复旦大学量子力学考题4
- 格式:pdf
- 大小:211.01 KB
- 文档页数:7
量子力学基础试题及答案一、单项选择题(每题2分,共10分)1. 量子力学中,物质的波粒二象性是由哪位科学家提出的?A. 爱因斯坦B. 普朗克C. 德布罗意D. 海森堡答案:C2. 量子力学的基本原理之一是不确定性原理,该原理是由哪位科学家提出的?A. 玻尔B. 薛定谔C. 海森堡D. 狄拉克答案:C3. 量子力学中,描述粒子状态的数学对象是:A. 波函数B. 概率密度C. 动量D. 能量答案:A4. 量子力学中,哪个方程是描述粒子的波动性质的基本方程?A. 薛定谔方程B. 麦克斯韦方程C. 牛顿第二定律D. 相对论方程答案:A5. 量子力学中,哪个原理说明了粒子的波函数在测量后会坍缩到一个特定的状态?A. 叠加原理B. 波函数坍缩原理C. 不确定性原理D. 泡利不相容原理答案:B二、填空题(每题3分,共15分)1. 在量子力学中,粒子的动量和位置不能同时被精确测量,这一现象被称为______。
答案:不确定性原理2. 量子力学中的波函数必须满足______条件,以确保物理量的概率解释是合理的。
答案:归一化3. 量子力学中的粒子状态可以用______来描述,它是一个复数函数。
答案:波函数4. 量子力学中的______方程是描述非相对论性粒子的波函数随时间演化的基本方程。
答案:薛定谔5. 量子力学中的______原理表明,不可能同时精确地知道粒子的位置和动量。
答案:不确定性三、简答题(每题5分,共20分)1. 简述量子力学与经典力学的主要区别。
答案:量子力学与经典力学的主要区别在于,量子力学描述的是微观粒子的行为,它引入了波粒二象性、不确定性原理和量子叠加等概念,而经典力学主要描述宏观物体的运动,遵循牛顿力学的确定性规律。
2. 描述量子力学中的波函数坍缩现象。
答案:波函数坍缩是指在量子力学中,当对一个量子系统进行测量时,系统的波函数会从一个叠加态突然转变到一个特定的本征态,这个过程是不可逆的,并且与测量过程有关。
《量子力学》基本概念考查题目以及答案1. 量子力学中,粒子的状态由什么描述?A. 位置B. 动量C. 波函数D. 能量答案:C2. 海森堡不确定性原理表明了什么?A. 粒子的位置和动量可以同时准确知道B. 粒子的位置和动量不能同时准确知道C. 粒子的速度和动量可以同时准确知道D. 粒子的位置和能量可以同时准确知道答案:B3. 量子纠缠是指什么?A. 两个粒子之间的经典相互作用B. 两个粒子之间的量子相互作用C. 两个粒子的量子态不能独立于彼此描述D. 两个粒子的量子态可以独立于彼此描述答案:C4. 在量子力学中,一个粒子通过一个势垒的隧穿概率是由什么决定的?A. 粒子的能量B. 势垒的宽度C. 势垒的高度D. 所有以上因素答案:D5. 量子力学的基本方程是什么?A. 牛顿第二定律B. 麦克斯韦方程组C. 薛定谔方程D. 热力学第二定律答案:C6. 在量子力学中,一个系统的波函数坍缩通常发生在什么情况下?A. 当系统处于叠加态时B. 当系统被测量时C. 当系统与环境相互作用时D. B 和 C答案:D7. 量子力学中的泡利不相容原理指出,一个原子中的两个电子不能具有完全相同的一组量子数,这主要影响什么?A. 电子的质量B. 电子的自旋C. 电子的能级D. 电子的电荷答案:C8. 量子退相干是什么?A. 量子态的相干性增强的过程B. 量子态的相干性丧失的过程C. 量子态的叠加态减少的过程D. 量子态的不确定性减少的过程答案:B9. 在量子力学中,哪个原理说明了全同粒子不能被区分?A. 泡利不相容原理B. 量子叠加原理C. 量子不确定性原理D. 量子对称性原理答案:D10. 量子力学中的“观测者效应”指的是什么?A. 观测者的存在改变了被观测系统的状态B. 观测者的存在增强了被观测系统的能量C. 观测者的存在减小了被观测系统的不确定性D. 观测者的存在导致了被观测系统的量子坍缩答案:A11. 在量子力学中,一个粒子的波函数通常是复数还是实数?A. 实数B. 复数C. 整数D. 可以是复数也可以是实数答案:B12. 量子力学中的“粒子-波动二象性”指的是什么?A. 粒子有时表现为波动,有时表现为粒子B. 粒子和波动是两种完全不同的实体C. 粒子和波动是同一种实体的不同表现形式D. 粒子的存在需要波动作为媒介答案:C13. 在量子力学中,一个粒子的动量和位置可以同时被准确测量吗?A. 是的,可以同时准确测量B. 