality objectives,and hence establish prio-rities for data collection,model development and scientific research.5.Offer a degree of choice of model,andflexibility indefining modelling scales and solution methods,in order to suit the data and human resource con-straints of users.These objectives were the motivation for the develop-ment of the software‘‘Water quality Risk Analysis Tool’’(WaterRAT)which is described in the rest of this paper.For demonstrations of some of the capability of the software,the reader is referred to McIntyre et al.(2003b,c).2.The concept and structure of WaterRAT WaterRAT is a spreadsheet-based modelling tool that includes a library of surface water quality models of varying complexity,presently including a choice of one-dimensional river models and two-dimensional lake models,as described further below.Alternative numerical solution methods are provided,plus a lim-ited choice of pre-processing models forfilling in miss-ing boundary condition data.There isflexibility over spatial scale,and the input–output time-step may be anything above1min.With the exception of meteoro-logical boundary conditions,all values of input data and parameters may be treated as uncertain variables, and their effects included in calibration and reliability analysis.The currently included models are limited to individual lake and river water bodies plus interacting sediments,rather than of the wider catchment,and lake–river systems cannot presently be modelled as a whole.However,additional models to suit new pro-blems can be added to the library.WaterRAT is built within MS Excel,so that Water-RAT’s own data processing modules can be supple-mented by those of Excel.The input and output is via a series of Excel spreadsheets and model specifications are made via Visual Basic(VB)menus and dialogue boxes.The library of simulation models comprises a series of Dynamic Link Libraries(DLLs),which mini-mises processing time and allows Monte Carlo techni-ques to be efficiently applied.The interactions between the user interface,VB modules and the core DLLs are illustrated in Fig.1.WaterRAT has a library of model structures for its pollution transport,water temperature and water qual-ity modules.This library gives the modeller a choice of different model complexities,and determinants which he wishes to model.This includes the capacity to model total organic carbon,biochemical oxygen demand, phytoplankton,dissolved oxygen,various nutrients,a toxic substance,floating and suspended oil,and total suspended solids.This is supported by sediment models which include biochemically and physically-driven sedi-ment-water interactions.Athermodynamic model is available which models heatfluxes from the atmos-phere and sediment,and simulates ice thickness and cover.This thermodynamic model may be bypassed by prescribing a time-series of water temperature.For the river models,pollution transport is modelled using the one-dimensional advection–dispersion equation sup-ported by two alternative hydraulic models(a quasi-steady friction formula and a non-linear store).The lake models use the advection–dispersion model supported by level-pool routing,with the optionofincluding prescribed periods and strengths of thermal stratification.The model components presently avail-able are summarised in Fig.2.The transport,sources,losses and changes of state of mass and energy are represented by systems of differential equations,a detailed description of which is found in McIntyre and Zeng (2002).3.Spatial and temporal resolutionAppropriate spatial and temporal modelling scales depend on the resolution of the data and boundary conditions available for model identification,the time available for achieving results,and the scale at which model forecasts are required.For river modelling,the river is represented as a series of well-mixed control volumes (called ‘cells’)between which pollution transport processes are simu-lated.This concept is illustrated in Fig.3(where 4cells in series are shown,although any number may be specified).Each cell must be prescribed certain spa-tially-varying parameters which depend on the trans-port model selected.For this purpose,adjacent cells may be grouped together into reaches,within which the spatially-varying parameters are taken to be constant.The lengths of cells and reaches,and their properties,are input to a spreadsheet.The downstream boundary of each cell is specified in terms of kilometres down-stream from a datum.The lake models work on the same control-volume principal,except that they can be two dimensional,able to represent the vertical variation in water quality due to effects of thermal stratification as well as length-wise variations (Fig.4).The spatially varying parameters are specified for each lake cell.The output time-step is defined by the user,and may be anything greater than one minute.The available input data will be automatically interpolated to this time-scale,using either linear interpolation,a cubic spline or a step function (whereby the input will not change until that time when the next data point is available),as chosen by the user.In general,whatever interpolation model is used,the temporal resolution of the output will be restricted by that of the input data.The time-domain of the simulation is specified by the modeller,constrained only by computer memory and the available time-domain of the boundary conditions.The numerical integration in the time domain uses a Fehlberg adaptive time-step scheme (see Chapra and Canale,1998;McIntyre et al.,2003c ).This ensures near-optimum speed of computation and a numerical error in the time domain which is guaranteed to be below a specified maximum.This is an important fea-ture in the Monte Carlo simulation,whererandomlyFig.2.Model component options currently available in WaterRAT.P,phosphorus;N,nitrogen;COD,chemical oxygen demand;BOD,bio-chemical oxygen demand.N.R.McIntyre,H.S.Wheater /Environmental Modelling &Software 19(2004)1131–11401133sampled inputs lead to numerical stability and accuracy criteria which can vary widely,both over the time-domain and from one model realisation to the next. The spatial grid is prespecified by the users,making them responsible for reconciling the spatial resolution with the temporal tolerance,so that numerical disper-sion and spatial averaging errors are not excessive.4.Boundary conditions,initial conditions and model parametersDynamic boundary conditions include the meteoro-logical,source and abstraction data.All meteorology time-series(rainfall,evaporation,dew-point,air tem-perature,wind speed,and surface light intensity are needed as inputs to various alternative models)are input on a single spreadsheet,and are assumed to be uniform over the river or lake.Any number of sources can be input(subject to computer memory).Each is input on a separate spreadsheet with the river kilo-meter(for river models)or the cell number(for lake models)specified.The format of this input is illustrated in Fig.5(where theflow,BOD and ammonium are being treated as uncertain—see below).If negative flows are entered,then sources are taken as losses,and any associated pollution loads are neglected.For the river models,distributed sources may also be specified, whereby the loads are evenly distributed between speci-fied upstream and downstream river kilometers.Static boundary conditions are specified for each cell. For the river models these are:channel cross-section shape;a leakage rate that is specified as constant or proportional to water volume in that cell;sediment oxygen demand or active sediment area(depending on whether the sediment–water interaction module is being used);and hydraulic or routing parameters depending on which solute transport model is being used.For the lake models,the bathymetry is defined by a