集合与容斥原理
- 格式:doc
- 大小:656.50 KB
- 文档页数:13
容斥两集合公式
我们要探讨的是容斥原理,这是一个在集合论中非常重要的原理,用于解决重叠集合的数量问题。
容斥原理的基本思想是:两个集合各自的元素个数和,减去两个集合的交集元素个数,等于两个集合的并集元素个数。
假设我们有两个集合 A 和 B。
集合 A 的元素个数为 A,集合 B 的元素个数为 B。
集合 A 和 B 的交集的元素个数为A ∩ B。
根据容斥原理,我们可以得到以下公式:
A ∪
B = A + B - A ∩ B
这个公式告诉我们如何计算两个集合的并集的元素个数,当我们知道两个集合各自的元素个数和它们的交集的元素个数时。
根据容斥原理,集合 A 和 B 的并集的元素个数为:9个。
第一讲集合与容斥原理李宁本讲主要内容有:集合的有关概念、运算和容斥原理。
学习这一讲,要注意深刻理解集合的概念,掌握集合的思想方法和容斥原理,善于运用集合的语言和方法表示数量关系,并会用集合分拆、容斥原理等方面的知识和方法解决有关的数学问题1集合1.1集合与集合的关系若A中元素都是B中元素,则称A为B的子集,记作A⊆B,若A⊆B,且B 中至少有一元素b/∈A,则称A为B的真子集,记作A B若A⊆B,且B⊆A,则A=B集合与集合的关系,有如下性质:1.ϕ⊆A,特别地,若A=ϕ,则ϕ A2.A⊆B,B⊆C,则A⊆C3.A∪B=B⇔A⊆B;A∩B=A⇔A⊆B4.若A中元素有n个,则A的子集共有2n个,真子集有2n−1个1.2集合的运算A∩B={x|x∈A且x∈B}A∪B={x|x∈A或x∈B}C S A={x|x∈S且x/∈A}关于集合运算有以下常用结论:1.等幂律:A∩A=A,A∪A=A2.同一律:A∩U=A,A∪U=U,A∩ϕ=ϕ,A∪ϕ=A3.交换律:A∩B=B∩A,A∪B=B∪A4.结合律:A∩(B∩C)=(A∩B)∩C,A∪(B∪C)=(A∪B)∪C5.分配率:A∩(B∪C)=(A∩B)∪(A∩C),A∪(B∩C)=(A∪B)∩(A∪C)A BA BC图1-1:文氏图2容斥原理若记有限集合A中的元素个数为|A|,则由图(1-1)可知:|A∪B|=|A|+|B|−|A∩B|,|A∪B∪C|=|A|+|B|+|C|−|A∩B|−|B∩C|−|A∩C|+|A∩B∩C|(1)一般地,对于n个有限集合S1,S2,···,S n,则有|S1∪S2∪···∪S n|=∑1 i n |S i|−∑1 i j n|S i∩S j|+∑1 i j k n|S i∩S j∩S k|−···+(−1)k−1∑1 i1<i2<···<i k n |S i1∩S i2∩···∩S ik|+···+(−1)n−1|S1∩S2∩···∩S n|(2)其中符号∑1 i1<i2<···<i k n |S i1∩S i2∩···∩S ik|表示S1,···,S n中任取k个集合的交的元素个数的总和。
一、容斥问题的3个公式容斥原理是指一种计数方法。
先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复。
1.两个集合的容斥原理:n(A∪B)=n(A)+n(B) -n(A∩B)2.三个集合的容斥原理:|A∪B∪C|=|A|+|B|+|C|-|A∩B|-|A∩C|-|B∩C|+|A∩B∩C|3.n个集合的容斥原理:要计算几个集合并集的大小,我们要先将所有单个集合的大小计算出来,然后减去所有两个集合相交的部分,再加回所有三个集合相交的部分,再减去所有四个集合相交的部分,依此类推,一直计算到所有集合相交的部分。
二、容斥问题的应用:对于容斥问题,解题关键做到不重不漏,各个集合相加,理清各集合间的关系,扣掉重复补上遗漏的。
