二次规划
- 格式:ppt
- 大小:899.00 KB
- 文档页数:20
二次规划问题二次规划问题(quadratic programming)的标准形式为:sub.to其中,H、A、Aeq为矩阵,f、b、beq、lb、ub、x为向量其它形式的二次规划问题都可转化为标准形式。
MATLAB5.x版中的qp函数已被6.0版中的函数quadprog取代。
函数 quadprog格式 x = quadprog(H,f,A,b) %其中H,f,A,b为标准形中的参数,x为目标函数的最小值。
x = quadprog(H,f,A,b,Aeq,beq) %Aeq,beq满足等约束条件。
x = quadprog(H,f,A,b,Aeq,beq,lb,ub) % lb,ub分别为解x的下界与上界。
x = quadprog(H,f,A,b,Aeq,beq,lb,ub,x0) %x0为设置的初值x = quadprog(H,f,A,b,Aeq,beq,lb,ub,x0,options) % options为指定的优化参数[x,fval] = quadprog(…) %fval为目标函数最优值[x,fval,exitfla g] = quadprog(…) % exitflag与线性规划中参数意义相同[x,fval,exitflag,output] = quadprog(…) % output与线性规划中参数意义相同[x,fval,exitflag,output,lambda] = quadprog(…) % lambda与线性规划中参数意义相同例5-8 求解下面二次规划问题sub.to解:则,,在MA TLAB中实现如下:>>H = [1 -1; -1 2] ;>>f = [-2; -6];>>A = [1 1; -1 2; 2 1];>>b = [2; 2; 3];>>lb = zeros(2,1);>>[x,fval,exitflag,output,lambda] = quadprog(H,f,A,b,[ ],[ ],lb)结果为:x = %最优解0.66671.3333fval = %最优值-8.2222exitflag = %收敛1output =iterations: 3algorithm: 'medium-scale: active-set'firstorderopt: [ ]cgiterations: [ ]lambda =lower: [2x1 double]upper: [2x1 double]eqlin: [0x1 double]ineqlin: [3x1 double]>> lambda.ineqlinans =3.11110.4444>> lambda.lowerans =说明第1、2个约束条件有效,其余无效。
2、对于二次规划模型求解:问题1:先求出ij c ,结果如下表:330.7 320.3 300.2 258.6 198 180.5 163.1 181.2 224.2 252 256 266 281.2 288 302 370.7 360.3 345.2 326.6 266 250.5 241 226.2 269.2 297 301 311 326.2 333 347 385.7 375.3 355.2 336.6 276 260.5 251 241.2 203.2 237 241 251 266.2 273 287 420.7 410.3 395.2 376.6 316 300.5 291 276.2 244.2 222 211 221 236.2 243 257 410.7 400.3 380.2 361.6 301 285.5 276 266.2 234.2 212 188 206 226.2 228 242 415.7 405.3 385.2 366.6 306 290.5 281 271.2 234.2 212 201 195 176.2 161 178 435.7 425.3 405.2 386.6 326 310.5 301 291.2 259.2 237 226 216 198.2 185 162由于二次规划模型中约束条件151{0}[500,],1,2,7,ij i j X s i =∈=∑的存在,必须加以处理。
引进0-1变量15,...2,1,=i n i ,则151{0}[500,],1,2,7,ij i j Xs i =∈=∑可以等价转换为下面的三个约束条件:i j ij s X≤∑=151i j ij Mn X ≤∑=151i j ijn X*500151≥∑= 其中M 为一个很大数。