volume-level relationship for the lake.The frac-tion of the total lake volume accounted for by each of the modelled segments(see Fig.4)is prescribed,as is the constant ratio of the hypolimnion depth to epi-limnion depth.Hydraulic or routing parameters are not needed for the level-pool lake routing method. Initial conditions can either be entered via a spread-sheet as a model input,or they can be estimated using a specified‘warm-up’period.During this period the dynamic boundary conditions are assumed steady-state at those of the specified start time of the simulation. For systems where the response time is significantly smaller than the specified output time-step,this latter option is likely to be a sufficientapproximation.Fig.3.Cells-in-series concept of a river with sedimentinteractions.Fig.4.Cells-in-series concept of a stratified lake with sediment interactions.1134N.R.McIntyre,H.S.Wheater/Environmental Modelling&Software19(2004)1131–1140Model parameter values are entered on another spreadsheet.Templates are given for each alternative model structure,making it clear which parameters are relevant for each option.All model parameters,initial conditions,static boundary conditions,and point and distributed loads can be considered as uncertain inputs.Prior to running the model,the user signifies that an input is uncertain by specifying a maximum and minimum value instead of an assumed value.For the time-series inputs,all entries in the time-series are assumed to have the same level of uncertainty,and this may be specified as either absolute or relative.For example,in Fig.5,all entries in the flow time-series have prior uncertainties of Æ30%,and all entries in the BOD time-series have prior uncertainties of Æ25%.Specified maximum and minimum values define uniform prior distributions which are assumed independent of each other.Each distribution is propagated to prediction uncertainty (Section 7),or included in the calibration or sensitivity analysis.This means that the model calibration and predictions need not be conditional on the precision and reliability of input data,and that the relative sig-nificance of uncertainties in parameters and in other inputs can be revealed through sensitivity analysis (Section 6).The current version of WaterRAT does not allow meteorological time-series to be treated as uncertain—this limitation is a priority for future development.5.Calibration and optimisationThe general relevance of water quality model cali-bration is well recognised (Adams and Reckhow,2001;McIntyre et al.,2003a ).In particular,parameter values should ideally compensate for errors arising from model limitations such as spatial averaging,model structure errors and numerical dispersion.WaterRAT has three alternative automatic calibration algorithms—a Monte Carlo Markov Chain algorithm (based on the Metropolis algorithm of Metropolis et al.,1953),a genetic algorithm (based on the descriptions of Beas-ley et al.,1993)and Latin Hypercube sampling of the parameter space (see MacKay et al.,1979).Each of these alternative methods has advantages depending on the nature of the calibration task,and depending on whether uncertainty or sensitivity analysis is required.For example,the Latin Hypercube method is especially useful when only a few of the inputs sig-nificantly affect the ouput,but which inputs is unknown a priori (MacKay et al.,1979).An important feature of WaterRAT is its capability to estimate the uncertainty in the calibrated,optimal parameter set by defining a response surface of para-meter value likelihoods (i.e.point estimates of probability mass),using the Latin Hypercube and Metropolis algorithms.From this response surface,marginal probability distributions of parameters and their co-variance matrix can easily be derived,and used for regional sensitivity analysis and risk evaluations (Portielje et al.,2000;McIntyre et al.,2003b ).In addition to the choice of calibration algorithms,WaterRAT provides flexibility in choice of the objec-tive function used to define the likelihood response sur-face.This includes selection of which determinants,which cells and which time-periods are to be incorpor-ated into the objective function.Objective function definition also includes alternative traditional likeli-hood measures (see Sorooshian and Gupta,1995)based on assumptions about the nature of the data errors,and more subjective measures of likelihood based on fuzzy rules (see Zadeh,1978),set theory (Van Straten and Keeseman,1991)and the GLUE method-ology of Beven and Binley (1992).These subjective likelihood measures are objective expressions of the perceived reliability and precision of calibration data and model equations (see the discussions of Hornberger and Spear (1980)and McIntyre et al.(2003a)).Fig.5.Atypical format of time-series data input.N.R.McIntyre,H.S.Wheater /Environmental Modelling &Software 19(2004)1131–11401135In WaterRAT,calibration data(and their error bounds if these are entered)from the monitoring points are entered into spreadsheets(one spreadsheet per monitoring point).During automatic calibration, WaterRAT will search these entries for data that is included in the specified objective functions.The relevant observed data(plus any specified error bounds)are included in the graphical report of cali-brated model output,so that the success of the cali-bration can be visualised.Using the calibration algorithms introduced above, pollution sources and other boundary conditions can be optimised to meet water quality targets,defined as ‘‘pass or fail’’objective ing the uncer-tainty analysis capability allows the risk of failing to meet these targets(due to uncertainty in the other inputs)to be evaluated for different intervention options.This is demonstrated by McIntyre et al. (2003b).6.Multi-objective analysisWaterRAT allows up to four objective functions to be simultaneously calculated during calibration.Multi-objective analysis also allows the sensitivities of differ-ent modelling criteria to be simultaneously evaluated and compared(e.g.Bastidas et al.,1999;McIntyre et al.,2003b).Also,it has been shown that using mul-tiple objective functions for calibration can indicate model equation error and the resulting prediction uncertainty(Yapo et al.,1998;Wagener et al.,2003). For example,in calibration of a model representing interactions between biochemical oxygen demand (BOD)and dissolved oxygen(DO),this could reveal the disparity between the optimum model of DO,and that of BOD(McIntyre et al.,2001).Such a disparity would indicate a fault in the model’s representation of the interactions between the two.Similarly,a marked difference between optimal parameter values identified using seasonally-exclusive objective functions,would indicate a misrepresentation of seasonal dynamics. Following calibration using multiple objective func-tions,WaterRAT canfilter out the Pareto-optimal solutions.These are the solutions that provide a valid compromise between the alternative objectives,and the variability of the Pareto-optimal solutions represents the disparity of the objectives(for a formal definition and demonstration of Pareto optimality in the context of water quality model calibration,see McIntyre et al., 2001).If the objectives should be commensurate(as in the BOD-DO model calibration example above)then disparity indicates an error either in the data or in the model equations.On the other hand,assuming errors are relatively minor,WaterRAT can be used to expose the necessary trade-offs between different management objectives,and to explore acceptable compromises.For example,the trade-offbetween maximising abstractions and minimising risk to downstream chemical status (both of which can be easily formulated into objective functions)can be assessed.WaterRAT,therefore, has potential application to