用于理解的主要方法是画文氏图,但考试中应尽量避免画图,这样速度偏慢些。
【例1】:某调查公司对甲、乙、丙三部电影的收看情况向135人进行调查,有89人看过甲片,有47人看过乙片,有63人看过丙片,既看过甲、乙片为30人,既看过乙、丙片为31人,既看过甲、丙片为32人,其中有24人三部电影都看过,问多少人一部也没有看过呢?【解析】:既看过甲、乙片为30人是包含只看过甲乙还有甲乙丙三人两个部分,以M、N、W为既看过甲、乙片的人,N既看过乙、丙片的人,既看过甲、丙片的人,X为三部都看过的人数,这里面W、N、X都是有包含三者这个区域,根据把重复数的次数变为1次,或者说把重叠的面积变为一层,做到不重不漏的原则,则公式转化为I=A+B+C-(M+N+W)+X+Y,135=89+47+63-(30+31+32)+ 24+Y,Y=5人。
结论:三者容斥问题,画图之后可知,三个圆相交的地方有1层、2层、3层三种情况,当将三个集合相加的时候,2层和3层区域分别多计算一次和两次,故若想求全集,需要将重叠区域减掉,故三者容斥问题的公式为:A∪B∪C=A+B+C -A∩B-B∩C-C∩A+A∩B ∩C。
三集合容斥原理公式
三集合容斥原理公式:A∪B∪C=A+B+C-A∩B-A∩C-B∩C+A∩B∩C。
因为A、B、C与A交B两两的交集它们中都含A交B交C,然而ABC两两交集中应减两次,然而却将ABC 两两交集中的A交B交C减了三次,所以应该加上多减的一次ABC的交集。
三集合容斥问题的核心公式:
标准型:|A∪B∪C|=|A|+|B|+|C|-|A∩B|-|B∩C|-|C∩A|+|A∩B∩C|。
非标准型:|A∪B∪C|=|A|+|B|+|C|,只满足两个条件的-2×三个都满足的。
列方程组:|A∪B∪C|=只满足一个条件的+只满足两个条件的+三个都满足的。
|A|+|B|+|C|=只满足一个条件的+2×只满足两个条件的+3×三个都满足的,对于以上三组公式的理解,可以通过想象三个圆两两相交的重叠情况来加深。
第一讲集合与容斥原理数学是一门非常迷人的学科,久远的历史,勃勃的生机使她发展成为一棵枝叶茂盛的参天大树,人们不禁要问:这根大树到底扎根于何处?为了回答这个问题,在19世纪末,德国数学家康托系统地描绘了一个能够为全部数学提供基础的通用数学框架,他创立的这个学科一直是我们数学发展的根植地,这个学科就叫做集合论。
它的概念与方法已经有效地渗透到所有的现代数学。
可以认为,数学的所有内容都是在“集合”中讨论、生长的。
集合是一种基本数学语言、一种基本数学工具。
它不仅是高中数学的第一课,而且是整个数学的基础。
对集合的理解和掌握不能仅仅停留在高中数学起始课的水平上,而要随着数学学习的进程而不断深化,自觉使用集合语言(术语与符号)来表示各种数学名词,主动使用集合工具来表示各种数量关系。
如用集合表示空间的线面及其关系,表示平面轨迹及其关系、表示方程(组)或不等式(组)的解、表示充要条件,描述排列组合,用集合的性质进行组合计数等。
集合的划分反映了集合与子集之间的关系,这既是一类数学问题,也是数学中的解题策略——分类思想的基础,在近几年来的数学竞赛中经常出现,日益受到重视,本讲主要介绍有关的概念、结论以及处理集合、子集与划分问题的方法。
1.集合的概念集合是一个不定义的概念,集合中的元素有三个特征:(1)确定性设A是一个给定的集合,a是某一具体对象,则a或者是A的元素,或者不是A的元素,两者必居其一,即a∈A与a∉A仅有一种情况成立。
(2)互异性一个给定的集合中的元素是指互不相同的对象,即同一个集合中不应出现同一个元素.(3)无序性2.集合的表示方法主要有列举法、描述法、区间法、语言叙述法。