这样就可以得到下面的lingo 程序:sets :s/1..7/:sx;a/1..15/:z,y,n,t;links(s,a):c,x;endsetsdata:sx=800 800 1000 2000 2000 2000 3000;t=104 301 750 606 194 205 201 680 480 300 220 210 420 500 0;c=330.7 320.3 300.2 258.6 198 180.5 163.1 181.2 224.2 252 256 266 281.2 288 302370.7 360.3 345.2 326.6 266 250.5 241 226.2 269.2 297 301 311 326.2 333 347385.7 375.3 355.2 336.6 276 260.5 251 241.2 203.2 237 241 251 266.2 273 287420.7 410.3 395.2 376.6 316 300.5 291 276.2 244.2 222 211 221 236.2 243 257410.7 400.3 380.2 361.6 301 285.5 276 266.2 234.2 212 188 206 226.2 228 242415.7 405.3 385.2 366.6 306 290.5 281 271.2 234.2 212 201 195 176.2 161 178435.7 425.3 405.2 386.6 326 310.5 301 291.2 259.2 237 226 216 198.2 185 162;enddata!目标函数;min=@sum(links:c*x)+0.05*@sum(a(j):z(j)*(z(j)+1)+y(j)*(y(j)+1));!每个工厂产量的限制;@for(s(i):@sum(a(j):x(i,j))<=sx);@for(s(i):@sum(a(j):x(i,j))<=90000000*n(i));@for(s(i):@sum(a(j):x(i,j))>=500*n(i));!每个结点运量的限制;@for(a(j):@sum(s(i):x(i,j))=z(j)+y(j));!区间长度的限制;@for(a(j)|j#le#14:z(j+1)+y(j)=t(j));!初始条件;z(1)=0;y(15)=0;!设置0-1变量;@for(a(j):@bin(n(j)));Local optimal solution found at iteration: 5800Objective value: 1278632.问题3:sets:s/1..7/:sx;a/1..21/:z,y,n,t;links(s,a):c,x;endsetsdata:sx=800 800 1000 2000 2000 2000 3000;t=104 301 750 606 194 205 201 680 480 300 220 210 420 500 0 0 0 0 0 0 0;c=330.7 320.3 300.2 258.6 198 180.5 163.1 181.2 224.2 252 256 266 281.2 288 302220 255 260 265 275 285370.7 360.3 345.2 326.6 266 250.5 241 226.2 269.2 297 301 311 326.2 333 347265 300 305 310 320 330385.7 375.3 355.2 336.6 276 260.5 251 241.2 203.2 237 241 251 266.2 273 287199 240 245 250 260 270420.7 410.3 395.2 376.6 316 300.5 291 276.2 244.2 222 211 221 236.2 243 257240 210 215 220 230 240410.7 400.3 380.2 361.6 301 285.5 276 266.2 234.2 212 188 206 226.2 228 242230 187 205 205 220 230415.7 405.3 385.2 366.6 306 290.5 281 271.2 234.2 212 201 195 176.2 161 178230 200 183 186 160 150435.7 425.3 405.2 386.6 326 310.5 301 291.2 259.2 237 226 216 198.2 185 162245 225 210 215 192 189;enddata!目标函数;min=@sum(links:c*x)+0.05*@sum(a(j):z(j)*(z(j)+1)+ y(j)*(y(j)+1))+0.05*yd1*(yd1+1)+0.05*yd2*(yd2+1)+0.05*yd3*(yd3+1);!每个工厂产量的限制;@for(s(i):@sum(a(j):x(i,j))<=sx);@for(s(i):@sum(a(j):x(i,j))<=9000000*n(i));@for(s(i):@sum(a(j):x(i,j))>=500*n(i));!每个结点运量的限制;@for(a(j)|j#ne#9 #and# j#ne#11 #and#j#ne#17:@sum(s(i):x(i,j))=z(j)+y(j));@sum(s(i):x(i,9))=z(9)+y(9)+yd1;@sum(s(i):x(i,11))=z(11)+y(11)+yd2;@sum(s(i):x(i,17))=z(17)+y(17)+yd3;!区间长度的限制;@for(a(j)|j#le#14:z(j+1)+y(j)=t(j));y(16)+yd1=42;y(17)+yd2=10;z(17)+y(18)=130;yd3+y(19)=190;z(19)+y(20)=260;z(20)+y(21)=100;!初始条件;z(1)=0;y(15)=0;z(16)=0;z(18)=0;z(21)=0;!设置0-1变量;@for(a(j):@bin(n(j)));Local optimal solution found at iteration: 9263 Objective value: 1411287.。