catchment management when multiple planning criteria are involved( Environment Agency,2001,2002).7.Sensitivity analysisSensitivity analysis is implicit to model conditioning (in which the sensitivities of the objective functions to the inputs are explored).However,using sensitivity analysis to its full benefit,for example identifying the key causes of pollution,requires that measures of sensi-tivity are evaluated and reported explicitly.Also,sensi-tivity analysis can be used as a screening-level approach,whereby the parameter responses need not be rigorously evaluated,but can be used to give useful indications of the main driving forces of the system (e.g.Wade et al.,2001).WaterRAT contains a number of complementary approaches to sensitivity analysis. The simplest option isfirst order sensitivity analysis. Using this,the effect of perturbing each uncertain input between its specified upper and lower bound is repor-ted for each output variable as an absolute value,dis-played in tabular form for any chosen date and cell within the domain of the simulation.Results give an approximation of the variations which might be observed given the input perturbations,although this result is local to the chosen mean values of all other inputs.To make the analysis more robust to local effects,it can be extended to a factorial analysis (Henderson-Sellers and Henderson-Sellers,1993)which allows for two-factor interactions.The Latin hypercube and Metropolis calibration tools evaluate the response of an objective function over a large sample of possible combinations of values of the input variables.Therefore,these methods can be used to report non-linear univariate or multivariate responses of the model across the ranges of inputs(e.g. Freer et al.,1996;Sorooshian and Gupta,1995),and high order parameter interactions can be integrated into probabilistic indicators of sensitivity(e.g.McIntyre et al.,2003b).One such indicator is comparison of the post-calibration covariance matrix with the uncali-brated equivalent(where it would generally be expected that a parameter to which the objective function was sensitive would reduce in variance during calibration, although it should be noted that the covariance is a summary only of the linear characteristics of the response surface).McIntyre et al.(2003b)also show how WaterRAT allows the user to summarise the results of Monte Carlo-based calibration using the1136N.R.McIntyre,H.S.Wheater/Environmental Modelling&Software19(2004)1131–1140Kolmogorov–Smirnov statistic(the maximum distance separating the calibrated marginal cumulative distribu-tions of the factor values,and the uncalibrated, uniform marginal distribution).Due to their greater robustness in describing non-linear and multivariate response surfaces,the Monte Carlo-based methods are generally considered more powerful tools for sensitivity analysis than thefirst order and factorial methods.The data upon which the objective function is based may be synthesised so that,using the Monte Carlo-based methods,sensitivity of speculative or regulation-based objectives to the various model inputs can be evaluated.For example,the analysis can be used to give an indication of which input uncertainties are most likely to cause failure of future chemical status objectives.As part of the Monte Carlo procedure,each value of the calibration data can be randomly sampled from a distribution of values.The distribution may be speci-fied as uniform with an upper and lower bound,or may be non-parametric(specified by a sequence of measured or pre-sampled values).This allows us to integrate the model results over alternative realisations of the calibration data set.Also,this means that WaterRAT can measure the sensitivity of the objective function value to how well that objective has been defined by the target data.As well as indicating prio-rities for collection of calibration data(e.g.McIntyre et al.,2003b),this allows the significance of uncertainty in future water quality objectives to be evaluated.For example,should there be uncertainty in the level of dis-solved oxygen needed to secure good ecological status, this target could be specified as a distribution rather than deterministically.The sensitivity analysis would then indicate whether refining the definition of this objective(i.e.improving the chemico-ecological model) would be a research priority.8.Prediction uncertaintyWhereas sensitivity analysis can highlight which uncertain inputs are most likely to influence the model results,prediction of space and time-series is needed to show where and when this influence is significant. WaterRAT offers three basic methods of propagating uncertainty to model predictions,each of which can be applied to either the uncalibrated or calibrated dis-tributions of ing thefirst order-second moment method(see Tung,1996)and Rosenblueth’s two-point estimation method(Rosenblueth,1981;see Tung,1996),the propagation is based on the prior or calibrated covariance matrix and mean input values. Using Monte Carlo sampling,a specified number of samples are taken either from the prior uniform dis-tributions of inputs,or from the sets pre-sampled during calibration.In this latter case the likelihood of the model result obtained from each sample is weighted by the likelihood of that sample(as calculated during calibration),following the GLUE methodology of Beven and Binley(1992).In the case that multiple mea-sures of likelihood have been used during calibration, one must be chosen to define the uncertainty propa-gated to predictions.Alternatively,all Pareto-optimal solutions may be regarded as equally likely and propa-gated on this basis.The aforementioned methods of uncertainty propa-gation use probability theory to derive a probability distribution of each determinant at each time-step and ing thefirst order-second moment method,only thefirst and second moments are computed,and confi-dence limits are then calculated assuming either a nor-mal or log-normal ing Rosenblueth’s method,the same distributional assumptions are employed,although thefirst three moments are com-puted,and if the skewness is found to be negative,then an inverted log-normal assumption may be used.An obvious limitation of these assumptions is that esti-mates of the extreme percentiles may be unreliable,and that the constraint of non-negative concentration is ing Monte Carlo-derived results,no assumptions need to be made about the probability dis-tribution of results.Instead,a histogram approximat-ing the true shape of the probability distribution at each time-step and cell is derived,and used to compute percentiles(although,depending on available computer memory,there may be limitations on the number of time-steps and cells at which the full set of Monte Carlo output data can be stored).The use of probability theory for the derivation of output confidence limits assumes that the calibration has produced valid estimates of probability mass for each sampled set of model inputs.This may be in doubt,considering the inevitable subjectivity and assumptions used in defining the likelihood estimator, and limitations in sampling frequency(especially true for the Pareto-optimal set of solutions which may be a very sparse sample of the Pareto-optimal population—see Fonseca and Fleming,1995).Given these limita-tions,a less ambitious and more liberal representation of uncertainty may be preferred.WaterRAT offers this, using the rules of possibility(Zadeh,1978;Wierman, 1996)applied within the Monte Carlo procedure. Using these,only a possible range of outputs at each time-step and cell are reported,defined by the maximum and minimum values(for each time-step and cell)recorded during the Monte Carlo-based uncer-tainty propagation.In general,this gives much more significance to extreme values.Again,this