常用数集如:R,,应熟记。
N,ZQ3.实数的子集与数轴上的点集之间的互相转换,有序实数对的集合与平面上的点集可以互相转换。
对于方程、不等式的解集,要注意它们的几何意义。
4.子集、真子集及相等集(1)A⊆⇔B A⊂B或A=B;(2)A⊂B⇔A⊆B且A≠B;(3)A=B⇔A⊆B且A⊇B。
两集合容斥原理三大公式好的,以下是为您生成的文章:在数学的奇妙世界里,两集合容斥原理就像是一个神秘的宝藏,等待着我们去挖掘和探索。
而打开这个宝藏的钥匙,就是那三大公式。
咱们先来说说这第一个公式:A∪B = A + B - A∩B 。
这就好比是一场班级的活动,比如组织大家去郊游。
假设班级里喜欢爬山的同学有A 个,喜欢游泳的同学有B 个,但是呢,有一部分同学既喜欢爬山又喜欢游泳,这部分同学的数量就是A∩B 。
那么,整个班级喜欢爬山或者喜欢游泳的同学总数,就是 A∪B ,也就是用喜欢爬山的同学数量加上喜欢游泳的同学数量,再减去既喜欢爬山又喜欢游泳的同学数量。
再看第二个公式:Card(A∪B) = Card(A) + Card(B) - Card(A∩B) 。
这个公式看起来有点复杂,但其实理解起来也不难。
就拿学校的社团来说吧,参加书法社团的同学数量是 Card(A) ,参加绘画社团的同学数量是 Card(B) 。
有些同学特别厉害,既参加了书法社团又参加了绘画社团,这部分同学的数量就是Card(A∩B) 。
那么,参加了书法社团或者绘画社团的同学总数 Card(A∪B) ,就是用参加书法社团的同学数量加上参加绘画社团的同学数量,再减去既参加书法社团又参加绘画社团的同学数量。
还有第三个公式:∣A∪B∣=∣A∣+∣B∣-∣A∩B∣。
咱们来想象一下学校的运动会,报名跑步项目的同学数量是∣A∣,报名跳远项目的同学数量是∣B∣。
有几个同学特别有运动天赋,既报名了跑步又报名了跳远,这部分同学数量就是∣A∩B∣。
那么,报名跑步项目或者跳远项目的同学总数∣A∪B∣,就是报名跑步的同学数量加上报名跳远的同学数量,再减去既报名跑步又报名跳远的同学数量。
记得有一次,我们班组织选兴趣小组,有音乐小组和美术小组。
统计的时候发现,喜欢音乐的同学有 20 个,喜欢美术的同学有 15 个。
可一细查,居然有 8 个同学两个小组都喜欢。
这时候就得用咱们的两集合容斥原理公式来算算,到底班级里喜欢音乐或者美术的同学一共有多少个。
三个集合容斥原理公式好的,以下是为您生成的文章:咱今天就来好好唠唠这三个集合容斥原理公式!话说我之前在给学生们讲这部分内容的时候,发生了一件特别有意思的事儿。
有个叫小明的同学,那小脑瓜转得可快了,但就是对这容斥原理有点迷糊。
咱先来说说这第一个公式:A∪B∪C = A + B + C - A∩B - A∩C -B∩C + A∩B∩C 。
这个公式看着有点复杂,其实就像我们分糖果一样。
比如说 A 盒子里有一些巧克力,B 盒子里有一些水果糖,C 盒子里有一些奶糖。
A∩B 呢,就是既在 A 盒子又在 B 盒子里的那种混合糖,A∩C 、B∩C 也是同样的道理。
而A∩B∩C 就是三种糖都有的那种超级混合糖。
咱们拿一个班级的兴趣小组来举例吧。
比如参加数学兴趣小组的有A 个人,参加语文兴趣小组的有B 个人,参加英语兴趣小组的有C 个人。
有的同学既参加了数学又参加了语文,这就是A∩B ;有的既参加了数学又参加了英语,这是A∩C ;还有既参加语文又参加英语的,那就是B∩C 。
而三种都参加的就是A∩B∩C 。
再看第二个公式:A∪B = A + B - A∩B 。
这个就简单多啦,就像我们去超市买东西。
A 是买水果的人数,B 是买零食的人数,A∩B 就是既买了水果又买了零食的那些人。
