试题题库-—八年级数学上册导学案全册有答案
- 格式:doc
- 大小:3.64 MB
- 文档页数:188
人教版八年级上册数学导学案答案数学(八年级上册)填空题:1. 周长为 42cm 的长方形,它的长是宽的 3/2,那么它的面积是_______答案:84cm²2. 若正比例函数 y = 3x,那么当 x = 8 时,y = _______答案:243. 设图中的阴影面积是 16.8dm²,那么阴影部分的周长是______ 答案:12.2dm4. 一个面积是 48平方厘米的正方形,如果面积增加 16平方厘米,它的周长会增加_______厘米。
答案:85. 已知正比例函数 y = 2x - 1,求当 x = 6 时,y = _______答案:11选择题:1. 已知一函数 y = |x - 3| + 2,那么它的定义域为()A. RB. x ≤ 3C. x > 3D. x ≠ 3答案:D2. 下列四个函数中,是奇函数的是()A. y = -1/4x³B. y = 4 - 2xC. y = 8x² + 9D. y = 2|x|答案:A3. 分式 3x/(x - 2) + 1,当 x = 2 时,分母为_______。
A. -2B. 0C. 2D. 4答案:04. 在矩形 ABCD 中,AD = 8cm,AB = 6cm,\angle C = 90^\circ,则其对角线 BD 的长为()。
A. 6cmB. 8cmC. 10cmD. 12cm答案:10cm5. 若 x + y = 6,x - y = 2,则 (1/x) - (1/y) 的值为()A. (1/6)B. (1/2)C. (1/12)D. (2/3)答案:A计算题:1. 求得物体表面积占整个球表面积的比值,已知球的半径为 5cm。
答案:(3/4)2. 已知正三角形 ABC 的边长为 8cm。
求 \angle ABD 的度数。
答案:30°3. 在等腰直角三角形 ABC中,AB = AC = 1。
1-3章 导学案答案第一章 勾股定理1.1.1 三、1、× × × ; 2、10;12四、1、41、8、20 ; 2、答:不正确。
因为△ABC 不一定是直角三角形。
3、30m五、1、C 、B ; 2、6、8 ; 3、25或7;1.1.2 三、1、144; 2、正确.3、4、5是一组勾股数。
四、1、D ;2、48 cm 2 ; 3、AB=3.5 cm ,CD=1.68 cm , 4、36 m 2 五、3 cm1.2 三、1、是、是、否、否;2、是直角三角形;是直角三角形(用勾股定理逆定理)四、1、①②④⑤,直角三角形,∠A ,90; 2、36; 3、约4.62五、1、C ;2、直角三角形;1.3 三、1、12米;13米;2、2.5米四、1、C ,17m ;2、24米;8米;3、15m 五、25 cm第一章 复习课参考答案Ⅰ.题组练习一1.D ;2.C ;3.合格;4.17或161;5.B ;Ⅲ.题组练习二6--9.CBAB ;10.1cm; 11.5; 12.略; 13.24平方米;Ⅳ题组练习三14.D ;15.(1)12-=n a ,n b 2=,12+=n c ;(2)是直角三角形.过程略.第一章 达标检测题参考答案一、ACC ; 6--10.CBBDC.二、11.5;12.4;13.48cm 2;14.直角; 15.4;16.169;17.98π;18.10;19.36;20.能.三、21.因为AB=DE=2.5,BC=1.5,∠C=90°,所以AC 2=AB 2-BC 2=2.52-1.52=4,所以AC=2.又BD=0.5,所以在Rt △ECD 中,CE 2=DE 2-CD 2=2.52-(CD+BD )2=2.52-(1.5+0.5)2=2.25,所以CE=1.5.所以AE=AC-CE=2-1.5=0.5.答:滑杆顶端A 下滑0.5米.22.过点B 作BD ⊥AD 于D ,则AD =4-(2-0.5)=2.5,BD =4.5+1.5=6.在Rt △ADB 中,由勾股定理,得AB 2=AD 2+BD 2=2.52+62=42.25,所以AB=6.5.所以登陆点A 与宝藏埋藏点B 之间的距离是6.5km.23.(1)如图;(2)因为小正方形的边长为1,所以AC 2=5,CD 2=5,AD 2=10,所以AC 2+CD 2=AD 2.所以△ACD是直角三角形,且∠ACD=90°.(3)S四边形ABCD =2S△ACD=2×5212==⋅ACCDAC.24.(1)猜想:AP=CQ.理由:因为∠ABC=∠PBQ=60°,所以∠ABP=∠ABC-∠PBC=∠PBQ-∠PBC=∠CBQ.又AB=CB,BP=BQ,所以△ABP≌△CBQ,所以AP=CQ.(2)△PQC是直角三角形.理由:由PA:PB:PC=3:4:5,可设PA=3a,PB=4a,PC=5a.连接PQ,在△PBQ中,因为PB=BQ=4a,∠PBQ=60°,所以△PBQ为正三角形,所以PQ=4a.由(1)知△ABP≌△CBQ,所以CQ=PA=3a.在△PQC中,因为PQ2+QC2=(4a)2+(3a)2=25a2=(5a)2=PC2.所以△PQC是直角三角形.25.由题意,知5秒时P点运动的距离为2×5=10(厘米),所以P点与D点重合,如图.动点Q运动的距离为2.8×5=14(厘米).因为DC=BC=BA=5,所以BQ=14-10=4(厘米).在△BPQ中,因为BD=5厘米,BQ=4厘米,DQ=3厘米,所以BQ2+DQ2=42+32=25=BD2,所以△BPQ为直角三角形,且∠BQP=90°.所以∠AQD=90°,即△APQ为直角三角形.第二章实数2.1.1 三、1、不是,是;2、是;3、h不可能是整数,不可能是分数四、1、不是,是,是;2、B 3、设对角线为a,a2=13,32<a2=13<42,a不可能是整数,又分数的平方还是分数,a不可能是分数;4、略;5、不可能是整数,不可能是分数,不可能是有理数;五、以1、2为直角边构成的直角三角形的斜边为边长的正方形即可。
一、选择题(每题4分,共20分)1. 下列各数中,正数是()A. -1.5B. -√4C. 0D. 32. 已知a=5,b=-3,则a-b的值是()A. 2B. -8C. 8D. 03. 在直角坐标系中,点P(-2,3)关于x轴的对称点是()A. (-2,-3)B. (2,3)C. (-2,3)D. (2,-3)4. 下列函数中,是反比例函数的是()A. y=2x+1B. y=3/xC. y=x²D. y=√x5. 已知三角形的三边长分别为3、4、5,则该三角形的面积是()A. 6B. 8C. 10D. 12二、填空题(每题5分,共20分)6. 2的平方根是______,-3的立方根是______。
7. 若a=√2,b=-√2,则a+b的值是______。
8. 已知直线y=2x+3,则该直线的斜率是______。
9. 在直角坐标系中,点A(2,3)与点B(-1,2)之间的距离是______。
10. 已知一次函数y=kx+b,其中k≠0,若该函数的图象经过点(1,2),则k+b 的值是______。
三、解答题(每题10分,共30分)11. (1)计算:-5×(-2)×(-3)×2(2)化简:-4a²b² ÷ (-2ab)12. (1)已知a=-2,b=3,求a²-b²的值。
(2)若x²-3x+2=0,求x的值。
13. (1)已知一次函数y=kx+b,其中k≠0,若该函数的图象经过点(2,3)和(-1,0),求k和b的值。
(2)判断一次函数y=-2x+5的增减性。
四、应用题(10分)14. 某商店推出一款新商品,定价为120元。
为了促销,商店决定对这款商品实行打折销售,打折率为x%。
请问,当x为多少时,商店的销售额最大?并求出最大销售额。