不可以,这受到海森堡不确定性原理的限制C. 只有在特定条件下可以D. 只有使用特殊仪器才可以答案:B14. 量子力学中的“超定性”是指什么?A. 系统的状态由多个波函数描述B. 系统的多个性质可以独立测量C. 系统的波函数可以有多个解D. 系统的多个状态可以共存答案:A15. 在量子力学中,一个粒子的自旋是什么?A. 粒子旋转的速度B. 粒子的量子态的一个内在属性C. 粒子的角动量D. 粒子的动能答案:B16. 量子力学中的“测量问题”指的是什么?A. 如何测量量子系统的尺寸B. 如何测量量子系统的动量C. 测量过程如何影响量子系统的状态D. 测量结果的统计性质答案:C17. 量子力学中的“波函数坍缩”是指什么?A. 波函数在空间中的扩散B. 波函数在时间中的演化C. 波函数从叠加态突然转变为某个特定的状态D. 波函数的数学表达式变得复杂答案:C18. 在量子力学中,一个系统的能量通常是量子化的,这意味着什么?A. 系统的能量可以连续变化B. 系统的能量可以是任何值C. 系统的能量只能取特定的离散值D. 系统的能量只能增加或减少特定的量答案:C19. 量子力学中的“非局域性”指的是什么?A. 量子系统的状态不能在空间中定位B. 量子系统的状态不能在时间中定位C. 量子系统的状态不受空间距离的限制D. 量子系统的状态不受时间距离的限制答案:C20. 在量子力学中,一个粒子的波函数的绝对值平方代表什么?A. 粒子的总能量B. 粒子的总动量C. 粒子在某个位置被发现的概率密度D. 粒子的电荷密度答案:C这套选择题覆盖了量子力学的多个基本概念,适合用于检验学生对量子力学基础知识的掌握情况。
一、填空题:(每题 4 分,共 40 分)1. 微观粒子具有 波粒 二象性。
2.德布罗意关系是粒子能量E 、动量P 与频率ν、波长λ之间的关系,其表达式为:E=h ν, p=/h λ 。
3.根据波函数的统计解释,dx t x 2),(ψ的物理意义为:粒子在x —dx 范围内的几率 。
4.量子力学中力学量用 厄米 算符表示。
5.坐标的x 分量算符和动量的x 分量算符x p 的对易关系为:[],x p i = 。
6.量子力学关于测量的假设认为:当体系处于波函数ψ(x)所描写的状态时,测量某力学量F 所得的数值,必定是算符Fˆ的 本征值 。
7.定态波函数的形式为: t E in n ex t x-=)(),(ϕψ。
8.一个力学量A 为守恒量的条件是:A 不显含时间,且与哈密顿算符对易 。
9.根据全同性原理,全同粒子体系的波函数具有一定的交换对称性,费米子体系的波函数是_反对称的_____________,玻色子体系的波函数是_对称的_______ _。
10.每个电子具有自旋角动量S ,它在空间任何方向上的投影只能取两个数值为: 2± 。
二、证明题:(每题10分,共20分)1、(10分)利用坐标和动量算符的对易关系,证明轨道角动量算符的对易关系:证明:zy x L i L L ˆ]ˆ,ˆ[ =]ˆˆ,ˆˆ[]ˆ,ˆ[z x y z yx p x p z p z p y L L --=2、(10分)由Schr ödinger 方程证明几率守恒:其中几率密度 几率流密度 证明:考虑 Schr ödinger 方程及其共轭式:2|),(|),(),(),(t r t r t r t rψ=ψψ=*ω22(,)[()](,)2i r t V r r t t μ∂ψ=-∇+ψ∂0=∙∇+∂∂J tω][2ψ∇ψ-ψ∇ψ=**μi J ]ˆˆ,ˆ[]ˆˆ,ˆ[z x y z x z p x p z p z p x p z py ---=]ˆ,ˆ[]ˆ,ˆ[]ˆ,ˆ[]ˆ,ˆ[z y x y z z x z p x p z p z p z p x p y p z py +--=]ˆ,ˆ[]ˆ,ˆ[z y x z p x p z p z py +=y z z y z x x z p p x z p x p z p p z y p z py ˆ]ˆ,[]ˆ,ˆ[ˆ]ˆ,[]ˆ,ˆ[+++=y z x z p p x z p z py ˆ]ˆ,[]ˆ,ˆ[+=y z y z x z x z p p x z p p z x p z p y p pyz ˆˆ],[ˆ]ˆ,[ˆ],ˆ[]ˆ,ˆ[+++=y x p i x pi y ˆ)(ˆ)( +-=]ˆˆ[x y p y px i -= zL i ˆ =在空间闭区域τ中将上式积分,则有:三、计算题:(共40分)1、(10分)设氢原子处于状态),()(23),()(21),,(11211021ϕθϕθϕθψ--=Y r R Y r R r 求氢原子能量E 、角动量平方L 2、角动量Z 分量L Z 的可能值及这些可能值出现的几率。
