高中数学竞赛第一讲集合与容斥原理
- 格式:pdf
- 大小:63.81 KB
- 文档页数:2
高考数学中的容斥原理知识点总结在高中数学中,容斥原理是一个非常重要的知识点,也是数学竞赛、数学建模等数学应用领域常用的思想方法。
在高考数学中也经常出现相关的考题,因此掌握容斥原理的思想和应用是非常有必要的。
一、容斥原理的基本概念容斥原理是一种计算交集的方法,指的是为了确定若干集合的并集的元素个数,而不必逐一列出其中的元素,而采用计算各个集合的元素个数之和,然后减去交集中的元素个数,再加上交集的元素个数。
即:$|A_1∪A_2∪\cdots∪A_n|=|A_1|+|A_2|+\cdots+|A_n|-\sum\limits_{i<j}|A_i ∩ A_j|+\sum\limits_{i<j<k}|A_i ∩ A_j ∩ A_k|-\cdots+(-1)^{n-1}|A_1 ∩ A_2 ∩\cdots ∩ A_n|$其中,$|A_i|$表示集合$A_i$的元素个数。
以上为容斥原理的基本公式,容斥原理主要用于处理集合的交集问题,在应用时需要将问题转化为若干个集合的交集或并集的形式进行计算。
二、容斥原理的应用1、某种颜色的球某种颜色的球有$x$个,其中有$a$个是带编号的,$b$个是大小不同的,$c$个是重量不同的,$d$个是带编号且大小不同的,$e$个是带编号且重量不同的,$f$个是大小和重量都不同的。
求这种颜色的球有多少个。
解析:根据题目描述,我们可以分别将这种颜色的球分为以下六类:$A$:带编号的球;$B$:大小不同的球;$C$:重量不同的球;$D$:带编号且大小不同的球;$E$:带编号且重量不同的球;$F$:大小和重量都不同的球。
那么根据容斥原理,我们可以得到该颜色球的总个数为:$$x=|A∪B∪C|=|A|+|B|+|C|-|A ∩ B|-|A ∩ C|-|B ∩ C|+|A ∩ B ∩C|$$因为带编号的和大小不同和带编号的和重量不同的球都是带编号的球,因此$A=D∪E$,所以$|A|=|D|+|E|-|D ∩ E|=a+b+e-abde$。
第一章 集合与简易逻辑一、基础知识定义1 一般地,一组确定的、互异的、无序的对象的全体构成集合,简称集,用大写字母来表示;集合中的各个对象称为元素,用小写字母来表示,元素x 在集合A 中,称x 属于A ,记为A x ∈,否则称x 不属于A ,记作A x ∉。
例如,通常用N ,Z ,Q ,B ,Q +分别表示自然数集、整数集、有理数集、实数集、正有理数集,不含任何元素的集合称为空集,用∅来表示。
集合分有限集和无限集两种。
集合的表示方法有列举法:将集合中的元素一一列举出来写在大括号内并用逗号隔开表示集合的方法,如{1,2,3};描述法:将集合中的元素的属性写在大括号内表示集合的方法。
例如{有理数},}0{>x x 分别表示有理数集和正实数集。
定义2 子集:对于两个集合A 与B ,如果集合A 中的任何一个元素都是集合B 中的元素,则A 叫做B 的子集,记为B A ⊆,例如Z N ⊆。
规定空集是任何集合的子集,如果A 是B 的子集,B 也是A 的子集,则称A 与B 相等。
如果A 是B 的子集,而且B 中存在元素不属于A ,则A 叫B 的真子集。
定义3 交集,}.{B x A x x B A ∈∈=且定义4 并集,}.{B x A x x B A ∈∈=或定义5 补集,若},{,1A x I x x A C I A ∉∈=⊆且则称为A 在I 中的补集。
定义6 差集,},{\B x A x x B A ∉∈=且。
定义7 集合},,{b a R x b x a x <∈<<记作开区间),(b a ,集合},,{b a R x b x a x <∈≤≤记作闭区间],[b a ,R 记作).,(+∞-∞定理1 集合的性质:对任意集合A ,B ,C ,有:(1));()()(C A B A C B A = (2))()()(C A B A C B A =;(3));(111B A C B C A C = (4)).(111B A C B C A C =【证明】这里仅证(1)、(3),其余由读者自己完成。
竞赛讲座20-容斥原理在一些计数问题中,经常遇到有关集合元素个数的计算。