答案:一、选择题:1. D2. C3. A4. B5. D二、填空题:6. ±√2,-√277. -58. 29. 5 10. 7三、解答题:11. (1)-60 (2)2ab12. (1)-7 (2)x=1或x=213. (1)k=-2,b=9 (2)一次函数y=-2x+5是递减函数。
第一章轴对称与轴对称图形1.1我们身边的轴对称图形教学目标:1、观察、感受生活中的轴对称图形,认识轴对称图形。
2、能判断一个图形是否是轴对称图形。
3、理解两个图形关于某条直线成轴对称的意义。
4、正确区分轴对称图形与两个图形关于某条直线成轴对称。
5、理解并能应用轴对称的有关性质。
教学重点:1、能判断一个图形是否是轴对称图形。
2、轴对称的有关性质。
难点:1、判断一个图形是否是轴对称图形。
2、正确区分轴对称图形与两个图形关于某条直线成轴对称。
教学过程:一、情境导入教师展示图片:五角星、脸谱、正方形、禁行标志、山水倒映等。
学生欣赏,思考:这些图形有什么特点?二、探究新知1、生活中有许多奇妙的对称,如从镜子里看到自己的像;把手掌盖在镜子上,镜子里的手与自己的手完全重合在一起;这些都是对称,你还能举出例子吗?学生分组思考、讨论、交流,选代表发言。
教师巡回指导、点评。
2、动手做一做:用直尺和圆规在纸上作出一个梯形,并把纸上的梯形剪下来,沿上底和下底的中点的连线对折,直线两旁的部分能完全重合吗?学生活动:观察、小结特点。
3、教师给出轴对称图形的定义。
问题:⑴“完全重合”是什么意思?⑵这条直线可能不经过这个图形本身吗?⑶圆的直径是圆的对称轴吗?学生分组思考、讨论、交流,选代表发言,教师点评。
⑴指形状相同,大小相等。
⑵不能,因为这条直线必须把这个图形分成能充分重合的两部分,则必然经过这个图形的本身。
⑶不是,因为圆的直径是线段,而不是直线,应说直径所在的直线或经过圆心的直线。
4、猜想归纳:正三角形有几条对称轴?正方形呢?正五边形呢?正六边形呢?从中可以得到什么结论?学生思考、讨论、交流。
5、你还能举出生活中轴对称图形的例子吗?6、教科书第五页图1-6⑴⑵两个图,问题:想一想,每组图形中,左边图形沿虚线对折后与右边的图形有着怎样的关系?7、教师给出两个图形关于某条直线成轴对称的定义。
8、你还能举出生活中两个图形关于某条直线成轴对称的例子吗?思考:轴对称图形与两个图形关于某条直线成轴对称有什么异同?学生思考、分组讨论、交流。
第一章轴对称与轴对称图形1.1我们身边的轴对称图形教学目标:1、观察、感受生活中的轴对称图形,认识轴对称图形。
2、能判断一个图形是否是轴对称图形。
3、理解两个图形关于某条直线成轴对称的意义。
4、正确区分轴对称图形与两个图形关于某条直线成轴对称。
5、理解并能应用轴对称的有关性质。
教学重点:1、能判断一个图形是否是轴对称图形。
2、轴对称的有关性质。
难点:1、判断一个图形是否是轴对称图形。
2、正确区分轴对称图形与两个图形关于某条直线成轴对称。
教学过程:一、情境导入教师展示图片:五角星、脸谱、正方形、禁行标志、山水倒映等。
学生欣赏,思考:这些图形有什么特点?二、探究新知1、生活中有许多奇妙的对称,如从镜子里看到自己的像;把手掌盖在镜子上,镜子里的手与自己的手完全重合在一起;这些都是对称,你还能举出例子吗?学生分组思考、讨论、交流,选代表发言。
教师巡回指导、点评。
2、动手做一做:用直尺和圆规在纸上作出一个梯形,并把纸上的梯形剪下来,沿上底和下底的中点的连线对折,直线两旁的部分能完全重合吗?学生活动:观察、小结特点。
3、教师给出轴对称图形的定义。
问题:⑴“完全重合”是什么意思?⑵这条直线可能不经过这个图形本身吗?⑶圆的直径是圆的对称轴吗?学生分组思考、讨论、交流,选代表发言,教师点评。
⑴指形状相同,大小相等。
⑵不能,因为这条直线必须把这个图形分成能充分重合的两部分,则必然经过这个图形的本身。
⑶不是,因为圆的直径是线段,而不是直线,应说直径所在的直线或经过圆心的直线。
4、猜想归纳:正三角形有几条对称轴?正方形呢?正五边形呢?正六边形呢?从中可以得到什么结论?学生思考、讨论、交流。
5、你还能举出生活中轴对称图形的例子吗?6、教科书第五页图1-6⑴⑵两个图,问题:想一想,每组图形中,左边图形沿虚线对折后与右边的图形有着怎样的关系?7、教师给出两个图形关于某条直线成轴对称的定义。
8、你还能举出生活中两个图形关于某条直线成轴对称的例子吗?思考:轴对称图形与两个图形关于某条直线成轴对称有什么异同?学生思考、分组讨论、交流。
河南省实验中学资料第一章轴对称与轴对称图形我们身边的轴对称图形教学目标:1、观察、感受生活中的轴对称图形,认识轴对称图形。
2、能判断一个图形是否是轴对称图形。
3、理解两个图形关于某条直线成轴对称的意义。
4、正确区分轴对称图形与两个图形关于某条直线成轴对称。
5、理解并能应用轴对称的有关性质。
教学重点:1、能判断一个图形是否是轴对称图形。
2、轴对称的有关性质。
难点:1、判断一个图形是否是轴对称图形。
2、正确区分轴对称图形与两个图形关于某条直线成轴对称。
教学过程:一、情境导入教师展示图片:五角星、脸谱、正方形、禁行标志、山水倒映等。
学生欣赏,思考:这些图形有什么特点?二、探究新知1、生活中有许多奇妙的对称,如从镜子里看到自己的像;把手掌盖在镜子上,镜子里的手与自己的手完全重合在一起;这些都是对称,你还能举出例子吗?学生分组思考、讨论、交流,选代表发言。
教师巡回指导、点评。
2、动手做一做:用直尺和圆规在纸上作出一个梯形,并把纸上的梯形剪下来,沿上底和下底的中点的连线对折,直线两旁的部分能完全重合吗?学生活动:观察、小结特点。
3、教师给出轴对称图形的定义。
问题:⑴“完全重合”是什么意思?⑵这条直线可能不经过这个图形本身吗?⑶圆的直径是圆的对称轴吗学生分组思考、讨论、交流,选代表发言,教师点评。
⑴指形状相同,大小相等。
⑵不能,因为这条直线必须把这个图形分成能充分重合的两部分,则必然经过这个图形的本身。
⑶不是,因为圆的直径是线段,而不是直线,应说直径所在的直线或经过圆心的直线。
4、猜想归纳:正三角形有几条对称轴?正方形呢?正五边形呢?正六边形呢?从中可以得到什么结论?学生思考、讨论、交流。
5、你还能举出生活中轴对称图形的例子吗?6、教科书第五页图1-6⑴⑵两个图,问题:想一想,每组图形中,左边图形沿虚线对折后与右边的图形有着怎样的关系?7、教师给出两个图形关于某条直线成轴对称的定义。
8、你还能举出生活中两个图形关于某条直线成轴对称的例子吗? 思考:轴对称图形与两个图形关于某条直线成轴对称有什么异同? 学生思考、分组讨论、交流。
11.1 与三角形有关线段11.1.1 三角形边1.通过具体实例,认识三角形概念及其基本要素.2.学会三角形表示及根据“是否有边相等”对三角形进行分类.3.掌握三角形三边关系.阅读教材P2~4,完成预习内容.知识探究(一)三角形1.定义:由不在____________三条线段首尾________所组成图形叫做三角形.2.有关概念如图,线段AB,BC,CA是三角形________,点A,B,C是三角形________,∠A,∠B,∠C是相邻两边组成角,叫做三角形________,简称三角形角.3.表示方法:顶点是A,B,C三角形,记作“________”,读作“____________”.(1)三角形表示方法中“△”代表“三角形”,后边字母为三角形三个顶点,字母顺序可以自由安排,即△ABC,△ACB,△BAC,△BCA,△CAB,△CBA为同一个三角形.(二)三角形分类1.等边三角形:三条边都________三角形.2.等腰三角形:有两边________三角形,其中相等两条边叫做________,另一边叫做________,两腰夹角叫做________,腰和底边夹角叫做________.3.不等边三角形:三条边都________三角形.4.三角形按边相等关系分类三角形⎩⎪⎨⎪⎧ 三角形 三角形⎩⎪⎨⎪⎧ 三角形 三角形等边三角形是特殊等腰三角形,即底边和腰相等等腰三角形. (三)三角形三边关系1.