高校量子力学研究生招生试题汇总一.复旦大学1999硕士入学量子力学试题二.天津大学1999硕士入学量子力学试题(1)三.北京大学2000年研究生入学考试试题考试科目:量子力学 考试时间:2000.1.23下午 招生专业:物理系各专业 研究方向:各研究方向 试题: 一.(20分)质量为m 的粒子,在位势V x x V '+=)()(αδ 0<a00{V V ='00><x x 00>V中运动,a. 试给出存在束缚态的条件,并给出其能量本征值和相应的本征函数;b. 给出粒子处于x >0区域中的几率。
它是大于1/2,还是小于1/2,为什么? 二.(10分)若|α>和|β>是氢原子的定态矢(电子和质子的相互作用为库仑作用,并计及电子的自旋—轨道耦合项)a. 给出|α>和|β>态的守恒量完全集;b. 若0ˆˆ)(≠⋅αβr sr f ,则|α>和|β>态的那些量子数可能是不同的,为什么? (注:f(r)是r 的非零函数,r s ˆ,ˆ为电子的自旋和坐标算符。
)三.(16分)三个自旋为1/2的粒子,它们的哈密顿量为)ˆˆˆˆˆˆ(ˆ1332210s s s s s s C H ⋅+⋅+⋅= 求本征值和简并度。
四.(22分)两个自旋为1/2的粒子,在),(21z z s s 表象中的表示为))((2211βαβα,其中,2iα是第i 个粒子自旋向上的几率,2iβ是第i 个粒子自旋向下的几率。
a. 求哈密顿量)(ˆ21210xy y x V H σσσσ-= 的本征值和本征函数;(V 0为一常数)b. t=0时,体系处于态121==βα,012==βα,求t 时刻发现体系在态021==βα,112==βα的几率。
(注:iy ix σσ,为第i 个粒子泡利算符的x, y 分量)五.(10分)考虑一维谐振子,其哈密顿量)21(ˆ+=+a a h H ϖ,而0],[],[==++a a a a ,1],[=+a a a. 若|0〉是归一化的基态矢(a|0)=0),则第n 个激发态为)(n n a N n +=试求归一化因子n N ; c. 若外加一微扰,aa a ga H ++='ˆ,试求第n 个激发态的能量本征值(准至g 一级)。
2020研究生入学考试 复旦大学 量子力学(720)一、填空题1、 ψ(x,t )=Ae −iEt ℏ⁄e −κ|x |1)求A ;2)求(x,x +dx )找到粒子的概率;3)⟨ψ|x |ψ⟩;4)(忘了)。
2、 已知自旋某分量的本征方程为S ̂φ±=±ℏ2φ±,设ψ=0.8φ+−0.6iφ− 1)取±ℏ2的概率分别为;2)⟨ψ|S ̂|ψ⟩;3)写出一个与ψ正交的本征态。
3、 氢原子处于|n =3,l =1,m =1⟩,辐射了一个光子后,跃迁到了低能量态,写出所有可能的态。
二、判断题(18分)1、 某波函数是厄米算符的本征态,它不能含有虚数的相因子。
2-7题忘了8、 2个玻色子可以处于同一量子态。
9、 2个费米子可以处于同一量子态。
三、1、 3个粒子处于一维谐振子势中,写出下列情况时体系的基态能量,并说明理由: 1)3个经典粒子;2)3个玻色子;3)3个费米子。
2、 已知原子核尺度为10−13m ,中子质量为m =1.67×10−27kg ,ℎ=10−34,求中子在核内的零点能的数量级。
3、 求类氢原子与氢原子对应能级的数量级。
四、粒子处于[0,a ]的无限深方势阱中,求:1) 定态薛定谔方程,并说明波函数与归一化系数的物理意义;2) 求出本征态与能量本征值,画出前三个能的波函数大致形状;3) 在某时刻加上脉冲电场E ⃑ =εδ(t )x ,写出相应哈密顿量,并求出基态跃迁到第一激发态与第二激发态的概率。
五、H =H 0+H ′=α(100020002)+γ(−100001010)1) 求无微扰时的波矢与能量值,注明简并度;2) 求微扰能量修正量与以及微扰修正波矢。
六、V (x )=αδ(x )(24分)1) 求薛定谔方程与x =0处的连续条件;2) 设粒子从x =−∞处入射,求反射系数与透射系数;3) 根据2)的结果,求当该势作为一维散射中心势时,求总微分截面σ,并画出σ与α的关系。