比如说一个班级组织活动,要统计参加唱歌和跳舞的人数。
参加唱歌的有 20 人,参加跳舞的有 15 人,但是有 5 个人既参加了唱歌又参加了跳舞,那总的参加人数就是 20 +15 - 5 = 30 人。
第三个公式:Card(A∪B∪C) = Card(A) + Card(B) + Card(C) -Card(A∩B) - Card(A∩C) - Card(B∩C) + Card(A∩B∩C) 。
这个看起来好像很高级,其实本质和前面差不多。
比如说学校组织运动会,报名跑步的、跳远的、跳高的分别有一定人数,然后通过这个公式就能算出参加至少一项运动的总人数。
三集合容斥原理三大公式三集合容斥原理三大公式,是数学上重要的计算方法,经常被广泛应用于求解复杂的数学问题。
它被用于对无限个相互独立的可列集合之间的元素及其关系进行计算。
这三大公式可以帮助我们理清思路,算出结果,这也是它有价值的地方。
其中,第一个公式是“容斥原理”,也叫容斥式,它描述的是当一组不相交的集合的总长度比其他集合的总长度之和要短时,可以用它们的并集去表示其他集合的总长度之和。
实际上,容斥式反映的是当集合的总数越多时,它的表示的总长度会越短。
容斥式概括为:∑(-1)^n*U(n)=U(1)U(2)U(n)其中,U(n)表示第n个集合的总长度,n表示所有集合的总数。
第二个公式是“马尔可夫超限定理”,也叫马尔可夫不等式,它表明,对于一组无限长度的相互独立的集合,其总长度与第一个集合的总长度之和之差,是与其其他集合总长度有关的。
它表示,总长度的差值越大,说明集合之间的关系更加紧密,也说明其他集合的总长度比第一个集合的总长度要长。
马尔可夫超限定理如下:∑(-1)^n*U(1)U(n)≤U(1)-U(2)U(3)U(n)其中,U(1)表示第一个集合的总长度,U(n)表示所有集合的总长度之和。
最后一个公式是“希尔伯特定理”,也叫希尔伯特不等式,它表明,一组无限长度的相互独立的集合,其并集的总长度是与其他集合的总长度有关的。
它提出,总长度的差值越大,说明集合之间的关系更紧密,也就是其他集合的总长度比并集的总长度要长。
希尔伯特定理的表达式为:U(1)U(2)U(n)≤∑U(n)它表示,第一个集合的总长度乘以其他集合的总长度之和,不能大于所有集合的总长度之和。
三集合容斥原理三大公式是求解复杂问题的重要工具,能够帮助我们准确理清思路,算出结果。
对它深入了解,将有助于我们正确理解复杂的数学问题及其解法,扩大视野,拓宽认知。
用容斥原理解决n个集合问题容斥原理是概率论中一种重要的结论,经常被用来解决数学中的集合问题。
当我们面对n个集合并要求相应元素的数量时,使用容斥原理可以非常方便地得到答案。
下面我们就来详细探究一下用容斥原理解决n个集合问题的方法。
首先,我们来看一个简单的例子。
假设我们有三个集合A、B、C,它们的交集为X,X内元素的数量为m,那么如何计算A、B、C三个集合中元素的数量和呢?根据容斥原理,我们可以列出如下公式:|A ∪ B ∪ C| = |A| + |B| + |C| - |A ∩ B| - |A ∩ C| - |B ∩ C| + |A ∩ B ∩ C|其中,|S|表示集合S中元素的数量。
这个公式的含义是,首先将A、B、C三个集合中的元素数量相加,然后减去重复的元素数量,最后加上同时属于三个集合的元素数量,就得到了A、B、C三个集合中元素的数量总和。
那么对于n个集合怎么办呢?我们可以采用类似的思路。
假设这n 个集合的交集为X,X内元素的数量为m,那么这n个集合中元素的数量和可以表示为:|A1 ∪ A2 ∪ ... ∪ An| = Σ|Ai| - Σ|Ai ∩ Aj| + Σ|Ai ∩ Aj ∩ Ak| - ... + (-1)^(n+1) × |A1 ∩ A2 ∩ ... ∩ An|其中,Σ表示求和符号。