9.2.4 二次规划问题9.2.4.1 基本数学原理如果某非线性规划的目标函数为自变量的二次函数,约束条件全是线性函数,就称这种规划为二次规划。
其数学模型为:其中,H, A,和Aeq为矩阵,f, b, beq, lb, ub,和x为向量。
9.2.4.2 相关函数介绍quadprog函数功能:求解二次规划问题。
语法:x = quadprog(H,f,A,b)x = quadprog(H,f,A,b,Aeq,beq,lb,ub)x = quadprog(H,f,A,b,Aeq,beq,lb,ub,x0)x = quadprog(H,f,A,b,Aeq,beq,lb,ub,x0,options)[x,fval] = quadprog(...)[x,fval,exitflag] = quadprog(...)[x,fval,exitflag,output] = quadprog(...)[x,fval,exitflag,output,lambda] = quadprog(...)描述:x = quadprog(H,f,A,b) 返回向量x,最小化函数1/2*x'*H*x + f'*x ,其约束条件为A*x <= b。
x = quadprog(H,f,A,b,Aeq,beq)仍然求解上面的问题,但添加了等式约束条件Aeq*x = beq。
x = quadprog(H,f,A,b,lb,ub)定义设计变量的下界lb和上界ub,使得lb <= x <= ub。
x = quadprog(H,f,A,b,lb,ub,x0)同上,并设置初值x0。
x = quadprog(H,f,A,b,lb,ub,x0,options)根据options参数指定的优化参数进行最小化。
[x,fval] = quadprog(...)返回解x处的目标函数值fval = 0.5*x'*H*x + f'*x。
二次规划基本介绍二次规划(Quadratic Programming,简称QP)是数学规划的一种特殊形式,它的目标函数是二次函数,约束条件是线性函数。
在实际应用中,二次规划被广泛应用于经济学、运筹学、工程学等领域,具有重要的理论和实际意义。
二次规划的一般形式可以表示为:$$\begin{aligned}\min_{x} \quad & \frac{1}{2} x^T Q x + c^T x \\\text{s.t.} \quad & Ax \ge b \\&Cx=d\end{aligned}$$其中,$x$是优化变量,$Q$是一个对称正定的矩阵,$c$、$b$、$d$都是列向量,$A$、$C$是约束矩阵。
在约束条件中,$Ax \ge b$表示一组不等式约束,$Cx = d$表示一组等式约束。
二次规划的优化目标是寻找满足约束条件的$x$,使得目标函数最小。
目标函数由两部分组成,一部分是二次项,一部分是线性项,其中$Q$是二次项的系数矩阵,$c$是线性项的系数向量。
由于$Q$是一个对称正定矩阵,所以二次项是凸的,使得问题具有良好的性质。
二次规划的解法有多种方法,以下介绍其中两种常用的方法:内点法和激活集方法。
内点法是一种迭代求解二次规划问题的方法。
它通过将二次规划问题转化为一系列等价的线性规划问题来求解。
在每一次迭代中,内点法通过将问题的方向限制在可行域的内部,逐渐逼近最优解。
使用内点法求解二次规划问题的一个优点是,可以在多项式时间内找到最优解,尤其适用于大规模的问题。
激活集方法是一种基于约束的求解方法。
它通过不断修改约束条件,从而求解二次规划问题。
在每一次迭代中,激活集方法选取一个子集,称为“激活集”,包含满足等式约束、不等式约束等的约束条件。
然后通过解析方法或数值方法求解这个子问题,得到对应的最优解。
该方法的优点是,可以很好地处理不等式约束和等式约束,并且收敛性良好。
除了内点法和激活集方法,还有其他的求解方法,如:序列二次规划、信赖域算法、光滑方法等。
二次规划问题二次规划(Quadratic Programming,QP)是指在一定约束条件下,优化一个二次目标函数的数学问题。
它是数学规划(Mathematical Programming)中的一种重要分支,广泛应用于工程、经济、金融等领域。
二次规划问题的一般形式如下:minimize f(x) = (1/2)*x^T*Q*x + c^T*xsubject to: Ax ≤ bAx = blx ≤ x ≤ ux其中,x 是一个 n 维向量,Q 是一个 n×n 矩阵,c 是一个 n 维向量,A 是一个 m×n 矩阵,b 是一个 m 维向量,lx 和 ux 分别是 x 的下界和上界。