1、简述波函数的统计解释;2、对“轨道”和“电子云”的概念,量子力学的解释是什么?3、力学量Gˆ在自身表象中的矩阵表示有何特点? 4、简述能量的测不准关系;5、电子在位置和自旋z S ˆ表象下,波函数⎪⎪⎭⎫⎝⎛=ψ),,(),,(21z y x z y x ψψ如何归一化?解释各项的几率意义。
6、何为束缚态?7、当体系处于归一化波函数ψ(,) r t 所描述的状态时,简述在ψ(,)r t 状态中测量力学量F 的可能值及其几率的方法。
8、设粒子在位置表象中处于态),(t r ψ,采用Dirac 符号时,若将ψ(,) r t 改写为ψ(,)r t 有何不妥?采用Dirac 符号时,位置表象中的波函数应如何表示? 9、简述定态微扰理论。
10、Stern —Gerlach 实验证实了什么? 11、一个物理体系存在束缚态的条件是什么? 12、两个对易的力学量是否一定同时确定?为什么? 13、测不准关系是否与表象有关?14、在简并定态微扰论中,如 ()H0的某一能级)0(n E ,对应f 个正交归一本征函数i φ(i =1,2,…,f ),为什么一般地i φ不能直接作为()H HH'+=ˆˆˆ0的零级近似波函数? 15、在自旋态χ12()s z 中, S x 和 S y的测不准关系( )( )∆∆S S x y 22•是多少? 16、在定态问题中,不同能量所对应的态的迭加是否为定态Schrodinger 方程的解?同一能量对应的各简并态的迭加是否仍为定态Schrodinger 方程的解?17、两个不对易的算符所表示的力学量是否一定不能同时确定?举例说明。
18说明厄米矩阵的对角元素是实的,关于对角线对称的元素互相共轭。
19何谓选择定则。
20、能否由Schrodinger 方程直接导出自旋?21、叙述量子力学的态迭加原理。
22、厄米算符是如何定义的?23、据[aˆ,+a ˆ]=1,a a Nˆˆˆ+=,n n n N =ˆ,证明:1ˆ-=n n n a 。
量子力学练习题题库量子力学练习题本练习题共352道,其中(一)单项选择题 145题,(二)填空题100题,(三) 判断题50题,(四) 名词解释32题,(五)证明题25题,(六)计算题40题。
做题时应注意的几个问题:1.强调对量子力学概念、知识体系的整体理解。
2.注重量子力学基本原理的理解及其简单的应用,如:无限深势阱、谐振子和氢原子等重要问题的求解及其结论,并与其对应的经典理论进行比较,力争把量子力学理论融汇贯通。
3.数学手段上,应多看示例,尽量避免陷入过多的、繁难的数学计算中。
4.通过完成练习题,使自己加深对理论内容的理解,通过把实际物理过程用数学模型求解,培养自己独立解决实际问题的能力。
(一) 单项选择题 (共145题)1.能量为100ev的自由电子的De Broglie 波长是A. 1.2B. 1.5C.2.1D. 2.5.2. 能量为0.1ev的自由中子的De Broglie 波长是 A.1.3 B.0.9C. 0.5D. 1.8.D. 2.0.4.温度T1k时,具有动能为Boltzeman常数的氦原子的De Broglie 波长是A.8B. 5.6C. 10D. 12.6.5.用Bohr-Sommerfeld的量子化条件得到的一维谐振子的能量为()AB C D6.在0k附近,钠的价电子的能量为3ev,其De Broglie波长是A.5.2B. 7.1C. 8.4D. 9.4.7.钾的脱出功是2ev,当波长为3500的紫外线照射到钾金属表面时,光电子的最大能量为C. 0.25JD. 1.25J.8.当氢原子放出一个具有频率的光子,反冲时由于它把能量传递给原子而产生的频率改变为ABC D9pton 效应证实了A.电子具有波动性B. 光具有波动性.C.光具有粒子性D. 电子具有粒子性.10.Davisson 和Germer 的实验证实了电子具有波动性. B. 光具有波动性. C. 光具有粒子性 D. 电子具有粒子性.11.粒子在一维无限深势阱中运动,设粒子的状态由描写,其归一化常数C为A BC D12. 设,在范围内找到粒子的几率为A B C D13. 设粒子的波函数为 ,在范围内找到粒子的几率为ABCD14.设和分别表示粒子的两个可能运动状态,则它们线性迭加的态的几率分布为 A B. + C. + D. +.A.单值、正交、连续B.归一、正交、完全性C.连续、有限、完全性D.单值、连续、有限.A.波动性是由于大量的微粒分布于空间而形成的疏密波B.微粒被看成在三维空间连续分布的某种波包C.