我们用|A|表示有限集合A的元素个数(新教材中用CardA表示有限集合A的元素个数)。
原理一:给定两个集合A和B,要计算A∪B中元素的个数,可以分成两步进行:第一步:先求出∣A∣+∣B∣(或者说把A,B的一切元素都“包含”进来,加在一起);第二步:减去∣A∩B∣(即“排除”加了两次的元素)总结为公式:|A∪B|=∣A∣+∣B∣-∣A∩B∣。
原理二:给定三个集合A,B,C。
要计算A∪B∪C中元素的个数,可以分三步进行:第一步求|A|+|B|+|C|;第二步减去|A∩B|,|A∩C|,|B∩C|;第三步加上|A∩B∩C|。
例1求不超过20的正整数中是2的倍数或3的倍数的数共有多少个。
例2 某班统计考试成绩,数学得90分上的有25人;语文得90分以上的有21人;两科中至少有一科在90以上的有38人。
问两科都在90分以上的有多少人?例3 某校组织棋类比赛,分成围棋、中国象棋和国际象棋三个组进行。
参加围棋比赛的共有42人,参加中国象棋比赛的共有51人,参加国际象棋比赛的共有30人。
同时参加了围棋和中国象棋比赛的共有13人,同时参加了围棋和国际象棋比赛的7人,同时参加了中国象棋和国际象棋比赛的11人,其中三种棋赛都参加的3人。
问参加棋类比赛的共有多少人?例4边长分别为6,5,2的三个正方形,如图8—5所示放在桌面上。
问它们盖住的面积是多大?例5求1到200的自然数中不能被2、3、5中任何一个数整除的数有多少?练习题1. 某班共有48名学生,都参加了语文兴趣小组或数学兴趣小组,其中参加语文兴趣小组的有30人,参加数学兴趣小组的有28人,问同时参加语文、数学兴趣小组的人数是多少.2.纸片面积为7,一张边长为2的正方形纸片,把这两张纸片放在桌面上覆盖的面积为8,问两张纸片重合部分的面积是多少?3. 不超过110且与110互质的自然数有几个?4.求在1至1000的自然数中,不能被5或7整除的数有多少个。
高中数学竞赛讲义(一)──集合与简易逻辑一、基础知识定义1 一般地,一组确定的、互异的、无序的对象的全体构成集合,简称集,用大写字母来表示;集合中的各个对象称为元素,用小写字母来表示,元素在集合A中,称属于A,记为,否则称不属于A,记作。
例如,通常用N,Z,Q,B,Q+分别表示自然数集、整数集、有理数集、实数集、正有理数集,不含任何元素的集合称为空集,用来表示。
集合分有限集和无限集两种。
集合的表示方法有列举法:将集合中的元素一一列举出来写在大括号内并用逗号隔开表示集合的方法,如{1,2,3};描述法:将集合中的元素的属性写在大括号内表示集合的方法。
例如{有理数},分别表示有理数集和正实数集。
定义2 子集:对于两个集合A与B,如果集合A中的任何一个元素都是集合B中的元素,则A叫做B的子集,记为,例如。
规定空集是任何集合的子集,如果A是B的子集,B也是A的子集,则称A与B相等。
如果A是B的子集,而且B中存在元素不属于A,则A叫B的真子集。
定义3 交集,定义4 并集,定义5 补集,若称为A在I中的补集。
定义6 差集,。
定义7 集合记作开区间,集合记作闭区间,R记作定理1 集合的性质:对任意集合A,B,C,有:(1)(2);(3)(4)【证明】这里仅证(1)、(3),其余由读者自己完成。
(1)若,则,且或,所以或,即;反之,,则或,即且或,即且,即(3)若,则或,所以或,所以,又,所以,即,反之也有定理2 加法原理:做一件事有类办法,第一类办法中有种不同的方法,第二类办法中有种不同的方法,…,第类办法中有种不同的方法,那么完成这件事一共有种不同的方法。
定理3 乘法原理:做一件事分个步骤,第一步有种不同的方法,第二步有种不同的方法,…,第步有种不同的方法,那么完成这件事一共有种不同的方法。
二、方法与例题1.利用集合中元素的属性,检验元素是否属于集合。
例1 设,求证:(1);(2);(3)若,则[证明](1)因为,且,所以(2)假设,则存在,使,由于和有相同的奇偶性,所以是奇数或4的倍数,不可能等于,假设不成立,所以(3)设,则(因为)。
容斥原理和广义容斥原理容斥原理和广义容斥原理是组合数学中常用的计数方法,用于解决涉及多个集合的计数问题。
它们通过巧妙地利用集合的交和并的关系,能够将复杂的计数问题简化为容易处理的子问题,从而提高计数问题的解决效率。