method may be used pre or post calibration.N.R.McIntyre,H.S.Wheater/Environmental Modelling&Software19(2004)1131–114011379.OutputOutput data are stored in textfiles,processed by WaterRAT’s Visual Basic modules and viewed in a ser-ies of spreadsheets and graphs.Results can be dis-played as:.Time-series for any state variable at any cell,show-ing the mean,and upper and lower percentiles(or possible ranges)plus any relevant observed data..Spatial variation of any state variable on any date, showing the mean and upper and lower percentiles (or possible ranges)plus any relevant observed data (Fig.6is an example from a river modelling study). .The estimated probability density function and cumulative density function for any variable,date and cell..For each determinant,the modelled probability of failing to meet a specified water quality target withina specified stretch of river(integrating the uncer-tainty and variability over time)..Alist of the sampled values of all uncertain inputs following calibration,with associated likelihoods, plus the covariance matrix of calibrated inputs derived using one likelihood measure..Alist of the Kolmogorov–Smirnov statistic,defined by up to four different objective functions,for all uncertain inputs..Alist of the Pareto-optimal solutions following Monte Carlo-based calibration using multiple objec-tive functions.10.DiscussionAsurface water quality modelling tool(WaterRA T) has been described which provides a framework for the extensive analysis of uncertainty and associated decision-making risk.This includes established meth-ods of uncertainty estimation includingfirst order methods,Monte Carlo Markov Chains,Regional Sen-sitivity Analysis,Generalised Likelihood Uncertainty Estimation,and multi-objective ing these methods,the model can be conditioned to include the effect of all sources of error,and the model uncertainty can be propagated to forecast uncertainty.Additionally,the sensitivity of model out-puts to inputs can be explored thoroughly to indicate the key driving forces(e.g.pollution sources)behind water quality.WaterRAT includes a library of semi-distributed one-dimensional river and two-dimensional lake models allowing someflexibility in specifying model structure,and some capacity to explore the uncertainty associated with model structure.Within the library,the tool has the capability to model organic pollution,phytoplankton,dissolved oxygen, various nutrients,a toxic substance,floating and sus-pended oil,and total suspended solids.This is sup-ported by sediment models which include biochemical and physical sediment–water interactions.Athermo-dynamic model is available which models heatfluxes from the atmosphere and sediment,and includes simu-lation of ice.Pollution transport is modelled using the advection–dispersion equation supported by alterna-tive routing models.The framework has been developed envisaging that these libraries will be extended to include improved models—for example priority is to include improved pollutant transport using the aggregated dead zone model and/or transi-ent storage model(see Young and Wallis,1993)—and to meet the demands of future modelling tasks,for example higher dimensionality,coupling of ground-water models and GISinterfaces.Fig.6.Example of graphical output of WaterRAT.1138N.R.McIntyre,H.S.Wheater/Environmental Modelling&Software19(2004)1131–1140。
小学上册英语第4单元全练全测(含答案)英语试题一、综合题(本题有100小题,每小题1分,共100分.每小题不选、错误,均不给分)1.What do we call the time of day when the sun rises?A. NoonB. MidnightC. SunriseD. Sunset2.I love to _______ (做运动) every day.3.The first female prime minister in the UK was ________ (撒切尔夫人).4. A cat's agility enables it to jump up to six times its ________________ (长度).5.I like to share my _________ (玩具) with my friends because it’s _________ (好玩).6.The ______ helps us learn about math.7.What is the capital city of Bahrain?A. ManamaB. RiffaC. MuharraqD. Sitra8.What does a thermometer measure?A. SpeedB. TemperatureC. WeightD. Distance答案:B9.The chemical symbol for mercury is ______.10. A binary star system can create interesting ______ patterns.11.What do we call the large body of saltwater that covers most of the Earth?A. LakeB. RiverC. SeaD. Ocean答案:D12.My teacher is a ______. She loves to encourage us.13.What is the capital of the Solomon Islands?A. HoniaraB. GizoC. MalaitaD. Makira答案:A Honiara14.The ______ (鳄鱼) has sharp teeth and lives in water.15.The _____ (植物习性) can inform gardening practices.16.The ______ (花粉) is vital for plant reproduction.17. (Mayan) civilization was known for its advanced calendar. The ____18.The _______ (马) is often used for riding.19.My favorite animal is a _____ (lion/tiger).20.Coal is a type of ______ rock that is formed from ancient plants.21.She is wearing a beautiful ___. (dress)22.My dad loves to play ____ (badminton) with friends.23.I like to ________ in the morning.24.The frog lives by the ______.25.The ancient Romans built ________ as a form of public entertainment.26.What do you call the part of the plant that absorbs water and nutrients?A. LeafB. StemC. RootD. Flower27.What is the capital of Belarus?A. MinskB. VilniusC. KyivD. Warsaw答案:A Minsk28. A ___ (小象) sprays water with its trunk.29. A __________ is a fundamental building block of matter.30.The __________ is a region known for its rich natural resources.31.I want to _______ (尝试) new foods.32._____ (秋天) changes the colors of leaves.33.The ancient Greeks are known for their contributions to _____.34.The _______ (The Age of Enlightenment) inspired democratic revolutions.35.The kitten plays with a ball of _______ (小猫玩一个_______的球).36.What do we call the weather phenomenon that brings heavy rain and strong winds?A. ThunderstormB. BlizzardC. HurricaneD. Earthquake答案:C37.The _____ is a group of stars that form a picture in the sky.38.In a chemical reaction, energy can be absorbed or _____.39.The elephant sprays water with its _________. (鼻子)40.We are ___ to school. (walking)41.I saw a ______ (小鸟) building a nest in the tree. It looks very ______ (忙碌).42.I enjoy ___ (playing) in the rain.43.Plants use _____ (光合作用) to make their food.44.The _______ can help improve air quality.45. A reaction that requires energy input is called an ______ reaction.46.The process of separating substances in a mixture is called _______.47.What do we call the process of making cloth from threads?A. WeavingB. KnittingC. StitchingD. Crocheting答案:A Weaving48.The process of making vinegar involves the fermentation of _______.49.The kitten purrs when it is _______ (小猫在_______时咕噜作响).50. A penguin cannot fly but is an excellent ________________ (游泳者).51.What do you call the event where you celebrate someone's birthday?A. PartyB. FestivalC. GatheringD. Ceremony答案:A52.What is the term for a baby deer?A. CalfB. FawnC. KidD. Cub答案:B53.The _______ (Magna Carta) was signed in 1215, limiting the power of the king.54.ts have medicinal ______ that can help treat illnesses. (一些植物具有药用特性,可以帮助治疗疾病。