单个微观粒子具有波动性和粒子性D. A, B, C.17.已知波函数, ,,其中定态波函数是A B.和C D.和.18.若波函数归一化,则19.波函数、为任意常数,A.与描写粒子的状态不同 B.与所描写的粒子在空间各点出现的几率的比是1: C.与所描写的粒子在空间各点出现的几率的比是 D.与描写粒子的状态相同.20.波函数的傅里叶变换式是A BC D21.量子力学运动方程的建立,需满足一定的条件:1方程中仅含有波函数关于时间的一阶导数. 2方程中仅含有波函数关于时间的二阶以下的导数.3方程中关于波函数对空间坐标的导数应为线性的. 4 方程中关于波函数对时间坐标的导数应为线性的.5 方程中不能含有决定体系状态的具体参量. 6 方程中可以含有决定体系状态的能量. 则方程应满足的条件是A. 1、3和6B. 2、3、4和5. C. 1、3、4和5. D.2、3、4、5和6.22.两个粒子的薛定谔方程是A B C D.23.几率流密度矢量的表达式为 A B CD24.质量流密度矢量的表达式为A B C D25. 电流密度矢量的表达式为AB CD26.下列哪种论述不是定态的特点A.几率密度和几率流密度矢量都不随时间变化 B.几率流密度矢量不随时间变化 C.任何力学量的平均值都不随时间变化 D.定态波函数描述的体系一定具有确定的能量.27.在一维无限深势阱中运动的质量为的粒子的能级为A.,B.,C., D28. 在一维无限深势阱中运动的质量为的粒子的能级为 A., B., C., D29. 在一维无限深势阱中运动的质量为的粒子的能级为A.,B., C., D30. 在一维无限深势阱中运动的质量为的粒子处于基态,其位置几率分布最大处是 A., B.,C.,D31. 在一维无限深势阱中运动的质量为的粒子处于第一激发态,其位置几率分布最大处是A., B., C., D32.在一维无限深势阱中运动的粒子,其体系的A.能量是量子化的,而动量是连续变化的 B.能量和动量都是量子化的 C.能量和动量都是连续变化的D.能量连续变化而动量是量子化的.AB C D34.线性谐振子的第一激发态的波函数为,其位置几率分布最大处为ABCD35.线性谐振子的 A.能量是量子化的,而动量是连续变化的B.能量和动量都是量子化的 C.能量和动量都是连续变化的D.能量连续变化而动量是量子化的.36.线性谐振子的能量本征方程是AB C D37.氢原子的能级为A..B..CD38.在极坐标系下,氢原子体系在不同球壳内找到电子的几率为AB C D39. 在极坐标系下,氢原子体系在不同方向上找到电子的几率为A B C D40.波函数和是平方可积函数,则力学量算符为厄密算符的定义是A B C D41. 和是厄密算符,则A.必为厄密算符.B.必为厄密算符C.必为厄密算符D. 必为厄密算符42.已知算符和,则A.和都是厄密算符B.必是厄密算符C.必是厄密算符D.必是厄密算符.43.自由粒子的运动用平面波描写,则其能量的简并度为A.1B. 2C. 3D. 4.A B C D.45.角动量Z分量的归一化本征函数为A BC D是的本征函数,不是的本征函数 B.不是的本征函数,是的本征函数.C 是、的共同本征函数. D. 即不是的本征函数,也不是的本征函数.47.若不考虑电子的自旋,氢原子能级n3的简并度为 A. 3 B. 6 C.9 D. 12.48.氢原子能级的特点是 A.相邻两能级间距随量子数的增大而增大 B.能级的绝对值随量子数的增大而增大 C.能级随量子数的增大而减小 D.相邻两能级间距随量子数的增大而减小.49一粒子在中心力场中运动,其能级的简并度为,这种性质是库仑场特有的B.中心力场特有的. C.奏力场特有的 D.普遍具有的.50.对于氢原子体系,其径向几率分布函数为,则其几率分布最大处对应于Bohr原子模型中的圆轨道半径是 A B C D51.设体系处于状态,则该体系的能量取值及取值几率分别为 A BC D52.接51题,该体系的角动量的取值及相应几率分别为 A B C D53. 接51题,该体系的角动量Z分量的取值及相应几率分别为 A BC D54. 接51题,该体系的角动量Z分量的平均值为A B C D55. 接51题,该体系的能量的平均值为A..B..CD56.体系处于状态,则体系的动量取值为A B C D57.接上题,体系的动量取值几率分别为 A. 1,0. B. 1/2,1/2C. 1/4,3/4/ D. 1/3,2/3.58.接56题, 体系的动量平均值为A B C D59.