三角形任意两边之和________第三边.2.推论:由于a +b>c ,根据不等式性质,得c -b<a ,即三角形两边之差________第三边.3.利用三角形________,可以确定在已知两边三角形中,第三边取值范围,以及判断任意三条线段能否构成三角形.自学反馈1.小强用三根木棒组成下列图形,其中符合三角形概念是( )2.下列长度三条线段能否组成三角形?为什么?(1)3,4,8 (________);(2)2,5,6 (________);(3)5,6,10 (________);(4)5,6,11 (________).问题:判断三条线段能否组成三角形,是否一定要检验三条线段中任何两条和都大于第三条?根据你刚才解题经验,你有没有更简便判断方法?用较短两条线段之和与最长线段比较,若和大,能组成三角形;反之,则不能.活动1小组讨论例1若三角形两边长分别是2和7,第三边长为奇数,求第三边长.解:设第三边长为x,根据两边之和大于第三边,得x<2+7,即x<9.根据两边之差小于第三边,得x>7-2,即x>5.∴x值大于5小于9.又∵它是奇数,∴x只能取7.例2用一根长为18厘米细铁丝围成一个等腰三角形.(1)如果腰长是底边2倍,那么各边长是多少?(2)能围成有一边长为4厘米等腰三角形吗?解:(1)设底边长为x厘米,则腰长为2x厘米.则x+2x+2x=18.解得x=3.6.∴三边长分别为3.6厘米,7.2厘米,7.2厘米.(2)①当4厘米长为底边,设腰长为x厘米,则4+2x=18.解得x=7.∴等腰三角形三边长为7厘米,7厘米,4厘米;②当4厘米长为腰长,设底边长为x厘米,则4×2+x=18.解得x=10.∵4+4<10,∴此时不能构成三角形,即可围成等腰三角形,且三边长分别为7厘米,7厘米和4厘米.活动2跟踪训练1.现有两根木棒,它们长度分别为20 cm和30 cm,若不改变木棒长度,要钉成一个三角形木架,应在下列四根木棒中选取( )A.10 cm木棒B.20 cm木棒C.50 cm木棒D.60 cm木棒2.已知等腰三角形两边长分别为3和6,则它周长为( )A.9B.12C.15D.12或153.若五条线段长分别是 1 cm,2 cm,3 cm,4 cm,5 cm,则以其中三条线段为边可构成________个三角形.4.若等腰三角形两边长分别为3和7,则它周长为________;若等腰三角形两边长分别为3和4,则它周长为________.5.找一找,图中有多少个三角形,并把它们写下来.活动3课堂小结1.三角形表示方法,三角形基本要素.2.三角形按边分类.3.三角形三边关系,如何判断三条线段能否组成三角形.【预习导学】知识探究(一)1.同一条直线上顺次相接 2.边顶点内角3.△ABC 三角形ABC (二)1.相等 2.相等腰底边顶角底角 3.不相等 4.不等边等腰底边和腰不相等等腰等边(三)1.大于 2.小于 3.三边关系自学反馈1.C2.(1)不能(2)能(3)能(4)不能【合作探究】活动2跟踪训练1.B2.C3.34.17 10或115.图中有5个三角形.分别是△ABE.△DEC.△BEC.△ABC.△DBC.11.1.2 三角形高.中线与角平分线1.认识三角形高.中线与角平分线.2.会画一个三角形高.中线与角平分线.阅读教材P4~5,完成预习内容.知识探究1.从三角形一个顶点向它对边所在直线作垂线,顶点和垂足之间线段叫做____________.2.在三角形中,连接一个顶点与它对边中点线段,叫做这个________________.三角形三条中线交点叫做三角形________.3.在三角形中,一个内角平分线与它对边相交,这个角顶点与交点之间线段叫________________.自学反馈1.三角形高:如图1,从△ABC顶点A向它所对边BC所在直线画垂线,垂足为D,所得线段AD叫做△ABC边BC上________.AD是△ABC高,则AD⊥________.2.三角形中线:如图2,连接△ABC顶点A和它所对边BC中点D,所得线段AD叫做△ABC边BC上________.AD是△ABC中线,则BD=________.3.三角形角平分线:如图3,∠BAC平分线AD,交∠BAC对边BC 于点D,所得线段AD叫做△ABC________.AD是△ABC角平分线,则∠BAD=________.活动1小组讨论1.用工具准确画出三角形高.如图,线段AD是△ABC中BC边上高.注意:标明垂直记号和垂足字母.回忆并演示“过一点画已知直线垂线”画法.分别在下列锐角三角形.直角三角形.钝角三角形中画出所有高,观察高与三角形位置关系.由作图可得出如下结论:(1)三角形三条高线相交于1点;(2)锐角三角形三条高线相交于三角形内部;(3)钝角三角形三条高线相交于三角形外部;(4)直角三角形三条高线相交于三角形直角顶点.2.画三角形中线.如图,线段AD是△ABC中BC边上中线.分别在下列锐角三角形.直角三角形.钝角三角形中画出所有中线,观察中线与三角形位置关系.由作图可得出如下结论:(1)三角形三条中线相交于1点;(2)锐角三角形三条中线相交于三角形内部;(3)钝角三角形三条中线相交于三角形内部;(4)直角三角形三条中线相交于三角形内部.3.画三角形角平分线.如图,线段AD是△ABC一条角平分线,图中∠BAD=∠CAD.分别在下列锐角三角形.直角三角形.钝角三角形中画出所有角平分线,观察角平分线与三角形位置关系.由作图可得出如下结论:(1)三角形三条角平分线相交于1点;(2)锐角三角形三条角平分线相交于三角形内部;(3)钝角三角形三条角平分线相交于三角形内部;(4)直角三角形三条角平分线相交于三角形内部.活动2跟踪训练1.一个三角形三条高交点是三角形一个顶点,则这个三角形是( )A.锐角三角形B.直角三角形C.钝角三角形D.不能确定2.如图,AD是△ABC高,AE是△ABC角平分线,AF是△ABC中线,则图中相等角是________________________________,相等线段是________.3.三角形角平分线与角平分线有什么区别?高与垂线呢?4.一个三角形有几条高?几条中线?几条角平分线?活动3课堂小结1.三角形高.中线.角平分线概念及画法.2.运用三角形高.中线.角平分线可得到相等线段和相等角.【预习导学】知识探究1.三角形高2.三角形中线重心3.三角形角平分线自学反馈1.高BC2.中线CD3.角平分线∠CAD【合作探究】活动2跟踪训练1.B2.∠BAE和∠CAE,∠ADB和∠ADC BF和CF3.三角形角平分线是线段,角平分线是射线;高是线段,垂线是直线.4.一个三角形有3条高,3条中线,3条角平分线.11.1.3 三角形稳定性1.通过观察和实际操作得到三角形具有稳定性,四边形没有稳定性.2.了解稳定性与不稳定性在生产.生活中广泛应用.阅读教材P6~7,完成预习内容.知识探究三角形________稳定性,四边形________稳定性.自学反馈1.下列图中具有稳定性有( )A.1个B.2个C.3个D.4个2.人站在晃动公共汽车上,若你分开两腿站立,则需伸出一只手去抓住栏杆才能站稳,这是利用了________________________.3.下列设备,没有利用三角形稳定性是( )A.活动四边形衣架B.起重机C.屋顶三角形钢架D.索道支架活动1小组讨论1.如图,盖房子时,在窗框未安装好之前,木工师傅常常先在窗框上斜钉一根木条,为什么要这样做呢?(防止窗框变形)2.动手操作探究三角形稳定性.(1)三根木条用钉子钉成一个三角形木架,然后扭动它,它形状会改变吗?(不会)(2)四根木条用钉子钉成一个四边形木架,然后扭动它,它形状会改变吗?(会)(3)在四边形木架上再钉一根木条,将它一对顶点连接起来,然后扭动它,它形状会改变吗?(不会)从上面实验过程中你能得出什么结论?与同学交流.解:三角形木架形状不会改变,四边形木架形状会改变,这就是说,三角形具有稳定性,四边形没有稳定性.第一个三角形不变形,第二个四边形变形,当在四边形木架上再钉一根木条,然后扭动它,不变形.