基于组合体布拉格光栅选单纵模的技术研究
- 格式:pdf
- 大小:6.12 MB
- 文档页数:60
DFB 激光器性能参数2005/3/7/11:54DFB激光器是在FP激光器的基础上采用光栅虑光器件使器件只有一个纵模输出,此类器件的特点:输出光功率大、发散角较小、光谱极窄、调制速率高,适合于长距离通信。
多用在1550nm波长上,速率为2.5G以上。
DFB激光器有以下性能参数:工作波长:激光器发出光谱的中心波长。
边模抑制比:激光器工作主模与最大边模的功率比。
-20dB光谱宽度:由激光器输出光谱的最高点降低20dB处光谱宽度。
阈值电流:当器件的工作电流超过阈值电流时激光器发出相干性很好的激光。
输出光功率:激光器输出端口发出的光功率。
其典型参数见下表所示:普通结构的分布反馈半导体激光器(DFB-LD),在高速调制状态下会发生多模工作现象,从而限制了传输速率。
因此,设计和制作在高速调制下仍能保持单纵模工作的激光器是十分重要的,这类激光器统称为动态单模(DSM)半导体激光器。
实现动态单纵模工作的最有效的方法之一,就是在半导体激光器内部建立一个布拉格光栅,依靠光栅的选频原理来实现纵模选择。
分布反馈半导体激光器的特点在于光栅分布在整个谐振腔中,光波在反馈的同时获得增益。
因为DFB-LD的谐振腔具有明显的波长选择性,从而决定了它们的单色性优于一般的FP-LD。
在DFB-LD中存在两种基本的反馈方式,一种是折射率周期性变化引起的布拉格反射,即折射率耦合(Index-Coupling),另一种为增益周期性变化引起的分布反馈,即增益耦合(Gain-Coupling)。
与依靠两个反射端面来形成谐振腔的FP-LD相比,DFB-LD可能激射的波长所对应的谐振腔损耗是不同的,也就是说DFB-LD的谐振腔本身具有选择模式的能力。
在端面反射为零的理想情况下,理论分析指出:折射率耦合DFB-LD在与布拉格波长相对称的位置上存在两个谐振腔损耗相同且最低的模式,而增益耦合DFB-LD恰好在布拉格波长上存在着一个谐振腔损耗最低的模式。
分布反馈式半导体激光器在实际工程系统中的应用摘要:DFB (Distributed Feed Back) DFB型光发射机,分布反馈(激光器)半导体激光器因其波长的扩展、高功率激光阵列的出现以及可兼容的激光导光和激光能量参数微机控制的出现而迅速发展、半导体激光器体积小、重量轻、成本低、波长可选择,其应用范围遍及的领域越来越宽广,其的出现带来了巨大的变化,使科技更发达,人们生活更加丰富多彩,应用范围遍及医学、科技、航天交通,通信等各个领域。
自从1962 年世界上第一台半导体激光器(Diode Laser)发明问世以来, 由于其体积小、重量轻、易于调制、效率高以及价格低廉等优点, 被认为是二十世纪人类最伟大的发明之一. 四十几年来半导体激光器逐步应用在激光唱机、光存储器、激光打印机、条形码解读器、光纤电信以及激光光谱学中, 不断扩大应用范围, 进入了一些其它类型激光器难以进入的新的应用领域。
关键字: DFB、工作波长、边模抑制比、阈值电流、输出光功率一、分布反馈式半导体激光器简介1、分布反馈式半导体激光器是以一定的半导体材料做工作物质而产生受激发射作用的器件.其工作原理是,通过一定的激励方式,在半导体物质的能带之间,或者半导体物质的能带与杂质能级之间,实现非平衡载流子的粒子数反转,当处于粒子数反转状态的大量电子与空穴复合时,便产生受激发射作用.半导体激光器的激励方式主要有三种,即电注入式,光泵式和高能电子束激励式.电注入式半导体激光器,一般是由GaAS,InAS,Insb等材料制成的半导体面结型二极管,沿正向偏压注入电流进行激励,在结平面区域产生受激发射.光泵式半导体激光器,一般用N型或P型半导体单晶(如GaAS,InAs,InSb等)做工作物质,以其他激光器发出的激光作光泵激励.高能电子束激励式半导体激光器,一般也是用N型或者P型半导体单晶(如PbS,CdS,ZhO等)做工作物质,通过由外部注入高能电子束进行激励.在半导体激光器件中,目前性能较好,应用较广的是具有双异质结构的电注入式GaAs二极管激光器。
单频光纤激光器单纵模区间测量方法的研究郑生旭;邓华秋【摘要】The wavemeter measuring method is adopted to measure single longitudinal mode interval of 1550nm polari-zation-maintaining fiber laser,and it is compared with other measuring methods such as frequency spectrum scanning, F-P cavity,etc.The experimental results show that the three measuring methods can achieve the same results,which il-lustrates that the wavemeter measuring method can be used for measuring the single longitudinal mode interval of 1550nm polarization-maintaining fiber laser.%提出了波长计测量法测量1550 nm 保偏光纤激光器单纵模区间,并与频谱扫描法、F-P腔法等测量方法进行了比较。