一振子处于态中,则该振子能量取值分别为A BC D60.接上题,该振子的能量取值的几率分别为A B. ,. C.,D61.接59题,该振子的能量平均值为 B C D62.对易关系等于为的任意函数 A..B..CD63. 对易关系等于 A BC D64.对易关系等于A B CD65. 对易关系等于A B C D66. 对易关系等于A B C D67. 对易关系等于A B CD68. 对易关系等于A B CD69. 对易关系等于A B C D70. 对易关系等于A B C D71. 对易关系等于A B C D72. 对易关系等于A B C D73. 对易关系等于A B C D74. 对易关系等于A B C D75. 对易关系等于A B C D76. 对易关系等于A B C DA B C D78. 对易式等于m,n为任意正整数A B C DA B C D80对易式等于c为任意常数A B C D81.算符和的对易关系为,则、的测不准关系是A BC D82.已知,则和的测不准关系是A B C D83. 算符和的对易关系为,则、的测不准关系是A B CD84.电子在库仑场中运动的能量本征方程是A BC D85.类氢原子体系的能量是量子化的,其能量表达式为A B C D86. 在一维无限深势阱中运动的质量为的粒子,其状态为,则在此态中体系能量的可测值为A., B,C., D87.接上题,能量可测值、出现的几率分别为 A.1/4,3/4B. 3/4,1/4C.1/2, 1/2D. 0,1.88.接86题,能量的平均值为A., B., C., D89.若一算符的逆算符存在,则等于A. 1B. 0C. -1D. 2.90.如果力学量算符和满足对易关系, 则A. 和一定存在共同本征函数,且在任何态中它们所代表的力学量可同时具有确定值B. 和一定存在共同本征函数,且在它们的本征态中它们所代表的力学量可同时具有确定值.C. 和不一定存在共同本征函数,且在任何态中它们所代表的力学量不可能同时具有确定值.D. 和不一定存在共同本征函数,但总有那样态存在使得它们所代表的力学量可同时具有确定值.可取一切实数值 B.只能取不为负的一切实数 C.可取一切实数,但不能等于零. D.只能取不为正的实数.92.对易关系式等于A BCD93.定义算符, 则等于A B C D94.接上题, 则等于AB C D95. 接93题, 则等于AB C D96.氢原子的能量本征函数A.只是体系能量算符、角动量平方算符的本征函数,不是角动量Z分量算符的本征函数 B.只是体系能量算符、角动量Z分量算符的本征函数,不是角动量平方算符的本征函数 C.只是体系能量算符的本征函数,不是角动量平方算符、角动量Z 分量算符的本征函数 D.是体系能量算符、角动量平方算符、角动量Z分量算符的共同本征函数.97.体系处于态中,则A.是体系角动量平方算符、角动量Z分量算符的共同本征函数 B.是体系角动量平方算符的本征函数,不是角动量Z分量算符的本征函数 C.不是体系角动量平方算符的本征函数,是角动量Z分量算符的本征函数 D.即不是体系角动量平方算符的本征函数,也不是角动量Z分量算符的本征函数.98.对易关系式等于A B C D99.动量为的自由粒子的波函数在坐标表象中的表示是,它在动量表象中的表示是ABCD100.力学量算符对应于本征值为的本征函数在坐标表象中的表示是AB C D101.一粒子在一维无限深势阱中运动的状态为,其中、是其能量本征函数,则在能量表象中的表示是A..B..C..D102.线性谐振子的能量本征函数在能量表象中的表示是 A B CD103. 线性谐振子的能量本征函数在能量表象中的表示是 A B C D104.在的共同表象中,波函数,在该态中的平均值为AB CD. 0.105.算符只有分立的本征值,对应的本征函数是,则算符在表象中的矩阵元的表示是以本征值为对角元素的对角方阵B一个上三角方阵. C.一个下三角方阵.D.一个主对角线上的元素等于零的方阵.107.力学量算符在动量表象中的微分形式是 ABCD108.线性谐振子的哈密顿算符在动量表象中的微分形式是 A B CD109.在表象中,其本征值是 AB0 C D110.接上题, 的归一化本征态分别为 A BC D111.幺正矩阵的定义式为 ABCD112.幺正变换 A.不改变算符的本征值,但可改变其本征矢. B.不改变算符的本征值,也不改变其本征矢 C.改变算符的本征值,但不改变其本征矢D.