通过对比得出三角形具有稳定性结论.还有什么发现?解:还可以发现,斜钉一根木条四边形木架形状不会改变.原因是斜钉一根木条后,四边形变成两个三角形,由于三角形有稳定性,所以斜钉一根木条四边形木架形状不会改变.现在你知道为什么窗框未安装好之前,要先在窗框上斜钉一根木条了吧.其实就是利用了三角形稳定性.3.四边形不稳定性应用四边形不稳定性是我们常常需要克服,那么四边形不稳定性在生活中有没有应用价值呢?如果有,你能举出实例吗?活动2跟踪训练1.下列图形中哪些具有稳定性?判断一个图形是否稳定,关键是看图形中是否都是三角形.2.如图,桥梁斜拉钢索是三角形结构,主要是为了( )A.节省材料,节约成本B.保持对称C.利用三角形稳定性D.美观漂亮3.如图,工人师傅砌门时,常用木条EF和EG固定门框ABCD,使其不变形,这种做法根据是( )A.两点之间线段最短B.矩形对称性C.矩形四个角都是直角D.三角形稳定性活动3课堂小结运用三角形稳定性和四边形不稳定性解释其在生活中应用.【预习导学】知识探究具有没有自学反馈1.C2.三角形稳定性3.A【合作探究】活动2跟踪训练1.图(1),(4),(6)具有稳定性.2.C3.D11.2.2 三角形外角1.探索并了解三角形外角两条性质.2.利用学过定理论证这些性质.3.利用三角形外角性质解决与其有关实际问题.阅读教材P14~15,完成预习内容.1.如图1,把△ABC一边BC延长,得到∠ACD.像这样,三角形一边与另一边延长线组成角,叫做____________.图1如图2,一个三角形有________个外角.每个顶点处有________个外角.图22.如图1,△ABC中,∠A=80°,∠B=40°,∠ACD是△ABC一个外角,则∠ACD=________.试猜想∠ACD与∠A,∠B关系是____________.3.试结合图形写出证明过程:证明:过点C作CM∥AB,延长BC到D.则∠1=∠A(两直线平行,内错角相等),∠2=∠B(两直线平行,同位角相等),所以∠1+∠2=∠A+∠B,即________=∠A+∠B.知识探究一般地,由三角形内角和定理可以推出:三角形外角等于与它不相邻________________. 自学反馈1.判断下列∠1是哪个三角形外角:2.求下列各图中∠1度数.活动1小组讨论1.如图∠1+∠2+∠3=?解:∠1+∠BAC=180°,∠2+∠ABC=180°,∠3+∠ACB=180°,三个式子相加得到:∠1+∠2+∠3+∠BAC+∠ABC+∠ACB=540°.而∠BAC+∠ABC+∠ACB=180°,所以∠1+∠2+∠3=360°.2.结论:三角形外角和是360°.活动2跟踪训练1.求下列各图中∠1度数.2.求下列各图中∠1和∠2度数.3.已知三角形各外角比为2∶3∶4,求它每个外角度数?4.如图,AB∥CD,∠A=40°,∠D=45°,求∠1和∠2.活动3课堂小结三角形外角性质:1.三角形一个外角等于与它不相邻两个内角和.2.三角形外角和是360°.【预习导学】1.三角形外角 6 22.120°∠A+∠B=∠ACD3.∠ACD知识探究两个内角和自学反馈1.略.2.略.【合作探究】活动2跟踪训练1.∠1=90°∠1=80°∠1=95°.2.略.3.设三个外角度数分别为2x.3x.4x,由三角形外角和为360°,得2x+3x+4x=360°.解得x=40°.所以三个外角度数分别为80°,120°,160°.4.∠1=40°,∠2=85°.11.3 多边形及其内角和11.3.1 多边形1.了解多边形及有关概念.2.理解正多边形及其有关概念.阅读教材P19~20,完成预习内容.知识探究1.在平面内,由一些线段首尾顺次相接组成封闭图形叫做________.如果一个多边形由n条线段组成,那么这个多边形叫做________.(一个多边形由几条线段组成,就叫做几边形.)2.相邻两边组成角叫做____________,多边形边与它邻边延长线组成角叫做____________.3.连接多边形不相邻两个顶点线段,叫做________________.4.各个角都相等,各条边都相等多边形叫做________.自学反馈1.下列图形不是凸多边形是( )2.n边形有________条边,________个顶点,________个内角.在多边形概念中,要分清以下几个方面:(1)在平面内;(2)若干线段不在同一直线上;(3)首尾顺次相接;(4)所形成封闭图形.活动1小组讨论1.请列出生活中一些多边形,并指出其特征.解:房屋顶是三角形,因为三角形有稳定性;螺母底面为六边形,是为了方便安装和拆卸;黑板为四边形,是为了满足教学使用;等等.生活中存在很多多边形,它们形状都是为了与生活相适应.2.多边形内角.外角及对角线.(1)多边形相邻两边组成角叫做多边形内角.(2)多边形边与它邻边延长线组成角叫做多边形外角.(3)连接多边形不相邻两个顶点线段叫做多边形对角线.(4)多边形用表示它各顶点大写字母来表示,表示多边形必须按顺序书写,可按顺时针或逆时针顺序.(5)正多边形各个角都相等,各条边都相等.(如下图所示)判断一个n边形是正n边形条件:(1)各边相等,(2)各角相等.3.合作探究,完成下表,将你思路与同学交流.分享.多边形边数(n) 四边形五边形六边形…n边形从一个顶点作对角线条数 1 2 3 …n-3从一个顶点作对角线得2 3 4 …n-2三角形个数对角线总条数 2 5 9 …活动2跟踪训练1.下列不是凸多边形是( )2.下列图形中∠1是外角是( )3.下列说法正确是( )A.一个多边形外角个数与边数相同B.一个多边形外角个数是边数二倍C.每个角都相等多边形是正多边形D.每条边都相等多边形是正多边形活动3课堂小结1.多边形及其内角.外角.对角线.2.正多边形概念.【预习导学】知识探究1.多边形n边形2.多边形内角多边形外角3.多边形对角线4.正多边形自学反馈1.D2.n n n【合作探究】活动2跟踪训练1.C2.D3.B11.3.2 多边形内角和通过探索多边形内角和与外角和,让学生尝试从不同角度寻求解决问题方法,并能有效地解决问题.阅读教材P21~23,完成预习内容.问题1:你知道三角形内角和是多少度吗?解:三角形内角和等于180°.问题2:你知道任意一个四边形内角和是多少度吗?学生展示探究成果方法1:分成2个三角形180°×2=360°方法2:分割成4个三角形180°×4-360°=360°方法3:分割成3个三角形180°×3-180°=360°从一个顶点出发和各顶点相连,把四边形问题转化为三角形问题.问题3:你知道五边形内角和是多少度吗?问题4:你知道六边形.七边形内角和分别是多少度吗?知识探究列表探索n边形内角和公式:____________.自学反馈1.十二边形内角和是________.2.一个多边形当边数增加1时,它内角和增加________.3.一个多边形内角和是720°,则此多边形共有________个内角.4.如果一个多边形内角和是1 440°,那么这是________边形.活动1小组讨论问题1:小明家有一张六边形地毯,小明绕各顶点走了一圈,回到起点A,他身体旋转了多少度?求六边形外角和等于多少度,用六个平角减去六边形内角和即可得出.问题2:n边形外角和等于多少度?探索发现:n边形外角和等于360°.活动2跟踪训练1.(1)八边形内角和等于________度;(2)九边形内角和等于________度;(3)十边形内角和等于________度.2.一个多边形内角和等于1 800°,这个多边形是________边形.3.七边形外角和为________.4.正多边形一个外角等于20°,则这个正多边形边数是________.5.内角和与外角和相等多边形是________边形.活动3课堂小结通过三角形向四边形.五边形…转化,体会转化思想在几何中运用,体会从特殊到一般认识问题方法.【预习导学】知识探究(n-2)×180°自学反馈1.1 800°2.180°3.