17
( r,t )d ( r,t ) 2d 1
满足此条件的波函数 rr,t 称为归一化波函数。
又因
(rv,t) 2 d C2
(rv,t)
2
d
1
其中 于是
1
C
(rv,t) 2 d
称为归一化常数
(r,t) (r,t) 2
(r,t) 2 (r,t) 2 d
归一化消除了波函数常数因子的一种不确定性。 18
第二章 波函数及薛定谔方程
§1 波函数及其统计解释 §2 态叠加原理 §3 薛定谔方程 §4 定态 §5 一维定态问题
1
学习要求
1.理解微观粒子运动状态的描述 及其统计解释。
波函数
2.通过对实验的分析,理解态叠加原理。
3.掌握微观粒子运动的动力学方程
数随时间演化的规律
薛定谔方程。
波函
4.掌握定态及其性质。
归一化常数 A 1/ 2 h
归一化的平面波:
1/ 2 e 1/ 2
i(
Px
x
Et
)
Px
22
归一化:
2
Px (x,t) dx (Px Px)
同理,三维平面波: v(rv,t)
1
i ( PvrvEt )
eh
P
(2 h)3/2
归一化:
v P
(rv,
t
)
2
d
vv
3(P P)
3 3ei(2x h) / h , 6 (4 2i)ei2x / h.
2.已知下列两个波函数
1
(
x)
A
sin
n 2a
(
x
a)
0
| x | a | x | a