即改变算符的本征值,也改变其本征矢.113.算符,则对易关系式等于 ABC D114.非简并定态微扰理论中第个能级的表达式是考虑二级近似ABC D115. 非简并定态微扰理论中第个能级的一级修正项为 A BC D116. 非简并定态微扰理论中第个能级的二级修正项为 A B C D 117. 非简并定态微扰理论中第个波函数一级修正项为 ABC D118.沿方向加一均匀外电场,带电为且质量为的线性谐振子的哈密顿为 A BCD119.非简并定态微扰理论的适用条件是A B C D 120.转动惯量为I,电偶极矩为的空间转子处于均匀电场中,则该体系的哈密顿为A B C D121.非简并定态微扰理论中,波函数的一级近似公式为A B C D122.氢原子的一级斯塔克效应中,对于的能级由原来的一个能级分裂为五个子能级 B. 四个子能级C. 三个子能级 D. 两个子能级.123.一体系在微扰作用下,由初态跃迁到终态的几率为A BC D写出体系的哈密顿 B选取合理的尝试波函数.C 计算体系的哈密顿的平均值 D体系哈密顿的平均值对变分参数求变分.电子具有波动性B.光具有波动性. C. 原子的能级是分立的. D. 电子具有自旋.126.为自旋角动量算符,则等于A BC .D127. 为Pauli算符,则等于A B CD128.单电子的自旋角动量平方算符的本征值为A B C D129.单电子的Pauli算符平方的本征值为A0 B1 C. 2D. 3.130.Pauli算符的三个分量之积等于A. 0 B1CD131.电子自旋角动量的分量算符在表象中矩阵表示为A B C D 132. 电子自旋角动量的y分量算符在表象中矩阵表示为A B C D 133. 电子自旋角动量的z分量算符在表象中矩阵表示为A B C D 134.是角动量算符,,则等于A BC. 1 D. 0135.接上题, 等于A B C D. 0.136.接134题, 等于A B C D. 0.137.一电子处于自旋态中,则的可测值分别为A B .C D138.接上题,测得为的几率分别是A B CD139.接137题, 的平均值为0 B C D140.在表象中,,则在该态中的可测值分别为 ABC D141.接上题,测量的值为的几率分别为A B.1/2,1/2. C.3/4,1/4. D.1/4, 3/4.142.接140题,的平均值为A B C D143.下列有关全同粒子体系论述正确的是A.氢原子中的电子与金属中的电子组成的体系是全同粒子体系 B.氢原子中的电子、质子、中子组成的体系是全同粒子体系 C.光子和电子组成的体系是全同粒子体系 D.粒子和电子组成的体系是全同粒子体系.144.全同粒子体系中,其哈密顿具有交换对称性,其体系的波函数 A.是对称的 B.是反对称的 C.具有确定的对称性. D.不具有对称性.145.分别处于态和态的两个电子,它们的总角动量的量子数的取值是0,1,2,3,4B.1,2,3,4. C. 0,1,2,3 D.1,2,3.(二) 填空题(共100题)1pton效应证实了。
量子力学测试题(4)(复旦2002)1、已知一维运动的粒子在态)(x ψ中坐标x 和动量xp 的平均值分别为0x 和p ,求在态)()(0/0x x ex x ip +=-ψϕ中坐标x 和动量x p 的平均值。
解:已知粒子在态)(x ψ中坐标x 和动量x p 的平均值分别为*)()(x dx x x x x ==⎰+∞∞-ψψ0*)()(p dx x x i x p x =⎪⎭⎫⎝⎛∂∂-=⎰+∞∞-ψψ现粒子处在)(x ϕ态,坐标x 和动量x p 的平均值)())(()()()()(000*00**=-=''-''=++==⎰⎰⎰∞+∞-+∞∞-+∞∞-x x x d x x x x dxx x x x x dx x x x x ψψψψϕϕ)()()]()()[()]([)()()(00*00/0/00*/0/0*/*00000=+-=''⎪⎭⎫ ⎝⎛'∂∂-'+-=+⎪⎭⎫ ⎝⎛∂∂-++-+=+⎪⎭⎫ ⎝⎛∂∂-+=⎪⎭⎫ ⎝⎛∂∂-=⎰⎰⎰⎰∞+∞-∞+∞---+∞∞--+∞∞-p p x d x x i x p dxx x x i ex x ep x x edx x x ex i x x edx x x i x p x ip x ip x ip x ip x ip xψψψψψψψϕϕ2、一体系服从薛定谔方程),(),(21)(2212122122212r r E r r r r k mψψ=⎥⎦⎤⎢⎣⎡-+∇+∇-(1)指出体系的所有守恒量(不必证明); (2)求基态能量和基态波函数。