小学上册英语第2单元测验试卷英语试题一、综合题(本题有100小题,每小题1分,共100分.每小题不选、错误,均不给分)1.The chemical formula for sulfur nitride is _______.2.The state of matter that has a definite shape and volume is ______.3.The _____ (book/magazine) is interesting.4.I enjoy watching ______ (纪录片) about animals. It helps me learn more about nature and ______ (生态).5.Atoms are held together by strong _____.6. A _______ is a substance that can donate protons in a chemical reaction.7.I like to _______ (write) stories.8.What is the past tense of "go"?A. GoesB. WentC. GoneD. Going9. A chemical reaction can occur in _____ solutions.10.The _____ (植物展览) showcases beautiful varieties.11.My favorite animal is a ______ (狮子).12. A _____ (野生植物) grows naturally without human care.13.The __________ is lovely with blooming flowers in spring. (公园)14. A __________ is a famous location for skiing.15.I enjoy playing with my ________ (玩具名称) at the beach.16.What do we call the time it takes for the Earth to complete one orbit around the sun?A. DayB. YearC. MonthD. Season答案:B17.The _____ (青蛙) leaps gracefully from one place to another.18.Hydrogen is the most abundant _____ in the universe.19.The rabbit loves to dig in the ______ (土).20.The __________ (历史的探索精神) drives inquiry.21.I enjoy ________ (参加) sports competitions.22.The caterpillar becomes a ________________ (蝴蝶).23.What is the name of the famous tower in Paris?A. Eiffel TowerB. Leaning TowerC. Big BenD. Colosseum答案:A24.What is the shape of a coin?A. SquareB. CircleC. TriangleD. Rectangle25.What is the name of the holiday celebrated on February 14?A. New YearB. Valentine's DayC. ThanksgivingD. Christmas26.The ________ (生态保护区) helps preserve nature.27.We like to go ___. (fishing)28.I enjoy playing sports with my __________. (朋友)29.What is the capital of Iceland?A. ReykjavikB. HelsinkiC. OsloD. Copenhagen答案:A30.My cat enjoys watching birds from the ______ (窗户).31.In spring, the flowers __________ (开放) beautifully.32.I enjoy spending holidays with my ____.33.What do we call the distance from the center of the Earth to the surface?A. RadiusB. DiameterC. CircumferenceD. Altitude答案:A Radius34. A rabbit has big _______ that help it hear sounds.35.The _______ (The Cold War) was characterized by a struggle for global influence.36.The __________ makes up the majority of the plant's structure.37.What is the name of the famous Egyptian queen?A. CleopatraB. NefertitiC. HatshepsutD. Tutankhamun38.The chemical formula for sodium sulfite is ______.39.How many wheels does a bicycle have?A. 2B. 3C. 4D. 5答案:A40.The __________ (历史的情感共鸣) bridge divides.41.Rocks come in three main types: igneous, __________, and metamorphic.42.I want to _______ (参观) new places.43.The _____ (市场) is busy with shoppers.44.What do we call the tool used to cut hair?A. ScissorsB. RazorC. ClipperD. Knife45.They are ___ a picture. (taking)46. A ____(community resilience framework) guides recovery efforts.47.The rabbit thumps its foot when it feels ______ (害怕).48.What do we call the process of learning new information?A. MemorizationB. EducationC. TrainingD. Learning答案:D Learning49.The periodic table arranges elements by their __________.50.The __________ is very humid in the summer. (气候)51.My neighbor is a ______. He plays the drums.52.The ______ helps with the filtering of toxins from the body.53.He is a _____ (工程师) working on renewable energy projects.54.What is the boiling point of water?A. 50°CB. 100°CC. 150°CD. 200°C答案:B55. A turtle can live for many ______ (年).56.The __________ is known for its rich cultural heritage. (非洲)57.The flowers are ___ (colorful/boring).58.What is the main fruit used to make cider?A. OrangeB. GrapeC. AppleD. Cherry答案:C59.What is the national language of China?A. JapaneseB. MandarinC. KoreanD. Thai60.I want to grow a ________ to share with my class.61.What do we call the study of living things?A. ZoologyB. BotanyC. EcologyD. Biology答案:D62.My ________ (玩具名称) is a great partner for learning.63. A fish has scales that help it ______ (游泳).64.My sister loves to collect ____ (coins).65.My brother is a ______. He enjoys coaching sports teams.66.I have a ___ (pet) hamster.67.What is the name of the fairy tale character who lost her glass slipper?A. Snow WhiteB. CinderellaC. RapunzelD. Little Red Riding Hood答案:B68.__________ are often used in fireworks for colorful displays.69. A catalyst lowers the ______ needed for a reaction.70.The ________ (kingdom) is ruled by a king.71.What is the name of the famous American author known for "The Road"?A. Cormac McCarthyB. Don DeLilloC. Philip RothD. Toni Morrison答案:A72.The chemical reaction that releases energy is called _______.73.My friend gave me a ________ (玩具名称) for my birthday.74.What is 9 × 2?A. 17B. 18C. 19D. 20答案:B75.What color is the sky on a clear day?A. BlueB. GreenC. YellowD. Red答案:A76.The _____ (树干) supports the weight of the tree's branches.77.The Earth's surface is shaped by gravitational ______.78.I can narrate stories with my ________ (玩具类型).79.The ________ was a famous queen of ancient Egypt.80.The ____ has a long tail and loves to swing from branches.81.What is the capital of South Korea?A. SeoulB. PyongyangC. BeijingD. Tokyo答案:A Seoul82. A turtle's shell provides ______ (保护) against predators.83.What do you call a person who collects stamps?A. PhilatelistB. NumismatistC. CollectorD. Curator答案:A84._____ (保湿) is required for some tropical plants.85.I enjoy ______ (listening) to music.86.My uncle is a skilled ____ (potter).87.The chemical formula for sugar is _______.88. A __________ (化工产品) are used in various industries for manufacturing.89.The Earth is made up of several layers, including the ______ and the mantle.90.Water freezes at ______ degrees Celsius.91.The _______ is the center of an atom.92.The ____ swims in rivers and loves to catch fish.93.The capital of Peru is __________.94.They are going to ________ a concert.95.My dad calls me his little _______ when I do something good.96._____ (昆虫) play an important role in helping plants reproduce.97.I love to watch ________ (综艺节目) on weekends.98.The sun is _____ (shining/raining).99.Certain plants have unique adaptations for surviving in ______ ecosystems. (某些植物具有适应生存于特定生态系统的独特特征。
BOMBER:A tool for estimating water quality and bottom propertiesfrom remote sensing imagesClaudia Giardino a,n,Gabriele Candiani a,1,Mariano Bresciani a,Zhongping Lee b,Stefano Gagliano c,Monica Pepe aa Optical Remote Sensing Group,CNR-IREA,Via Bassini15,20133Milano,Italyb University of Massachusetts at Boston,100Morrissey Blvd,Boston,MA02125,USAc ITT,Visual Information Solutions,Viale Colleoni1,20041Agrate Brianza,Italya r t i c l e i n f oArticle history:Received16May2011Received in revised form21November2011Accepted22November2011Available online3December2011Keywords:Remote sensing imagesWaterBio-optical modellingInversiona b s t r a c tBOMBER(Bio-Optical Model Based tool for Estimating water quality and bottom properties fromRemote sensing images)is a software package for simultaneous retrieval of the optical properties ofwater column and bottom from remotely sensed imagery,which makes use of bio-optical models foroptically deep and optically shallow waters.Several menus allow the user to choose the model type,tospecify the input and outputfiles,and to set all of the variables involved in the model parameterizationand inversion.The optimization technique allows the user to retrieve the maps of chlorophyllconcentration,suspended particulate matter concentration,coloured dissolved organic matter absorp-tion and,in case of shallow waters,bottom depth and distributions of up to three different types ofsubstrate,defined by the user according to their albedo.The software requires input image data thatmust be atmospherically corrected to remote sensing reflectance values.For both deep and shallowwater models,a map of the relative error involved in the inversion procedure is also given.The tool wasoriginally intended to estimate water quality in lakes;however thanks to its general design,it can beapplied to any other aquatic environments(e.g.,coastal zones,estuaries,lagoons)for which remotesensing reflectance values are known.BOMBER is fully programmed in IDL(Interactive Data Language)and uses IDL widgets as graphical user interface.It runs as an add-on tool for the ENVIþIDL imageprocessing software and is available on request.