六4.十【合作探究】活动2跟踪训练1.(1)1 080 (2)1 260 (3)1 4402.十二3.360°4.185.四13.1 轴对称13.1.1 轴对称1.理解轴对称图形和两个图形关于某条直线对称概念.2.能识别简单轴对称图形及其对称轴.阅读教材P58~59,完成预习内容.知识探究11.如果________沿一直线折叠,________部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它________.2.把________沿着某一条直线折叠,如果它能够与另________重合,那么就说__________关于这条直线对称,这条直线叫做对称轴,折叠后重合点是对应点,叫做对称点.自学反馈11.如图所示图案中,是轴对称图形有____________.2.下列图形中,不是轴对称图形是( )A.角B.等边三角形C.线段D.直角梯形3.下图中哪两个图形放在一起可以组成轴对称图形________.4.轴对称与轴对称图形有什么区别与联系?区别为轴对称是指两个图形能沿对称轴折叠后重合,而轴对称图形是指一个图形两部分沿对称轴折叠后能完全重合.联系是都有对称轴.对称点和两部分完全重合特性.阅读教材P59~60,了解轴对称及轴对称图形性质,学生独立完成下列问题:知识探究21.经过线段________并且________这条线段直线,叫做这条线段垂直平分线;2.成轴对称两个图形________;3.如果两个图形关于某条直线对称,那么________是任何一对对应点所连线段__________;4.轴对称图形对称轴,是任何一对对应点所连线段__________.自学反馈2如图,△ABC和△A′B′C′关于直线MN对称,点A′.B′.C′分别是点A.B.C对称点.(1)将△ABC和△A′B′C′沿MN折叠后,则有△ABC≌________,PA=________,∠MPA=________=________度.(2)MN与线段AA′关系为________________.活动1小组讨论例1下列图形是轴对称图形吗?如果是,指出轴对称图形对称轴.①等边三角形②正方形③圆④菱形⑤平行四边形解:①②③④是轴对称图形;⑤不是轴对称图形.①等边三角形对称轴为三条中线所在直线;②正方形对称轴为两条对角线所在直线和两组对边中点所在直线;③圆对称轴为过圆心直线;④菱形对称轴为两条对角线所在直线.对称轴是条直线.例2指出下边哪组图形是轴对称,并指出对称轴.①任意两个半径相等圆;②正方形一条对角线把一个正方形分成两个三角形;③长方形一条对角线把长方形分成两个三角形.解:①两圆心所在直线和连接两圆心线段中垂线;②把正方形分成两个三角形那条对角线所在直线;③不是轴对称.是不是轴对称看是否能沿某条直线折叠后重合.例3如图,△ABC和△AED关于直线l对称,若AB=2cm,∠C =95°,则AE=2cm,∠D=95°.根据成轴对称两个图形全等.再根据全等性质得到对应线段相等,对应角相等.活动2跟踪训练1.等边三角形.直角三角形.等腰梯形和矩形,其中有且只有一条对称轴对称图形有________.2.请写出两个具有轴对称性汉字________.3.下列两个图形是轴对称关系有________.4.小强站在镜前,从镜中看到镜子对面墙上挂着电子表,其读数如图所示,则电子表实际时刻是________.5.数运算中会有一些有趣对称形式,如12×231=132×21,仿照这一形式,写出下列等式,并演算:12×462=________________,18×891=________________.6.图中图形是常见安全标记,其中是轴对称图形是( )7.如图,在网格上是由个数相同白色方块与黑色方块组成一幅图案,请仿照此图案,在旁边网格中设计出一个轴对称图案(不得与原图案相同,黑.白方块个数要相同).活动3课堂小结1.可用折叠法判断是否为轴对称图形.2.多角度.多方法思考对称轴条数.3.对称轴是一条直线,一条垂直于对应点连线直线.4.轴对称是指两个图形位置关系,轴对称图形是指一个具有特殊形状图形.【预习导学】知识探究11.一个平面图形直线两旁对称轴2.一个图形一个图形这两个图形自学反馈11.A.B.C.D2.D3.C与D,B与F4.略.知识探究21.中点垂直于2.全等3.对称轴垂直平分线4.垂直平分线自学反馈2(1)△A′B′C′PA′∠MPA′90 (2)MN垂直平分AA′【合作探究】活动2跟踪训练1.等腰梯形2.木.林3.ABC4.21:055.264×21=5 544198×81=16 038 6.A7.图略.14.1 整式乘法14.1.1 同底数幂乘法1.掌握同底数幂乘法概念及其运算性质,并能运用其熟练地进行运算.2.能利用同底数幂乘法法则解决简单实际问题.阅读教材P95~96“探究及例1”,完成预习内容.知识探究1.同底数幂概念:把下列式子化成同底数幂.(-a)2=________;(-a)3=________;(x-y)2________(y-x)2;(x-y)3=________(y-x)3.2.乘方意义:a n意义是________个________相____,我们把这种运算叫做乘方,乘方结果叫________,a叫做____,n是____.3.思考:根据幂意义解答:52×53=________×________=________;32×34=________________=3(6);a3·a4=(a·a·a)·(a·a·a·a)=a(7);总结法则:a m·a n=________(m,n都是正整数),即同底数幂相乘,底数________,指数________.推广:a m·a n·a p=________(m,n,p都是正整数).自学反馈计算:(1)103·102·104;(2)x5+m·x2n+1;(3)(-x)2·(-x)3;(4)(a+2)2(a+2)3.公式中底数a具有广泛性,也可代表一个式子,如(a+2)就可以看作一个整体.活动1小组讨论例1计算:(1)(-x)6·x10;(2)-x6·(-x)10;(3)10 000×10m×10m+3;(4)(x-y)3·(y-x)5.解:(1)原式=x6·x10=x16;(2)原式=-x6·x10=-x16;(3)原式=104·10m·10m+3=102m+7;(4)原式=-(x-y)3(x-y)5=-(x-y)8.应运用化归思想将之化为同底数幂相乘,运算时要先确定符号.例2已知a x=2,a y=3(x,y为整数),求a x+y值.解:a x+y=a x·a y=2×3=6.a x+y=a x·a y,一般逆用公式可使计算简便.活动2跟踪训练1.计算:(1)a·a3·a5;(2)x·x2+x2·x;(3)(-p)5·(-p)4+(-p)6·p3;(4)(x+y)2m(x+y)m+1;(5)(x-y)3(x-y)2(y-x);(6)(-x)6x7·(-x)8.注意符号和运算顺序,第(1)小题中a指数1千万别漏掉了.2.已知x m+n·x m-n=x9求m值.左边进行同底数幂运算后再对比右边指数.3.已知a m=3,a m+n=9,求a n值.联想上题解题思想,这题在以上基础上要用到一个整体思想,把a n看作一个整体.活动3课堂小结1.化归思想方法(也叫转化思想方法)是人们学习.生活.生产中常用方法.当我们遇到新问题时,就应该想方设法地把新问题转化为原来熟知问题,例如(-x)6·x10转化为x6·x10.2.联想思维方法:联想能力是五大思维能力之一,例如看到a m+n 就要联想到a m·a n,它是公式逆用,可帮助求值.3.a·a3·a5计算中,不要把“a”指数1给漏掉了.【预习导学】知识探究1.a2-a3=-2.n a 乘幂底数指数3.5×5 5×5×5 553×3×3×3×3×3 a m+n不变相加a m+n+p 自学反馈(1)109.(2)x m+2n+6.(3)-x5.(4)(a+2)5.【合作探究】活动2跟踪训练1.