这个公式的含义是,首先将所有集合中元素的数量相加,然后两个集合之间的重复元素数量相减(注意,要对所有的组合方式进行求和),再加上三个集合之间的重复元素数量,以此类推,最后再对交集内的元素数量进行加减,就得到了n个集合中元素的数量和。
综上所述,容斥原理是解决n个集合问题的有力工具,我们只需要按照上述公式进行计算,就能够轻松得出所需答案。
第一讲集合与容斥原理数学是一门非常迷人的学科,久远的历史,勃勃的生机使她发展成为一棵枝叶茂盛的参天大树,人们不禁要问:这根大树到底扎根于何处?为了回答这个问题,在19世纪末,德国数学家康托系统地描绘了一个能够为全部数学提供基础的通用数学框架,他创立的这个学科一直是我们数学发展的根植地,这个学科就叫做集合论。
它的概念与方法已经有效地渗透到所有的现代数学。
可以认为,数学的所有内容都是在“集合”中讨论、生长的。
集合是一种基本数学语言、一种基本数学工具。
它不仅是高中数学的第一课,而且是整个数学的基础。
对集合的理解和掌握不能仅仅停留在高中数学起始课的水平上,而要随着数学学习的进程而不断深化,自觉使用集合语言(术语与符号)来表示各种数学名词,主动使用集合工具来表示各种数量关系。
如用集合表示空间的线面及其关系,表示平面轨迹及其关系、表示方程(组)或不等式(组)的解、表示充要条件,描述排列组合,用集合的性质进行组合计数等。
集合的划分反映了集合与子集之间的关系,这既是一类数学问题,也是数学中的解题策略——分类思想的基础,在近几年来的数学竞赛中经常出现,日益受到重视,本讲主要介绍有关的概念、结论以及处理集合、子集与划分问题的方法。
1.集合的概念集合是一个不定义的概念,集合中的元素有三个特征:(1)确定性设A是一个给定的集合,a是某一具体对象,则a或者是A的元素,或者不是A的元素,两者必居其一,即a∈A与a∉A仅有一种情况成立。
(2)互异性一个给定的集合中的元素是指互不相同的对象,即同一个集合中不应出现同一个元素.(3)无序性2.集合的表示方法主要有列举法、描述法、区间法、语言叙述法。
常用数集如:R,,应熟记。
N,ZQ3.实数的子集与数轴上的点集之间的互相转换,有序实数对的集合与平面上的点集可以互相转换。
对于方程、不等式的解集,要注意它们的几何意义。
4.子集、真子集及相等集(1)A⊆⇔B A⊂B或A=B;(2)A⊂B⇔A⊆B且A≠B;(3)A=B⇔A⊆B且A⊇B。
5.一个n阶集合(即由个元素组成的集合)有n2个不同的子集,其中有n2-1个非空子集,也有n2-1个真子集。
6.集合的交、并、补运算x∈}A B={A|且Bx∈xx∈}A B={A|或Bxx∈x∉}A∈{且A=|Ixx要掌握有关集合的几个运算律:(1)交换律A B=B A,A B=B A;(2)结合律A (B C)=(A B) C,A (B C)=(A B) C;(3)分配律 A (B C )=(A B ) (A C ) A (B C )= (A B ) (A C )(4)0—1律 A ∅=A ,A I =A A I =I ,A ∅=∅ (5)等幂律 A A =A ,A A =A(6)吸收律 A (A B )=A ,A (A B )=A (7)求补律 A A =I ,A A =∅ (8)反演律 B A B A B A B A ==, 7.有限集合所含元素个数的几个简单性质 我们把有限集合A 的元素个数记作card (A) 可以证明:(1) card (A∪B)=card (A)+card (B)-card (A∩B); (2) card (A∪B∪C)=card (A)+card (B)+card (C)-card (A∩B)-card (A∩C)-card (B∩C) +card (A∩B∩C) 8.映射、一一映射、逆映射(1)映射 设A 、B 是两个集合,如果按照某种对应法则f ,对于集合A 中的任何一个元素,在集合B 中都有唯一的元素和它对应,这样的对应叫做从集合A 到集合B 的映射,记作f :A →B 。