二次规划问题具有以下特点:1. 目标函数是一个二次函数,有一个二次项、一个一次项和一个常数项。
2. 约束条件是线性的,可以是等式约束或者不等式约束。
3. 决策变量是一个向量,需要满足一定的边界条件。
解决二次规划问题有多种方法,常用的有凸优化、KKT 条件和梯度法等。
在工程领域,二次规划问题经常出现在优化设计、控制系统和信号处理等方面。
例如,在机械设计中,可以使用二次规划问题来优化零件的尺寸和形状,以实现最小体积和质量。
在控制系统中,可以使用二次规划问题来设计最优控制器的参数,以实现系统的最佳响应和稳定性。
在信号处理中,可以使用二次规划问题来估计信号的频率、幅度和相位,以实现最佳的信号采样和重构。
总之,二次规划问题是一种重要的数学工具,能够解决许多实际问题。
通过优化目标函数,可以得到满足约束条件的最优解,提高系统的性能和效益。
随着计算机技术的发展和数学优化算法的改进,二次规划问题的求解越来越高效和可靠,为工程、经济和金融领域的决策提供了有力支持。
错误!未定义书签。
错误!未定义书签。
序列二次规划法求解一般线性优化问题:12min (x)h (x)0,i E {1,...,m }s.t.(x)0,i {1,...,m }i i f g I =∈=⎧⎨≥∈=⎩ (错误!未定义书签。
错误!未定义书签。
)基本思想:在每次迭代中通过求解一个二次规划子问题来确定一个下降方向,通过减少价值函数来获取当前迭代点的移动步长,重复这些步骤直到得到原问题的解。
1。
1等式约束优化问题的Lagrange-Newton 法考虑等式约束优化问题min (x)s.t.h (x)0,E {1,...,m}j f j =∈=\* MERGEFORMAT 错误!未定义书签。
(错误!未定义书签。
.错误!未定义书签。
) 其中:,n f R R →:()n i h R R i E →∈都为二阶连续可微的实函数. 记1()((),...,())T m h x h x h x =。
则错误!未定义书签。
(错误!未定义书签。
.错误!未定义书签。
)的Lagrange 函数为: 1(,)()*()()*()mT i i i L x u f x u h x f x u h x ==-=-∑(1。
3)其中12(,,...,)T m u u u u =为拉格朗日乘子向量。
约束函数()h x 的Jacobi 矩阵为:1()()((),...,())T T m A x h x h x h x =∇=∇∇。
对(1.3)求导数,可以得到下列方程组:(,)()A()*(,)0(,)()T x u L x u f x x u L x u L x u h x ∇⎡⎤⎡⎤∇-∇===⎢⎥⎢⎥∇-⎣⎦⎣⎦(1.4)现在考虑用牛顿法求解非线性方程(1。
4).(,)L x u ∇的Jacobi 矩阵为:(,)()(,)()0T W x u A x N x u A x ⎛⎫-= ⎪-⎝⎭(1。
5)其中221(,)L(,)()*()mxx iii W x u x u f x u h x ==∇=∇-∇∑是拉格朗日函数L(,)x u 关于x 的Hessen 矩阵。
二次城市规划摘要:随着城市社会经济的快速发展以及外部市场环境日新月异,引起城市用地性质的持续调整。
灰色用地的概念引入对城市用地开发、用地潜力的挖掘具有积极的作用。
针对灰色用地提出的二次城市规划作为一种动态的城市规划方法,不仅提高了规划的弹性,而且灰色用地的开发和利用也满足了城市发展的需求。
关键词:灰色用地、工业用地改造、可持续发展用地、二次城市规划1、概述1.1灰色用地概念及意义某些地区由于外部环境不够成熟、未来发展的不确定性等因素,使其具备灰色的特性,不能按照正常的总体规划将土地利用规划一步落实到位,可以先赋予其将来易置换的用地功能,待时机成熟,再将其转换成其它用地性质,此类地块统称为“灰色用地”。
灰色用地不是不去确定地块的性质,而是让它在市场经济的调控下来转变自身的用地性质,使其更好地适应市场经济,使土地在各个阶段都能发挥最大的经济效益。
灰色用地是社会发展与经济增长导致的必然产物,是适应市场经济条件下理性规划的产出,它的出现适应了土地可持续发展的要求,在考虑当地人文和市场的条件下,以较短的时间(10-20年)作为灰色用地的限期,以适应当地当时的规划背景,保持土地价值的最优。
1.2灰色用地与二次城市规划灰色用地的出现推进了城市规划创新,要求城市规划必须适应市场经济发展,要求城市用地在不同发展阶段效益最大化且功能多样化,以动态的思想来规划,适应城市社会经济可持续发展的要求。
二次规划是为了保持土地的使用价值与社会经济水平相平衡,在一次规划时超前考虑与二次规划的衔接,避免重复开发的浪费,同时盘活土地存量,以此适应市场经济条件下的城市规划。
用二次规划的方法来实践灰色用地的理论,以此达到土地利益最大化和经济的可持续发展的目标。
图1灰色用地与二次规划关系图1.3灰色用地开发案例分析1.3.1案例一:南京1912特色街区&上海新天地----被动性灰色用地规划南京1912特色街区是由民国总统府遗址建筑群转换为目前南京的集餐饮、娱乐、休闲、观光、聚会为一体,文化、品位于一身的时尚休闲商业区及知名品牌的展示地。