(1)a9.(2)2x3.(3)0.(4)(x+y)3m+1.(5)-(x-y)6.(6)x21. 2.4.5. 3.a n=3.14.1.2 幂乘方1.理解幂乘方法则.2.运用幂乘方法则计算.阅读教材P96~97“探究及例2”,完成预习内容.知识探究乘方意义:52中,底数是________,指数是________,表示________;(52)3意义:____________.(1)根据幂意义解答:(52)3=________________(根据幂意义)=____________(根据同底数幂乘法法则)=52×3.(a m)2=________________=________(根据a m·a n=a m+n).(a m)n=________________(幂意义)=________________(同底数幂相乘法则)=________(乘法意义).(2)总结法则:(a m)n=________(m,n都是正整数),即幂乘方,________不变,________相乘.通常我们在解决新问题时可将之转化为已知问题来解决.自学反馈计算:(1)(103)3;(2)(x2)3;(3)-(x m)5;(4)(a2)3·a5.遇到乘方与乘法混算应先乘方再乘法.活动1小组讨论例1计算:(1)[(-x)3]4;(2)(-24)3;(3)(-23)4;(4)(-a5)2+(-a2)5.解:(1)原式=(-x)12=x12.(2)原式=-212.(3)原式=212.(4)原式=a10-a10=0.弄清楚底数才能避免符号错误,混合运算时首先确定运算顺序.例2若92n=38,求n值.解:依题意,得(32)2n=38,即34n=38.∴4n=8.∴n=2.可将等式两边化成底数或指数相同数,再比较.例3已知a x=3,a y=4(x,y为整数),求a3x+2y值.解:a3x+2y=a3x·a2y=(a x)3·(a y)2=33×42=27×16=432.利用a mn=(a m)n=(a n)m,可对式子进行灵活变形,从而使问题得到解决.活动2跟踪训练1.计算:(1)(-x3)5;(2)a6·(a2)3·(a4)2;(3)[(x-y)3]2;(4)x2x4+(x2)3.第(3)小题要将(x-y)看作一个整体,在计算中先确定运算顺序再计算.2.填空:108=(________)2;b27=(________)9;(y m)3=(________)m; p2n+2=(________)2.3.若x m x2m=3,求x9m值.要将x3m看作一个整体.活动3课堂小结1.审题时,要注意整体与部分之间关系.2.公式(a m)n=a mn逆用:a mn=(a m)n=(a n)m.【预习导学】知识探究5 2 2个5相乘3个52相乘(1)52×52×5252+2+2a m·a m a2m a m·a m·…·a m,\s\up6(n个)) am+m+…+m,\s\up6(n个)) a mn(2)a mn底数指数自学反馈(1)109.(2)x6.(3)-x5m.(4)a11.【合作探究】活动2跟踪训练1.(1)-x15.(2)a20.(3)(x-y)6.(4)2x6.2.104b3y3p n+13.27.14.1.3 积乘方1.理解积乘方法则.2.运用积乘方法则计算.阅读教材P97~98“探究及例3”,理解积乘方法则,完成预习内容.知识探究1.(1)x5·x2=________,(x3)2=________,(a3)2·a4=________.(2)下列各式正确是( )A.(a5)3=a8B.a2·a3=a6C.x2+x3=x5D.x2·x2=x42.(1)填空:(2×3)3=________,23×33=________.(-2×3)3=________,(-2)3×33=________.(ab)n=(ab)·(ab)·…·(ab)________个=(a·a·…·a)________个·(b·b·…·b)________个=________.(2)总结法则:(ab)n=________(n是正整数),即积乘方等于积__________分别________,再把所得幂________.推广:(abc)n=________.(n是正整数)积乘方法则推导实质是按从整体到部分顺序去思考.自学反馈计算:(1)(ab)4; (2)(-2xy)3;(3)(-3×102)3; (4)(2ab2)3.对于第(2).(3)小题中符号可以先取号再乘方,也可以-2.-3作为整体看作一个因式.活动1小组讨论例1一个正方体棱长为2×102毫米.(1)它表面积是多少?(2)它体积是多少?解:(1)6×(2×102)2=6×(4×104)=2.4×105.(2)(2×102)3=8×106.结果用科学记数法表示时a×10n中a是整数位只有一位数.例2计算:(1)(x4·y2)3;(2)(a n b3n)2+(a2b6)n;(3)[(3a 2)3+(3a 3)2]2.解:(1)原式=x 12y 6.(2)原式=a 2n b 6n +a 2n b 6n =2a 2n b 6n .(3)原式=(27a 6+9a 6)2=(36a 6)2=1 296a 12.先乘方再乘除后加减运算顺序.例3 计算: (1)⎝ ⎛⎭⎪⎫99100 2 017×⎝ ⎛⎭⎪⎫10099 2 018; (2)0.12515×(215)3.解:(1)原式=(99100×10099)2017×10099=1×10099=10099. (2)原式=(18)15×(23)15=(18×8)15=1. 反用(ab)n =a n b n 可使计算简便.活动2 跟踪训练1.计算:(1)-(-3a 2b 3)4;(2)-(y 2)3·(x 3y 5)3·(-y)6;(3)(-b 2)3[(-ab 3)3]2;(4)(2a 2b)3-3(a 3)2b 3.可从里向外乘方也可从外向内乘方,但要注意符号问题.2.计算:(1)(-0.25)2017×(-4)2019;(2)-2100×0.5100×(-1)2017-12. 3.计算:(x 2y n )2·(xy)n -1=________________,(4a 2b 3)n =________.在计算中如遇底数互为相反数指数相同,可反用积乘方法则使计算简便.活动3 课堂小结1.审题时,在研究问题结构时,可按整体到部分顺序去思考和把握.2.公式(ab)n=a n b n(n为正整数)逆用:a n b n=(ab)n(n为正整数).【预习导学】知识探究1.(1)x7x6a10(2)D2.(1)216 216 -216 -216 n n n a n b n(2)a n b n每一个因式乘方相乘a n b n c n自学反馈(1)a4b4.(2)-8x3y3.(3)-2.7×107.(4)8a3b6.【合作探究】活动2跟踪训练1.(1)-81a8b12.(2)-x9y27.(3)-a6b24.(4)5a6b3.2.(1)16.(2)12. 3.x n+3y3n-14n a2n b3n14.2 乘法公式14.2.1 平方差公式1.掌握平方差公式.2.会用平方差公式简化并计算解决简单实际问题.阅读教材P107~108“探究.思考与例1”,完成预习内容. 知识探究根据条件列式:。
河南省实验中学资料第一章轴对称与轴对称图形1.1我们身边的轴对称图形教学目标:1、观察、感受生活中的轴对称图形,认识轴对称图形。
2、能判断一个图形是否是轴对称图形。
3、理解两个图形关于某条直线成轴对称的意义。
4、正确区分轴对称图形与两个图形关于某条直线成轴对称。
5、理解并能应用轴对称的有关性质。
教学重点:1、能判断一个图形是否是轴对称图形。
2、轴对称的有关性质。
难点:1、判断一个图形是否是轴对称图形。
2、正确区分轴对称图形与两个图形关于某条直线成轴对称。
教学过程:一、情境导入教师展示图片:五角星、脸谱、正方形、禁行标志、山水倒映等。