上述映射定义中的A 、B ,可以是点集,数集,也可以是其他集合。
和A 中元素a 对应的B 中的元素b 叫做a (在f 下)的象,a 叫做b 的原象。
A 中的任何一个元素都有象,并且象是唯一的。
(2)一一映射 设A 、B 是两个集合,f :A →B 是从集合A 到集合B 的映射,如果在这个映射的作用下,对于集合A 中的不同元素,在集合B 中有不同的象,且B 中的每一个元素都有原象,那么这个映射叫做A 到B 上的一一映射。
(3)逆映射 设f :A →B 是集合A 到集合B 上的一一映射,如果对于B 中的 每一个元素b ,使b 在A 中的原象a 和它对应,这样所得映射叫做映射f :A →B 的逆映射,记作1-f:B →A 。
注意:只有一一映射,才有逆映射。
要能够根据这三个概念的定义,准确地判断一个给定的对应是不是映射,是不是一一映射,并能求出一一映射的逆映射。
一、 集合中待定元素的确定例4.已知集合M ={x ,xy ,lg(xy )},S ={0,∣x ∣,y },且M =S ,则(x +1y)+(x 2+21y)+……+(x 2004+20041y)的值等于( ),(据1987年全国高中数学联赛试题改编)。
分析:解题的关键在于求出x 和y 的值,而x 和y 分别是集合M 与S 中的元素。
这一类根据集合的关系反过来确定集合元素的问题,要求我们要对集合元素的基本性质即确定性、异性、无序性及集合之间的基本关系(子、全、补、交、异、空、等)有本质的理解,对于两个相等的有限集合(数集),还会用到它们的简单性质: (a) 相等两集合的元素个数相等; (b) 相等两集合的元素之和相等; (c) 相等两集合的元素之积相等;对于本题,还会用到对数、绝对值的基本性质。
解:由M =S 知,两集合元素完全相同。
这样,M 中必有一个元素为0,又由对数的性质知,0和负数没有对数,所以xy ≠0,故x ,y 均不为零,所以只能有lg(xy )=0,从而xy =1 ∴M={x ,1,0},S ={0,∣x ∣,1x}再由两集合相等知||11x x x =⎧⎪⎨=⎪⎩ 或11||x x x ⎧=⎪⎨⎪=⎩当x =1时,M ={1,1,0},S ={0,1,1},这与同一个集合中元素的互异性矛盾,故x =1不满足题目要求;当x =-1时,M ={-1,1,0},S ={0,1,-1},M =S ,从而x =-1满足题目要求,此时y =-1,于是21211k k x y +++=-2(k =0,1,2,……),221k k x y+=2(k =1,2,……)故所求代数式的值为0例5.设A ={x ∣x 2+ax +b =0} B ={x ∣x 2+cx +15=0} 若A∪B={3,5},A∩B={3},求a ,b ,c 。
分析:由方程的根的定义及一元二次方程的根与系数的关系(韦达定理),结合∩、∪的概念入手,可以寻得解题的突破口。
解:由A∩B={3} 知3∈B,由韦达定理知c =-8此时,B ={3,5}=A∪B又由A∩B={3}知5A ;而(A∩B)A (A∪B),故A ={3},即二次方程x 2+ax +b =0有二等根x 1=x 2=3,根据韦达定理,有x 1+x 2=6=-a ,x 1x 2=9=b所以,a =-6,b =9,c =-8 二、集合与元素之间的关系遇到集合问题,首先要弄请:集合里的元素是什么。