&2011Elsevier Ltd.All rights reserved.1.IntroductionBio-optical models are mathematical equations which relateradiometric variables(e.g.,radiance reflectance,remote sensingreflectance,irradiance reflectance)observed above or below thewater surface to the inherent optical properties(IOPs)of theoptical active constituents or to the concentrations of waterquality parameters.Phytoplankton,suspended matter andcoloured dissolved organic matter(also known as yellow sub-stances or gelbstoff)are the main elements influencing the opticalwater properties and the radiative transfer in the water column.In case of shallow waters,the bottom contribution to the waterleaving radiance is also relevant and bio-optical models mustinclude this component as well.Inversion of spectral reflectance via a bio-optical model is awell known technique to achieve information about properties ofthe water column,bathymetry and substrate type from remotesensing data.Many examples of the successful use of bio-opticalmodels in coastal zones and inland waters can be found inliterature.Lee et al.(2001,2007)estimated water absorptionand backscattering coefficients,bathymetry,and bottom albedofrom both airborne AVIRIS data and Hyperion data.Brando andDekker(2003)and Giardino et al.(2007a,2007b)assessed waterquality parameters from Hyperion images in an Australian sub-tropical bay and in an Italian deep lake,respectively.Heege et al.(2003)mapped concentrations of water constituents and threeclasses of substrates from a multi-spectral image data acquired bya Daedalus airborne scanner over Lake Constance.Approaches used to invert bio-optical models may includematrix inversion methods(Brando and Dekker,2003;Giardinoet al.,2007a,2007b;Hoge and Lyon,1996;Keller,2001),neuralnetworks(Schaale et al.,1998;Schroeder et al.,2007),look-up-tables(Mobley et al.,2002;Peters et al.,2005),optimizationtechniques(Lee et al.,1999,2001;Keller,2001)or classification-based approaches whose end-members are created by forwardruns of the bio-optical model(Kutser,2004).Although there are several studies(e.g.,Brando et al.,2009;Gege,2004;Vand der Woerd and Pasterkamp,2008)presentingthe successful use of inversion methods to retrieve informationContents lists available at SciVerse ScienceDirectjournal homepage:/locate/cageoComputers&Geosciences0098-3004/$-see front matter&2011Elsevier Ltd.All rights reserved.doi:10.1016/j.cageo.2011.11.022n Corresponding author.Tel.:þ390223699298;fax:þ3902236993005.E-mail address:giardino.c@r.it(C.Giardino).1Currently at Laboratory of Remote Sensing,BEST-Politecnico di Milano,P.zza L.Da Vinci32,20133Milano,Italy.Computers&Geosciences45(2012)313–318about optical properties of water column and bottom,there is no publicly available,easy to use,software for the inversion of remotely sensed imagery.The purpose of this paper is to present BOMBER(Bio-Optical Model Based tool for Estimating water quality and bottom properties from Remote sensing images),an add-on tool for ENVIþIDL(ENVI,2011).BOMBER implements the inversion of a bio-optical model and make use of optimization techniques to assess water quality and bottom properties from remotely sensed imagery.In case of optically deep waters(those where the upwelling radiance received by the airborne or satellite sensor originates from the water column without any bottom signal contribution)BOMBER generates maps of water quality,in case of shallow waters bottom depth and bottom distribution of three substrate classes are also mapped.2.The bio-optical model designThe bio-optical model implemented in BOMBER is essentially based on the works from Albert and Mobley(2003)and Lee et al. (1998,1999).The above water remote sensing reflectance R rs(l), is expressed as a function of the subsurface radiance reflectance r0À(l),which is approximated as the sum of contributions from the water column r0À(l)C and the bottom r0À(l)B:R rsðlÞ¼P rÀðlÞð1Àg rÀ0ðlÞÞð1ÞrÀðlÞ¼rÀ0ðlÞCþrÀ0ðlÞB¼rÀ0ðlÞdpð1ÀA0eðÀð1=cosðW wÞþD C uÞk HÞÞþA1rðlÞeðÀð1=cosðW wÞþD B uÞk HÞð2ÞrÀðlÞdp¼ðg0þg1uðlÞg2ÞuðlÞð3ÞwithuðlÞ¼aðlÞl b lð4Þwhere P and g in Eq.(1)are model parameters which take into account the effects of air–water interface on the transmission of radiance.r0À(l)dp in Eqs.(2)and(3)is the contribution of optically deep waters in srÀ1.The variables cos(y w)and H in Eq.(2)are the cosine of the underwater sun zenith angle and the bottom depth, respectively.The quantity u(l)in Eq.(4)is a function of the two IOPs:total absorption coefficient a(l)and the total backscattering coefficient b b(l),which are modelled as functions of concentra-tions of water constituents(cf.Eqs.(8)–(14)).For the definition of the model parameters g0,g1,g2,A0,A1,D c u,D B u and k and for a more detailed description of the bio-optical model the user can refer to Lee et al.(1998,1999).The bottom albedo r(l)in Eq.2is expressed asrðlÞ¼b0rðlÞþb1r1ðlÞþb2r2ðlÞð5Þb0þb1þb2¼1ð6Þwhere b i¼0,1,2represent the relative distribution of three different substrate albedo r(l)i¼0,1,2defined by the user.The bio-optical model design implemented in BOMBER allows the user to describe IOPs according to various models found in literature.For example,the total absorption coefficient a(l)can be modelled as the sum of four contributions(e.g.,pure water, chlorophyll,tripton,and yellow substances)(e.g.Brando and Dekker, 2003;Vahtam¨ae et al.,2006)or three components(e.g.,pure water, chlorophyll,tripton,yellow substances)as in Feng et al.(2005). Moreover,the phytoplankton absorption coefficient can be modelled as in Bricaud et al.(1995)or via its specific inherent optical properties(SIOPs)as in Brando and Dekker(2003).The total back-scattering coefficient b b(l)can be described as the sum of three (Kutser,2004;Str¨ombeck and Pierson,2001)or two contributions (Feng et al.,2005)depending on the inclusion or not of phytoplank-ton particles in the backscattering processes.The optimization process is then performed through the minimization of a target function d which measures the spectral distance between modelled R rs(l)and image derived^R rsðlÞ:d¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXl maxl minðR rsðlÞÀ^R rsðlÞÞ2v uu tð7ÞThere are six variables for Eq.(7)(details in Section 3.1): chlorophyll concentration(CHL),suspended particulate matter con-centration(SPM),coloured dissolved organic matter(a CDOM(440)), bottom depth(H),bottom distribution b0and b1(b2is a function of b0and b1according to Eq.(6))of pre-defined albedo classes.The slope of non-algal particle(NAP)absorption coefficient(S NAP)may be an additional unknown involved in the optimisation.Starting from initial values of the unknowns,the predictor–corrector procedure changes these values computing the distance function d,at each step.The algorithm repeats this process until d reaches a minimum.Values corresponding to the d minimum represent the best(optimum)set for the unknown variables.A complete list of all variables is given in Table1.3.BOMBER featuresBOMBER is entirely programmed in IDL code and runs as an add-on tool of the ENVIþIDL software(ENVI,2011).The optimi-sation algorithm is based on the CONSTRAINED_MIN,a procedure (Lasdon and Waren,1978)available in IDL for solving nonlinear optimization problems,while the graphic user interface(GUI)is realised through IDL widget tools.Once installed,a new module appears in the ENVI menu bar and selecting BOMBER button,a properly sheet window with several option menus and buttons appears on the screen.The menus manage all the features necessary to:(1)parameterise the bio-optical model,(2)select input image and output products,and(3)define values involved in the optimization process.3.1.Description of BOMBER menusTo parameterise the bio-optical model and to run BOMBER a list of factors must be set by using a series of GUIs(Fig.1)whose purposes are described below.Model type–it defines the model type choosing from:‘‘Deep Waters’’or‘‘Shallow Waters’’(Fig.1a).Depending on the choice, some of the option menus will be enabled or disabled according to Eqs.(2)and(3).UWSZA v alue–this is the average underwater solar zenith angle(y w in Eq.