学生欣赏,思考:这些图形有什么特点?二、探究新知1、生活中有许多奇妙的对称,如从镜子里看到自己的像;把手掌盖在镜子上,镜子里的手与自己的手完全重合在一起;这些都是对称,你还能举出例子吗?学生分组思考、讨论、交流,选代表发言。
教师巡回指导、点评。
2、动手做一做:用直尺和圆规在纸上作出一个梯形,并把纸上的梯形剪下来,沿上底和下底的中点的连线对折,直线两旁的部分能完全重合吗?学生活动:观察、小结特点。
3、教师给出轴对称图形的定义。
问题:⑴“完全重合”是什么意思?⑵这条直线可能不经过这个图形本身吗?⑶圆的直径是圆的对称轴吗?学生分组思考、讨论、交流,选代表发言,教师点评。
⑴指形状相同,大小相等。
⑵不能,因为这条直线必须把这个图形分成能充分重合的两部分,则必然经过这个图形的本身。
⑶不是,因为圆的直径是线段,而不是直线,应说直径所在的直线或经过圆心的直线。
4、猜想归纳:正三角形有几条对称轴?正方形呢?正五边形呢?正六边形呢?从中可以得到什么结论?学生思考、讨论、交流。
5、你还能举出生活中轴对称图形的例子吗?6、教科书第五页图1-6⑴⑵两个图,问题:想一想,每组图形中,左边图形沿虚线对折后与右边的图形有着怎样的关系?7、教师给出两个图形关于某条直线成轴对称的定义。
8、你还能举出生活中两个图形关于某条直线成轴对称的例子吗?思考:轴对称图形与两个图形关于某条直线成轴对称有什么异同?学生思考、分组讨论、交流。
第一章轴对称与轴对称图形1.1我们身边的轴对称图形教学目标:1、观察、感受生活中的轴对称图形,认识轴对称图形。
2、能判断一个图形是否是轴对称图形。
3、理解两个图形关于某条直线成轴对称的意义。
4、正确区分轴对称图形与两个图形关于某条直线成轴对称。
5、理解并能应用轴对称的有关性质。
教学重点:1、能判断一个图形是否是轴对称图形。
2、轴对称的有关性质。
难点:1、判断一个图形是否是轴对称图形。
2、正确区分轴对称图形与两个图形关于某条直线成轴对称。
教学过程:一、情境导入教师展示图片:五角星、脸谱、正方形、禁行标志、山水倒映等。
学生欣赏,思考:这些图形有什么特点?二、探究新知1、生活中有许多奇妙的对称,如从镜子里看到自己的像;把手掌盖在镜子上,镜子里的手与自己的手完全重合在一起;这些都是对称,你还能举出例子吗?学生分组思考、讨论、交流,选代表发言。
教师巡回指导、点评。
2、动手做一做:用直尺和圆规在纸上作出一个梯形,并把纸上的梯形剪下来,沿上底和下底的中点的连线对折,直线两旁的部分能完全重合吗?学生活动:观察、小结特点。
3、教师给出轴对称图形的定义。
问题:⑴“完全重合”是什么意思?⑵这条直线可能不经过这个图形本身吗?⑶圆的直径是圆的对称轴吗?学生分组思考、讨论、交流,选代表发言,教师点评。
⑴指形状相同,大小相等。
⑵不能,因为这条直线必须把这个图形分成能充分重合的两部分,则必然经过这个图形的本身。
⑶不是,因为圆的直径是线段,而不是直线,应说直径所在的直线或经过圆心的直线。
4、猜想归纳:正三角形有几条对称轴?正方形呢?正五边形呢?正六边形呢?从中可以得到什么结论?学生思考、讨论、交流。
5、你还能举出生活中轴对称图形的例子吗?6、教科书第五页图1-6⑴⑵两个图,问题:想一想,每组图形中,左边图形沿虚线对折后与右边的图形有着怎样的关系?7、教师给出两个图形关于某条直线成轴对称的定义。
8、你还能举出生活中两个图形关于某条直线成轴对称的例子吗?思考:轴对称图形与两个图形关于某条直线成轴对称有什么异同?学生思考、分组讨论、交流。
八年级数学上册导学案第一章轴对称与轴对称图形1.1我们身边的轴对称图形教学目标:1、观察、感受生活中的轴对称图形,认识轴对称图形。
2、能判断一个图形是否是轴对称图形。
3、理解两个图形关于某条直线成轴对称的意义。
4、正确区分轴对称图形与两个图形关于某条直线成轴对称。
5、理解并能应用轴对称的有关性质。
教学重点:1、能判断一个图形是否是轴对称图形。
2、轴对称的有关性质。
难点:1、判断一个图形是否是轴对称图形。
2、正确区分轴对称图形与两个图形关于某条直线成轴对称。
教学过程:一、情境导入教师展示图片:五角星、脸谱、正方形、禁行标志、山水倒映等。
学生欣赏,思考:这些图形有什么特点?二、探究新知1、生活中有许多奇妙的对称,如从镜子里看到自己的像;把手掌盖在镜子上,镜子里的手与自己的手完全重合在一起;这些都是对称,你还能举出例子吗?学生分组思考、讨论、交流,选代表发言。
教师巡回指导、点评。
2、动手做一做:用直尺和圆规在纸上作出一个梯形,并把纸上的梯形剪下来,沿上底和下底的中点的连线对折,直线两旁的部分能完全重合吗?学生活动:观察、小结特点。
3、教师给出轴对称图形的定义。
问题:⑴“完全重合”是什么意思?⑵这条直线可能不经过这个图形本身吗?⑶圆的直径是圆的对称轴吗?学生分组思考、讨论、交流,选代表发言,教师点评。
⑴指形状相同,大小相等。
⑵不能,因为这条直线必须把这个图形分成能充分重合的两部分,则必然经过这个图形的本身。
⑶不是,因为圆的直径是线段,而不是直线,应说直径所在的直线或经过圆心的直线。
4、猜想归纳:正三角形有几条对称轴?正方形呢?正五边形呢?正六边形呢?从中可以得到什么结论?学生思考、讨论、交流。
5、你还能举出生活中轴对称图形的例子吗?6、教科书第五页图1-6⑴⑵两个图,问题:想一想,每组图形中,左边图形沿虚线对折后与右边的图形有着怎样的关系?7、教师给出两个图形关于某条直线成轴对称的定义。
8、你还能举出生活中两个图形关于某条直线成轴对称的例子吗?思考:轴对称图形与两个图形关于某条直线成轴对称有什么异同?学生思考、分组讨论、交流。
教师引导小结。
三、巩固反馈1、26个英文大写字母中,是轴对称图形的是________________________。
2、中华民族是一个有着五千年文明历史的古老民族,在她灿烂的文化中,汉字是其中一朵瑰丽的奇葩,请写出几个是轴对称的汉字-______________________。
3、关于奥运会五环图案有下列各说法:①它不是轴对称图形;②它是轴对称图形,只有一条对称轴③它是轴对称图形,有无数条对称轴,其中正确的是______。
从轴对称的角度,你觉得哪些图形比较独特?简要说明你的理由。
5、画出一个只有三条对称轴的轴对称图形。
AD6、上面哪一个选项的右边图形与左边图形成轴对称?四、课堂小结学完本节,你有什么收获?五、作业设计1、必做题:教科书第6页练习题1-4题。
2EF处,折痕为KH,则与梯形CDGH成轴对称的图形是()。
A、梯形ABHGB、梯形ABKGC、梯形EFGHD、梯形EFKH1.2 线段的垂直平分线教学目标:1、通过折叠的方式认识线段的轴对称性。
2、理解并能运用线段垂直平分线的性质。
教学重点:引导学生了解有关线段垂直平分线的知识。
难点:运用线段垂直平分线的性质解决问题。
教学过程:一、自主探索在纸上画一条线段AB,通过对折使点A与点B重合,独立解决以下问题:1、将纸展开后铺平,记折痕所在的直线为MN,直线MN与线段AB的交点为O,线段AO与BO的长度有什么关系?________________________________________2、直线MN与线段AB有怎样的位置关系?_______________________________________3、由以上1、2,直线MN叫做线段AB的______________。
4、线段AB是轴对称图形吗?如果是,对称轴是什么?______________________________________________5、在直线MN上任取一点P,连接PA与PB,如果把这张纸沿直线MN对折,PA与PB重合吗?__________________________________________________6、在直线MN上再取另一点Q,连接QA与QB,把这张纸沿直线MN对折,QA与QB重合吗?________________________________________________7、由以上5、6,你有什么结论?_______________________________________8、尝试用尺规作图的方法作出线段AB的垂直平分线。