容斥原理是指通过计算每个集合的元素个数,再减去同时属于两个或多个集合的元素个数,从而得到所有集合的总元素个数。
它的基本思想是,对于一个元素可能属于多个集合的情况,我们不能简单地将其计入每个集合的元素个数中,而是需要进行修正,避免重复计数。
容斥原理可以用于解决两个集合的计数问题,也可以推广到多个集合的情况。
广义容斥原理则是对容斥原理的进一步推广和应用。
在容斥原理中,我们只考虑了两个集合之间的交和并关系,而在广义容斥原理中,我们考虑了多个集合之间的交和并关系。
通过逐步添加和减去集合的交集,我们可以得到所有集合的并集和交集的元素个数。
广义容斥原理的应用范围更广,可以解决更为复杂的计数问题。
容斥原理和广义容斥原理的应用场景非常广泛。
在组合数学中,它们被广泛应用于计数问题的求解。
比如,在排列组合问题中,我们经常需要计算满足某些条件的排列或组合的个数。
容斥原理和广义容斥原理可以帮助我们将复杂的条件拆解成多个简单的条件,从而更容易进行计数。
此外,容斥原理和广义容斥原理还可以应用于概率论、图论、数论等领域,解决各种不同类型的计数问题。
在实际应用中,我们可以通过具体的例子来理解容斥原理和广义容斥原理的计数思想。
假设有三个集合A、B、C,我们需要计算满足至少属于一个集合的元素个数。
首先,我们计算每个集合的元素个数,分别为|A|、|B|、|C|。
然后,我们计算两两集合的交集元素个数,分别为|A∩B|、|A∩C|、|B∩C|。
接下来,我们计算三个集合的交集元素个数,即|A∩B∩C|。
最后,根据容斥原理,我们可以得到满足至少属于一个集合的元素个数为:|A∪B∪C| = |A| + |B| + |C| - |A∩B| - |A∩C| - |B∩C| + |A∩B∩C|。
第一章 集合集合是高中数学中最原始、最基础的概念,也是高中数学的起始单元,是整个高中数学的基础.它的基础性体现在:集合思想、集合语言和集合的符号在高中数学的很多章节如函数、数列、方程与不等式、立体几何与解析几何中都被广泛地使用.在高考试题和数学竞赛中,很多问题可以用集合的语言加以叙述.集合不仅是中学数学的基础,也是支撑现代数学大厦的基石之一,本章主要介绍集合思想在数学竞赛中出现的问题.第一节 集合的概念与运算【基础知识】一.集合的有关概念1.集合:具有某些共同属性的对象的全体,称为集合.组成集合的对象叫做这个集合的元素.2.集合中元素的三个特征:确定性、互异性、无序性.3.集合的分类:无限集、有限集、空集φ.4. 集合间的关系:二.集合的运算1.交集、并集、补集和差集差集:记A 、B 是两个集合,则所有属于A 且不属于B 的元素构成的集合记作B A \.即A x B A ∈={\且}B x ∉.2.集合的运算性质(1)A A A = ,A A A = (幂等律);(2)A B B A =, A B B A =(交换律);(3))()(C B A C B A =, )()(C B A C B A =(结合律);(4))()()(C A B A C B A =,)()()(C A B A C B A =(分配律);(5)A A B A =)( ,A B A A =)( (吸收律);(6)A A C C U U =)((对合律);(7))()()(B C A C B A C U U U =, )()()(B C A C B A C U U U =(摩根律)(8))\()\()(\C A B A C B A =,)\()\()(\C A B A C B A =.3.集合的相等(1)两个集合中元素相同,即两个集合中各元素对应相等;(2)利用定义,证明两个集合互为子集;(3)若用描述法表示集合,则两个集合的属性能够相互推出(互为充要条件),即等价;(4)对于有限个元素的集合,则元素个数相等、各元素的和相等、各元素之积相等是两集合相等的必要条件.【典例精析】【例1】在集合},,2,1{n 中,任意取出一个子集,计算它的各元素之和.则所有子集的元素之和是 .〖分析〗已知},,2,1{n 的所有的子集共有n 2个.而对于},,2,1{n i ∈∀,显然},,2,1{n 中包含i 的子集与集合},,1,1,,2,1{n i i +-的子集个数相等.这就说明i 在集合},,2,1{n 的所有子集中一共出现12-n 次,即对所有的i 求和,可得).