实验结果表明三种测量方法得到的单纵模区间相同,说明波长计测量法也可以用于1550 nm 保偏光纤激光器单纵模区间的测量。
【期刊名称】《激光与红外》【年(卷),期】2016(046)006【总页数】4页(P684-687)【关键词】测量方法;单纵模;单频光纤激光器【作者】郑生旭;邓华秋【作者单位】华南理工大学物理与光电学院,广东广州 510640;华南理工大学物理与光电学院,广东广州 510640【正文语种】中文【中图分类】TN248.1单频光纤激光器单纵模区间是衡量激光器稳定的一个重要指标,主要从单纵模区间大小、临界点波长是否变化以及在单纵模区间内某个温度点的波长是否变化,所有这些参数都和单纵模区间有着直接或间接的关系。
光纤布拉格光栅重构算法的研究的开题报告一、选题背景随着通信技术的不断发展,光纤通信已成为现代通信方式的重要组成部分。
而布拉格光栅作为一种光纤传输中的重要元器件,其已广泛应用于光纤传感、光纤通信等领域。
布拉格光栅通过对光波的反射和干涉效应,可以实现对光波信号的频率、相位和振幅等参数的调控,因此在通信和传感方面具有广阔的应用前景。
在实际应用中,由于光纤传输中的信号衰减、光纤本身的非线性等因素的影响,光信号在传输过程中常常会受到一定的干扰,从而导致信号质量的下降。
因此,研究光纤布拉格光栅重构算法,对于提高布拉格光栅相关应用的性能具有重要意义。
二、选题目的和内容本课题旨在研究光纤布拉格光栅重构算法,探究如何提高布拉格光栅的信号传输质量和有效性。
具体研究内容包括:1. 分析光纤传输中的干扰因素,并探讨其对布拉格光栅信号传输的影响。
2. 系统地研究布拉格光栅重构算法的基本原理和核心技术,包括反射光谱图的测定、滤波、去噪等处理方法。
3. 针对光纤传输中常见的问题,如光波干扰、信号衰减等,研究相应的布拉格光栅重构算法,并进行实验验证。
4. 对比不同的布拉格光栅重构算法,评估其重构效果、可靠性和适用性。
三、研究方法和技术路线本课题采用文献调研、实验研究和数学模型等多种研究方法,结合现代光纤通信与光学成像等领域的相关技术,进行进一步探索与优化。
具体的技术路线如下:1. 文献调研:对当前布拉格光栅重构算法的发展现状、存在的问题和未来趋势进行广泛的文献综述,以明确研究的方向和目标。
2. 实验设计:根据文献调研结果,设计合理的实验方案,搜集数据并准确记录,以验证各种算法的可行性和效果。
3. 数据处理:对实验数据进行分析处理,提取关键信息和重构信号,通过比较和评估,确定最佳的重构算法和参数。
4. 理论模型:结合实验数据和文献资料,建立数学模型,以推导出有效的重构算法和参数组合,为布拉格光栅重构算法的优化提供理论支撑。
5. 结果评估:评估不同的布拉格光栅重构算法及其参数的重构效果、可靠性和适用性,为进一步的研究提供参考。
J I A N G S U U N I V E R S I T Y 光纤Bragg光栅(FBG)设计学院名称:机械工程学院专业班级:光信息学生姓名:学生学号:指导教师:陈明阳目录一、光栅定义和发展历程 (2)1.1、光栅的定义 (2)1.2、光纤Bragg光栅的发现与发展 (2)二、光纤Bragg光栅特点及工作原理 (3)2.1 光纤Bragg光栅的特点 (3)2.2 光纤Bragg光栅的工作原理 (4)三、光纤Bragg光栅的制作方法 (4)3.1 光敏光纤的制备 (4)四、光纤Bragg光栅在光纤激光器里的应用 (5)4.1 光纤激光器简介 (5)4.2 在光纤激光器里的工作原理 (6)4.3 光纤Bragg光栅的设计要求 (7)4.3.1 设计的基本参数要求 (8)4.3.2 设计的基本步骤 (9)五、设计结论及应用前景 (15)5.1 结论及计算结果 (15)5.2 应用前景 (16)参考文献 (17)附程序 (18)一、光栅定义和发展历程1.1、光栅的定义自从19世纪末Henry Rowland发明衍射光栅刻划机和凹面光栅分光装置以来,光栅分光仪器就已成为光谱分析领域的主角。
光栅是光谱分析研究中的重要色散元件,其作用与棱镜相似,但在许多方面光栅的性能更好,并且使用方便。
在许多光谱仪器中,光栅成本仅占总成本的很小部分,但衍射光栅的质量却从根本上决定了整个系统所能达到的光谱性能。
衍射光栅是能对入射光波的振幅和相位或者二者之一进行空间周期性调制的一种光学元件。
通常讲的衍射光栅都是基于夫琅禾费多缝衍射效应进行工作的。
1.2、光纤Bragg光栅的发现与发展光纤布拉格光栅(简称FBG)是在单模光纤的纤芯内通过某种方式对其折射率产生周期性的调制而形成的一种全光纤器件,如图1所示。
图1 FBG的基本结构1978年,加拿大Hill 等人使用如图2所示的实验装置将488nm 的氩离子激光注入到掺锗光纤中,首次观察到入射光与反射光在光纤纤芯内形成的干涉条纹场而导致的纤芯折射率沿光纤轴向的周期性调制,从而发现了光纤的光敏特性,并制成了世界上第一个光纤布拉格光栅。