________________________________________________二、小组合作任意画一个三角形,用圆规和直尺作出它的三条边的垂直平分线,有什么发现?___________________________________________________________ ______三、学以致用1、点P、C、D是线段AB的垂直平分线上的三点,分别连接PA、PB,AC、BC,AD、BD,指出图中所有相等的线段。
2、任意画一条线段,用直尺和圆规把它四等分。
3、A B 要在A、B、C三个村庄之间修一座变电站,使它到三个村庄的距离相等, 你能在图中找出点O 的位置吗? C四、达标反馈,当堂训练1、如上左图,直线MN 和DE 分别是线段AB 、BC 的垂直平分线,它们交于点P ,请问:PA 和PC 相等吗?2、如上右图,AB=AC ,MN垂直平分AB,若AB=6,BC=4,求△DBC 的周长。
3、如上左图,在直线上求作一点P ,使PA=PB.4、如上右图,∠BAC=120°, ∠C=30°,DE 是线段AC 的垂直平分线,求∠BAD 的度数。
五、课堂小结本节课主要学习了:1、线段垂直平分线的知识。
2、线段的垂直平分线的点到线段两短点的距离相等。
3、利用线段的垂直平分线的点到线段两短点的距离相等解决实际问题。
六、作业设计3、必做题:教科书第10页习题A 组1-2题,B1-2题。
4、选做题:BC 的垂直平分线; 1.3 角的平分线教学目标:1、通过折叠的方式认识角的轴对称性。
2、理解并能运用角的平分线的性质。
3、会画已知角的平分线。
教学重点:引导学生了解有关线角平分线的知识。
难点:运用角平分线的性质解决问题。
: 教学过程: 一、自主探索在纸上画∠BAC ,把它剪下来并对折,使角的两边重合,然后把纸铺平,独立解决以下问题:1、角是轴对称图形吗?如果是,对称轴是什么?_______________________________________________ 2、尝试用尺规作图的方法作出∠BAC 的平分线AD 。
___________________________________________________ 3、在AD 上任取一点P ,作出点P 到∠BAC 两边的垂线段PM 与PN ,垂足分别为点M和点N,如果把∠BAC沿AD折叠,线段PM与PN 重合吗?由此,你能得出什么结论?___________________________________________________________ 4、在AD上另取另一点Q,重复上述操作,你还能得出同样的结论吗?___________________________________________________________二、小组合作1、任意作一个锐角三角形,用直尺和圆规作出它的三条角平分线,你有什么发现?___________________________________________________________ 2、任意作一个直角三角形,用直尺和圆规作出它的三条角平分线,你有什么发现___________________________________________________________ 3、任意作一个钝角三角形,用直尺和圆规作出它的三条角平分线,你有什么发现?猜想结论:___________________________________________________________ 三、学以致用天泉农副产品集散地M位于三个村庄A、B、C之间,其位置到三条公路AB、AC、BC的距离相等,你能找到M的位置吗?四、达标反馈,当堂训练a) 如上左图,在直角坐标系中,AD 是R t △OAB 的角平分线,点D 到AB 的距离是2,求点D 的坐标。
b) 如上右图,若点M 在∠ANB 的角平分线上,∠A =∠B=90°,那么你有怎样的结论?________________________________________________ 若点N 在∠AMB 的角平分线上,∠A =∠B=90°,那么你有怎样的结论?_____________________________________________________3、如上左图,△ABC 中, ∠A =∠ABC,AD=3cm,BC=10cm, 求△BDC 的面积。
4、如上右图,已知∠AOB和C、D两点,是否能找到一点P,使得点P到OA、OB的距离相等,而且P点到C、D两点的距离相等。
五、课堂小结这节课你有哪些收获?___________________________________________________________六、作业设置1、必做题:教科书第12页A组、B组。
2、选做题:§1.4 等腰三角形导学案(泰山版八年级上册)一、学习目标1、经历探索等腰三角形的性质的过程,掌握等腰三角形的轴对称性、等腰三角形“三线合一”、等腰三角形的两个底角相等等性质。
2、经历探索等边三角形的轴对称性和内角性质的过程,掌握这个性质,并会作出合理的说明。
3、掌握已知底边和底边上的高用尺规作等腰三角形的方法。
二、学习重点、难点重点:等腰三角形与等边三角形的性质难点:等腰三角形的性质的运用三、学习过程(一)情境导入瓦工师傅盖房时,看房梁是否水平,有时就用一块等腰三角板放在梁上,从顶点系一重物,如果系重物的绳子正好经过三角板底边的中点,房梁就是水平的。
为什么?你想知道其中的奥秘吗?学了本节后你将恍然大悟。
(二) 自主学习自学课本P 13——P 16“挑战自我”,解答下列问题: 1. 我们知道等腰三角形是轴对称图形,它底边上的高线所在的直线式它的对称轴,那么沿着对称轴将等腰三角形对折,对称轴两旁的部分能重合,如下图,仔细观察,2. 三角形是等腰三角形吗?它与等腰三角形相比有何特别之处?3. 如图,∠B=∠C,AB=3.6cm ,则AC=————————.(三) 合作探究探究点一:等腰三角形的性质例 1 等腰三角形中有一个角为80º.求另外两个角的度数. 总结:AB C探究点二:等边三角形的性质例2 试说明“等边三角形的每个内角都等于60º”小组合作:用一张正方形的纸折出一个等边三角形.探究点三:尺规作等腰三角形例3 已知一个等腰三角形的底边和腰,你能作出这个三角形吗?如果一直底边和底边上的高呢?(四)练习达标1. 等腰三角形的两边长分别是6cm、3cm,则该等腰三角形的周长是()A. 9 cmB. 12 cmC. 12 cm或15 cmD. 15 cm2. 等腰三角形的一个角为30º,则它的底角为()A. 30ºB. 75ºC. 30º或75ºD. 15º3如图,在ΔABC中,D、E是BC边上的两点,且AD=BD=DE=AE=CE,求∠B、∠BAC的度数.(五)课堂小结这一节你学会了什么?(六)拓展提升1.如图所示,∠B=∠C ,AD平分∠BAC交BC于D,ΔABC的周长为36cm,ΔADC的周长为30cm,那么AD的长为——————cm.AB CEDA2、如图,ΔABC为等边三角形,∠1=∠2=∠3,试说明ΔDEF为等边三角形.四. 作业§1.5 成轴对称图形的性质导学案(泰山版八年级上册)一、学习目标1、经历探索轴对称图形的性质的过程,理解连接对应点的线被对称轴平分、对应线段相等、对应角相等的性质.2、会画出与已知图形关于某条直线对称的图形.二、学习重点、难点重点:轴对称图形的性质难点:利用轴对称图形的性质作对称图形三、学习过程(一)情景导入同学们,今年的10月1日是我们伟大的祖国60周岁的生日,全国上下正洋溢在一片欢歌笑语的海洋里,都在为母亲的生日积极地做准备,你做了什么准备呢?不如我们现在来叠五角星吧。