解:(1)体系的哈密顿量为2212222122122r r k mmH-+∇-∇-= 引入质心坐标R和相对坐标r:)(2121r r R +=21r r r -=在坐标变换rR r r,,21⇒下,体系的哈密顿量变为222222122krMH rR+∇-∇-=μ2/2m m M ==μ容易得知系统的守恒量为z L L E ,,2。
2019-2009学年第一学期《量子力学》(A )卷参考解答及评分标准1. 能级简并、简并度。
(5分)答:量子力学中,把处于不同状态、具有相同能量、对应同一能级的现象称为简并。
把对应于同一能级的不同状态数称为简并度。
2. 一质量为μ 的粒子在一维无限深方势阱⎩⎨⎧><∞<<=ax x a x x V 2,0,20,0)(中运动,写出其状态波函数和能级表达式。
(5分)解: ⎪⎩⎪⎨⎧≥≤<<=ax x a x axn a x n 2,0,0,20,2sin 1)(πψ,3,2,1,82222==n an E n μπ3. 二电子体系中,总自旋 21s s S += ,写出(z S S ,2)的归一化本征态(即自旋单态与三重态)。
(5分)解:(2,z S S )的归一化本征态记为S SM χ,则 自旋单态为]00(1)(2)(1)(2)χαββα=- 自旋三重态为]111011(1)(2)(1)(2)(1)(2)(1)(2)χααχαββαχββ-=⎧⎪⎪=+⎨⎪⎪=⎩4. 对于阶梯形方势场⎩⎨⎧><=ax V a x V x V ,,)(21,如果(12V V -)有限,则定态波函数)(x ψ连续否?其一阶导数 )(x ψ'连续否?(5分) 解:定态波函数)(x ψ连续;其一阶导数 )(x ψ'也连续。
5. 用球坐标表示,粒子波函数表为 ()ϕθψ,,r ,则粒子在立体角d Ω中被测到的几率为()220d ,,d P r r r ψθϕ∞=Ω⎰。
(5分)6. 给出如下对易关系:(5分)[],0,,,2,y z z y x zy z xx p z p iy L ixi L p i p σσσ⎡⎤⎡⎤===⎣⎦⎣⎦⎡⎤⎡⎤=-=⎣⎦⎣⎦7. 量子力学中,体系的任意态)(x ψ可用一组力学量完全集的共同本征态)(x n ψ展开:()()n n nx a x ψψ=∑,则展开式系数()*(),()()()d n n n a x x x x x ψψψψ==⎰。
量子力学试题含答案1. 选择题a) 以下哪个说法正确?A. 量子力学只适用于微观领域B. 量子力学只适用于宏观领域C. 量子力学适用于微观和宏观领域D. 量子力学不适用于任何领域答案:A. 量子力学只适用于微观领域b) 以下哪个量不是量子力学的基本量?A. 质量B. 电荷C. 动量D. 能量答案:D. 能量c) 下面哪个原理是量子力学的基础?A. 相对论B. Newton力学定律C. 不确定性原理D. 统计力学答案:C. 不确定性原理2. 填空题a) 波粒二象性指的是在特定条件下,微观粒子既可表现出波动性,又可以表现出粒子性。
这种相互转化的现象称为________。
答案:波粒二象性的相互转化b) ____________________是描述微观粒子运动的方程。
答案:薛定谔方程c) Ψ(x, t)代表粒子的波函数,那么|Ψ(x, t)|^2表示__________________。
答案:粒子在坐标x处被测量到的概率密度3. 简答题a) 请简要说明波粒二象性的原理和实验观察。
答案:波粒二象性原理指出,微观粒子既可表现出波动性,又可以表现出粒子性。
这意味着微观粒子的行为既可以用波动的方式来描述(例如干涉和衍射现象),也可以用粒子的方式来描述(例如在特定的位置进行观测)。
实验观察可以通过使用干涉仪和双缝实验等经典实验来验证波动性质。
当光或电子通过干涉仪或双缝实验时,会出现干涉和衍射现象,这表明了粒子具有波动性。
同时,通过探测器对光或电子的位置进行测量,可以观察到粒子的粒子性。
b) 请解释量子力学中的不确定性原理及其意义。
答案:不确定性原理是由德国物理学家海森伯提出的,它指出在测量某个粒子的某个物理量的同时,不可避免地会对另一个物理量的测量结果带来不确定性。
不确定性原理的意义在于限制了我们对微观世界的认知。
它告诉我们,粒子的位置和动量无法同时被精确地确定。
这是由于测量过程中的不可避免的干扰和相互关联性导致的。