集合学习中,新名词新概念多。
如集合、元素、有限集、无限集、列举法、描述法、子集、真子集、空集、非空集合、全集、补集、交集、并集等。
新关系新符号多,如属于、不属于、包含、包含于、真包含、真包含于、相等、不相等、相交、相并、互补(∈、、、、N 、N ※、Z 、Q 、R 、∩、∪、C S A 、I 、=、≠……)等,这些新概念新关系,多而抽象。
在这千头万绪中,应该抓住“元素”这个关键,因为集合是由元素确定的,“子、全、补、交、并、空”等集合也都是通过元素来定义的。
集合中元素的特征即“确定性”,“互异性”、“无序性”也就是元素的性质。
集合的分类(有限集与无限集)与表示方法(列举法与描述法)也是通过元素来刻画的。
元素是集合的基本内核,研究集合,首先就要确定集合里的元素是什么。
1.设A ={a |a =22y x -,Z y x ∈,},求证:(1)12-k ∈A (Z k ∈); (2))( 24Z k A k ∈∉-分析:如果集合A ={a |a 具有性质p },那么判断对象a 是否是集合A 的元素的基本方法就是检验a 是否具有性质p 。
解:(1)∵k ,1-k ∈Z 且12-k =22)1(--k k ,故12-k ∈A ; (2)假设)( 24Z k A k ∈∈-,则存在Z y x ∈,,使24-k =22y x - 即)12(2))((-=+-k y x y x (*)由于y x -与y x +具有相同的奇偶性,所以(*)式左边有且仅有两种可能:奇数或4的倍数,另一方面,(*)式右边只能被4除余2的数,故(*)式不能成立。
由此,)( 24Z k A k ∈∉-。
2.设集合A =(-3,2)。
已知N y x ∈,,x >y ,x y y x 191933+=+,判断 a =)(log21y x +与集合A 的关系。
分析:解决本题的关键在于由已知条件确定y x +的取值范围,从而利用对数函数的单调性确定a =)(log21y x +的范围。
解:因为)(1933y x y x -=-且N y x ∈,,x >y ,所以x x +2<222319x yxy x <=++由此及N x ∈得x =3,从而y =2. 所以-3<a =25log)23(log 2121-==+,即a ∈A 。
3.以某些整数为元素的集合P 具有下列性质:①P 中的元素有正数,有负数;②P 中的元素有奇数,有偶数;③-1∉P ;④若x ,y ∈P ,则x +y ∈P 试判断实数0和2与集合P 的关系。
解:由④若x ,y ∈P ,则x +y ∈P 可知,若x ∈P ,则)( N k P kx ∈∈ (1)由①可设x ,y ∈P ,且x >0,y <0,则-y x =|y |x (|y |∈N ) 故x y ,-y x ∈P ,由④,0=(-y x )+x y ∈P 。
(2)2∉P 。
若2∈P ,则P 中的负数全为偶数,不然的话,当-(12+k )∈P (N k ∈)时,-1=(-12-k )+k 2∈P ,与③矛盾。
于是,由②知P 中必有正奇数。
设),( 12,2N n m P n m ∈∈--,我们取适当正整数q ,使12|2|->-⋅n m q ,则负奇数P n qm ∈-+-)12(2。
前后矛盾。
4.设S 为满足下列条件的有理数的集合:①若a ∈S ,b ∈S ,则a +b ∈S ,S ab ∈;②对任一个有理数r ,三个关系r ∈S ,-r ∈S ,r =0有且仅有一个成立。
证明:S 是由全体正有理数组成的集合。
证明:设任意的r ∈Q ,r ≠0,由②知r ∈S ,或-r ∈S 之一成立。