(2),Fig.1a)for the whole image.It is expressed in degrees and it can be calculated through the Snell’s law starting from the solar zenith angle above water at the time of image acquisition.The underwater solar zenith angle is required by the ‘‘Shallow Waters’’model only.Input image–this menu allows the user to choose the input imagefile to perform the optimization on(Fig.1a).The input image must be atmospherically corrected and expressed into R rs(l)values in srÀ1units.The imagefile needs the related header file(.hdr,as defined by ENVI)containing the wavelengths of band centres and the full width half maximum.This information is used by BOMBER to resample the spectral input data(e.g.,IOPs, bottom albedo)according to the spectral resolution of image data. If the image contains some land portions,BOMBER allows the user to select a land mask when choosing the image.This improves the speed of the process because the optimization is performed only for the pixels of the image which are not masked.C.Giardino et al./Computers&Geosciences45(2012)313–318 314Output products–here the user can choose where to save thefile containing the products retrieved by the optimization process (Fig.1a).The outputs products include maps of chlorophyll(CHL) concentration,suspended particulate matter(SPM)concentration, coloured dissolved organic matter absorption at440nm(a CDOM(440)) and,in case of shallow waters,bottom depth(H)and bottom distribution(b0,b1and b2)of three substrate classes.The slope of non-algal particle absorption coefficient(S NAP)is an output product as well.For both deep and shallow waters an additional map is provided with a measure of the error(err)associated to the inversion, computed as follows:err¼dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP l maxi¼l min^R2rsðl iÞrð8Þwhere d and^R rsðlÞare defined in Eq.(7).The format of the outputfile is an ENVI band sequential image with the same spatial size(samples and lines)as of the input image.Absorption coefficients–this menu(Fig.1b)manages all the components of the total absorption coefficient(cf.Eq.(4)).aðlÞ¼a wðlÞþa FðlÞþa NAPðlÞþa CDOMðlÞð9Þwhere a w(l),a F(l),a NAP(l)and a CDOM(l)are the absorption coefficients of pure water,phytoplankton,non-algal particles and coloured dissolved organic matter,respectively.Required inputs are composed by both scalars and textfiles containing the spectral data at1nm resolution.To define the pure water absorption coefficient a w(l),a textfile containing the pure water absorption coefficient(e.g.,Pope and Fry, 1997;Smith and Baker,1981)must be given(‘‘Water a’’in Fig.1b).The phytoplankton absorption coefficient a F(l)is modelled according to Bricaud et al.(1995):a FðlÞ¼a n FðlÞCHL¼AðlÞCHLÀBðlÞCHLð10Þwhere A(l)and B(l)are the input textfiles(‘‘CHL A’’and‘‘CHL B’’in Fig.1b)used to model a F(l)byfitting a F(l)to CHL concentrations with a logarithmic regression at each wavelength l(Bricaud et al., 1995,).When A(l)is set to the specific phytoplankton absorption coefficients a n F(l)and B(l)is0for each wavelength,Eq.(10)becomes a F(l)¼a n F(l)CHL,hence similar to those used in other studies(e.g., Brando and Dekker2003;Keller,2001)where the chlorophyll-specific phytoplankton absorption a n F(l)is independent of the chlorophyll concentrations.The non-algal particle absorption coefficient a NAP(l)is mod-elled as suggested by Babin et al.(2003):a NAPðlÞ¼a NAPð440ÞeÀS NAPðlÀ440Þ¼ðG a SPMþO aÞeÀS NAPðlÀ440Þð11Þwhere G a and O a are numerical values necessary(‘‘SPM G a’’and ‘‘SPM O a’’in Fig.1b)to set the slope and the intercept of the regression line between SPM concentration and a NAP(440)(e.g.,inTable1List of the variables mentioned in the text(in column one the number of the equation where the variable appears).The spectral variables which depend on wavelength have the l-dependence included in the symbol;otherwise,they are scalars.The units for the most common variables are indicated between square-brackets.For each variable it is noted whether the variable isfixed(F)or may be optimised(O).When applicable,the name of the variable in the BOMBER menus is indicated(in bold the variables that can be computed by BOMBER).Equation Symbol Definition F/O BOMBER menus(1)and(7)R rs(l)Remote sensing reflectance(srÀ1)O–(1)P,g Model parameters to account the effects of air–water interfaceon the transmission of radianceF Pi,Gamma(1)and(2)r0À(l)Subsurface radiance reflectance(srÀ1)O–(2)r0À(l)C Subsurface radiance reflectance the water column(srÀ1)O–(2)r0À(l)B Subsurface radiance reflectance the bottom(srÀ1)O–(2)and(3)g0,g1,g2,A0,A1,D C u,D B u,k Parameters required by the‘‘Deep Waters’’and‘‘Shallow Waters’’models according to Lee et al.(1998,1999).F g0,g1,g2,A02,A1,Db0,Db1,Dc0,Dc1(2)y w Underwater sun zenith angle(deg)F UWSZA(2)H Bottom depth(m)O H(2)and(3)r0À(l)dp Subsurface radiance reflectance for optically deep waters(srÀ1)O–(2)and(5)r(l),r(l)i¼0,1,2Bottom albedo of the i th substrate(i¼0,1,2)(–)F RHO0,RHO1,RHO2(3)and(4)u(l)Variable used to relate r0À(l)dp to a(l)and b b(l)(–)O–(4)and(9)a(l)Total absorption coefficient(mÀ1)O–(4)and(13)b b(l)Total backscattering coefficient(mÀ1)O–(5)and(6)b i¼0,1,2Relative distribution of the i th substrate(b0þb1þb2¼1)O b0,b1,b2(7)and(8)d Target function of the optimisation process(–)O–(7)and(8)^RrsðlÞImage-derived remote sensing reflectance(srÀ1)F–(8)err Error associated to the optimisation(–)O Err(9)a w(l)Absorption coefficient of pure water(mÀ1)F Water a(9)and(10)a F(l)Absorption coefficient of phytoplankton(mÀ1)O–(9)and(11)a NAP(l)Absorption coefficient of non-algal particles(mÀ1)O–(9)and(12)a CDOM(l)Absorption coefficient of CDOM(mÀ1)O–(10)and(14)CHL Chlorophyll concentration(mgmÀ3)O CHL(10)A(l),B(l)Model parameters for relating a F(l)to CHL F CHL A,CHL B(10)a n F(l)Specific absorption coefficient of phytoplankton(m2mgÀ1)F–(11)and(15)SPM Suspended particulate matter concentration(gmÀ3)O SPM(11)S NAP Slope of the exponential curve describing a NAP(l)(–)O SNAP(11)G a,O a Model parameters for relating a NAP(440)to SPM F SPM Ga,SPM Oa(12)a CDOM(440)Absorption coefficient of CDOM at440nm(i.e.CDOM concentration)(mÀ1)O ACDOM(12)S CDOM Slope of the exponential curve describing a CDOM(l)F–(12)C,D Model parameters for relating a CDOM(440)to S CDOM F ACDOM440C,ACDOM440D(13)b b w(l)Backscattering coefficient of pure water(mÀ1)F Water bb(13)and(14)b b F n(l)Chlorophyll-specific phytoplankton backscattering(m2mgÀ1)F CHL bb(13)and(14)b b F(l)Backscattering coefficient of phytoplankton(mÀ1)O CHL bb(13)and(15)b b NAP(l)Backscattering coefficient of NAPs(mÀ1)O SPM bb(15)b b NAPn(l)Specific backscattering coefficient of NAPs(m2gÀ1)F SPM bb(15)G b,O b Model parameters for relating the b b NAP(l r)at a reference wavelength l r to SPM F SPM Gbb,SPM ObbC.Giardino et al./Computers&Geosciences45(2012)313–318315Babin et al.(2003)Fig.15,G a is 0.031and O a is 0).S NAP is a parameter which defines the slope (of the exponential curve)of a NAP (l ).In BOMBER it can be considered as an unknown para-meter (thus estimated thorough the optimisation)or,if it is already known,it can be set to a fixed value as well.Setting to 0both G a and O a implies the exclusion of the NAP contribution to the total absorption coefficient.The absorption coefficient of coloured dissolved organic mat-ter a CDOM (l )is modelled as:a CDOM ðl Þ¼a CDOM ð440Þe ÀS CDOM ðl À440Þ¼a CDOM ð440Þe ÀC U a CDOM ð440ÞÀDðl À440Þð12ÞAs suggested by Carder et al.(1989)a CDOM (440)and S CDOM can show an inverse relationship.C and D are the two scalars (‘‘ACDOM440C’’and ‘‘ACDOM440D’’in Fig.1b)requested to relate the slope factor S CDOM to the a CDOM (440).If no relationship between a CDOM (440)and S CDOM exists (e.g.,Brando and Dekker,2003;Kutser,2004),the user has to set C to the average S CDOM value and D to 0.Backscattering coefficients –this menu (Fig.1c)manages all the components of the total backscattering coefficient (cf.Eq.(4)).b b ðl Þ¼b b w ðl Þþb b F ðl Þþb b NAP ðl Þð13Þwhere b b w (l ),b b F (l )and b b NAP (l )are the backscattering coefficients of pure water,phytoplankton and non-algal particles,respectively.Required inputs are composed by both numerical values and text files containing the spectral data at 1nm resolution.To define backscattering coefficients of pure water b b w (l ),a text file containing the pure water backscattering coefficient for each wavelength (e.g.,Dall’Olmo and Gitelson,2006;Morel,1974)must be specified (‘‘Water bb’’in Fig.1c).The backscattering coefficient of phytoplankton b b F (l )is modelled as in Brando and Dekker (2003):b b F ðl Þ¼b nb F ðl ÞCHLð14Þwhere the chlorophyll-specific phytoplankton backscattering b b F n (l )is the input text file (‘‘CHL bb’’in Fig.1c).If the user wants to avoid this term in Eq.(12),this file must be set to 0at everywavelength.Fig.1.General view of BOMBER:(a)is the starting window of the main menu showing all the menus and buttons involved in the optimization process that runs the model in ‘‘Deep Waters’’or ‘‘Shallow Waters’’modality.The buttons at the window bottom allow the user to run the model on image data (‘‘Run’’button),on spectra data (‘‘Probe Convergence’’button,cf.Fig.2)or to cancel the application.When the menus on the left hand side are clicked,several windows (from (b)to (g))pop up to allow the user to select the model inputs.In case of ‘‘Deep Waters’’model some parameters are not editable;the window ‘‘Bottom Albedo’’pop ups only for the ‘‘Shallow Waters’’model type.C.Giardino et al./Computers &Geosciences 45(2012)313–318316The backscattering coefficient of non-algal particle b b NAP(l)is modelled as follow:b b NAPðlÞ¼b b NAPðl rÞb n bNAPðlÞ¼ðG b SPMþO bÞb n b NAPðlÞð15Þwhere the specific backscattering coefficient b b NAPn(l)is an input textfile(‘‘SPM bb’’in Fig.1c).G b and O b are two additional scalar inputs(‘‘SPM Gbb’’and‘‘SPM Obb’’in Fig.1c)needed to define slope and intercept of the equation used to relate the b b NAP(l r)at a certain reference wavelength l r to the SPM concentration. If G b and O b are set to1and0respectively,all the suspended particulate matter contributes to the backscattering coefficient of particles.In this case,the specific backscattering coefficient due to phytoplankton(‘‘CHL bb’’in Fig.1c)should be set to zero at all wavelengths.Model parameters–this menu allows the user to adjust the calibration parameters of the bio-optical model(Eqs.(1)–(3))as described in Lee et al.(1998)(‘‘g0’’,‘‘g1’’,‘‘g2’’,‘‘A02,‘‘A1’’,‘‘Db0’’,‘‘Db1’’,‘‘Dc0’’,‘‘Dc1’’,‘‘Pi’’and‘‘Gamma’’in Fig.1c),with default values taken from Lee et al.(1999).These values were estimated using radiative transfer numerical model Hydrolight(Mobley and Sundman,2001).Otherwise,literature data could be used.For instance,in case of Deep Water and assuming g1¼0,Eq.(3)can turn into other subsurface reflectance models such as Gordon et al.(1988),Jerlov(1976),Krijgsman(1994),Pierson and Str¨ombeck(2001)or Walker(1994),depending on the g0value.Starting values–since the optimization technique is a trial and error procedure it needs to be initialized with starting values of the unknowns.These numerical values,indicating the varia-bility range of the unknowns,may be the historical average concentrations of water quality parameters(‘‘CHL’’,‘‘SPM’’,‘‘ACDOM440’’,‘‘SSPM’’in Fig.1e),the average bathymetry (‘‘H’’in Fig.1e),and equally distributed percentage of substrate classes(i.e.,‘‘b1’’,‘‘b2’’in Fig.1e).In this menu users can also choose whether to include(Delta¼True,in Fig.1e)or not(Delta¼False)a spectrally constant offset representing a residual signal of the atmospheric correction in the remote sensing reflectance image data(Lee et al.,2001).Bottom albedo–this menu requires three textfiles(‘‘RHO0’’,‘‘RHO1’’,‘‘RHO2’’in Fig.1f)representing three different types of bottom albedo at1nm resolution.The user can submit their own bottom albedo spectra measured duringfield campaigns or taken from the literature.The bottom albedo spectra are required by the ‘‘Shallow Waters’’model only.CONSTRAINED_MIN arguments–this menu manages all the parameters range boundaries as well as all values related to the CONSTRAINED_MIN(i.e.,the IDL procedure used in the minimiza-tion process).This procedure solves nonlinear optimization problems and it is based on an implementation of the generalized reduced gradient method(Lasdon and Waren,1978).The CONSTRAINED_MIN usesfirst partial derivatives of the function d with respect to each variable which are automatically computed byfinite difference approximation.For each unknown,values representing the lower and the upper bounds have to be set in the Xmin and Xmax menu (‘‘CHLmin,CHLmax’’,‘‘SPMmin,SPMmax’’,‘‘ACDOMmin,ACDOM-max’’,‘‘SSPMmin,SSPMmax’’,‘‘b1min,b1max’’,‘‘b2min,b2max’’,‘‘Hmin,Hmax’’,Fig.1g).Since b0is a linear combination of b1and b2(Eq.(5))this variable is not included in this menu.However, setting b1and b2in the range from0to1is not sufficient,because their sum can be greater than one.To avoid this error a line code specifies the0to1existence range of the b1and b2sum. Moreover,in order to exclude the S NAP from the unknowns of the optimisation process,its lower and upper bounds must be both set to a known value.The other inputs required in this menu(EPSTOP,LIMSER MAXIMIZE,NSTOP,Fig.1g)are technical arguments of the CON-STRAINED_MIN procedure,fully described in the IDL help.3.2.Description of BOMBER buttonsOnce all of the model attributes are parameterized,the input image and the output productsfiles are chosen and the para-meters for the optimization procedure are set,the optimization process for all pixels of the selected image starts pressing the ‘‘Run’’button(Fig.1).In the same way,the‘‘Probe Convergence’’button(Fig.1)allows the user to execute the optimization on a single pixel of the image.Clicking on this button opens a plot window(Fig.2):the red line is the remote sensing reflectance modelled using the input starting values(these are the red values at the top of the plot).When the user selects an image pixel a second green line appears on the plot:this is the image remote sensing reflectance.Clicking on the‘‘Run’’button the optimization process starts:changing the values of the unknown parameters, a blue line,representing the modelled remote sensing reflectance, starts to converge to the image pixel spectra(see Fig.2).4.ConclusionsBOMBER is an ENVI add-on tool which implements a bio-optical model to derive optical properties of water column, bottom depth and distribution of three substrate classes accord-ing to their albedo values,through an optimization technique.It is entirely programmed in IDL using widgets for the graphical interface and the CONSTRAINED_MIN procedure for the algorithm inversion.BOMBER generates a5members BSQfile(CHL,SPM, S NAP,a CDOM(440),err)in case of‘‘Deep Waters’’model,while a 9members BSQfile(CHL,SPM,S NAP,a CDOM(440),H,b0,b1,b2,err) is created in case of‘‘Shallow Waters’’model.If S NAP isnotFig.2.BOMBER Plot window opened when the user click on the Probe Convergence button(cf.Fig.1).Red line is the modelled remote sensing reflectance spectrum obtained from the starting values(red values at the top of window);the green line is the measured reflectance spectrum from a pixel image;the blue line is thefinal modelled reflectance spectrum resulting from the optimal values retrieved by the optimization(blue values at the top of the window).Two examples for‘‘Deep Waters’’(on the left) and‘‘Shallow Waters’’(on the right)models are plotted starting from R rs data Lake Garda,northern Italy.The number of the estimated variables depending on the choice of the model.(For interpretation of the references to color in thisfigure legend,the reader is referred to the web version of this article.)C.Giardino et al./Computers&Geosciences45(2012)313–318317。