(211∑=-=n i n n i S 【解】集合},,2,1{n 的所有子集的元素之和为2)1(2)21(211+⋅=+++--n n n n n =.2)1(1-⋅+⋅n n n 〖说明〗本题的关键在于得出},,2,1{n 中包含i 的子集与集合},,1,1,,2,1{n i i +-的子集个数相等.这种一一对应的方法在集合问题以及以后的组合总是中应用非常广泛.【例2】已知集合}034|{},023|{222<+-=<++=a ax x x B x x x A 且B A ⊆,求参数a的取值范围.〖分析〗首先确定集合A 、B,再利用B A ⊆的关系进行分类讨论.【解】由已知易求得}0)3)((|{},12|{<--=-<<-=a x a x x B x x A当0>a 时,}3|{a x a x B <<=,由B A ⊆知无解;当0=a 时,φ=B ,显然无解;当0<a 时, }3|{a x a x B <<=,由B A ⊆解得.321≤≤-a 综上知,参数a 的取值范围是]32,1[-.〖说明〗本题中,集合的定义是一个二次三项式,那么寻于集合B 要分类讨论使其取值范围数字化,才能通过条件求出参数的取值范围.【例3】已知+∈∈R y R x ,,集合}1,2,{},1,,1{2+--=---++=y y y B x x x x A .若B A =,则22y x +的值是( )A.5B.4C.25D.10 【解】0)1(2≥+x ,x x x -≥++∴12,且012>++x x 及集合中元素的互异性知 x x x -≠++12,即1-≠x ,此时应有.112-->->++x x x x而+∈R y ,从而在集合B 中,.21y y y ->->+ 由B A =,得)3()2()1(12112⎪⎪⎩⎪⎪⎨⎧-=---=-+=++yx y x y x x 由(2)(3)解得2,1==y x ,代入(1)式知2,1==y x 也满足(1)式..5212222=+=+∴y x〖说明〗本题主要考查集合相等的的概念,如果两个集合中的元素个数相等,那么两个集合中对应的元素应分别相等才能保证两个集合相等.而找到这种对应关系往往是解决此类题目的关键.【例4】已知集合}|,|,0{)},lg(,,{y x B xy y x A ==.若B A =,求++++)1()1(22yx y x ……+)1(20082008y x +的值.〖分析〗从集合A=B 的关系入手,则易于解决.【解】B A = ,⎩⎨⎧=⋅⋅+=++∴0)lg(||)lg(xy xy x y x xy xy x ,根据元素的互异性,由B 知0,0≠≠y x . B ∈0 且B A =,A ∈∴0,故只有0)lg(=xy ,从而.1=xy又由A ∈1及B A =,得.1B ∈所以⎩⎨⎧==1||1x xy 或⎩⎨⎧==11y xy ,其中1==y x 与元素的互异性矛盾! 所以,1-=y x 代入得:++++)1()1(22y x y x ……+)1(20082008yx +=(2-)+2+(2-)+2+……+(2-)+2=0. 〖说明〗本题是例4的拓展,也是考查集合相等的概念,所不同的是本题利用的是集合相等的必要条件,即两个集合相等,则两个集合中,各元素之和、各元素之积及元素个数相等.这是解决本题的关键.【例5】已知A 为有限集,且*N A ⊆,满足集合A 中的所有元素之和与所有元素之积相等,写出所有这样的集合A.【解】设集合A=)1}(,,,{21>n a a a n 且n a a a <<≤211,由=+++n a a a 21n a a a ⋅⋅⋅ 21, *)(N n n a n ∈≥,得≥n na =+++n a a a 21n a a a ⋅⋅⋅ 21)!1(-≥n a n ,即)!1(-≥n n 2=∴n 或3=n (事实上,当3>n 时,有)2)1()2)(1()!1(n n n n n >⋅-≥--≥-. 当2=n 时,1,2,21122121=∴<∴<+=⋅a a a a a a a ,而.2,1122≠∴+≠⋅n a a当3=n 时,3,3213321321<⋅∴<++=⋅⋅a a a a a a a a a ,.2,121==∴a a由3332a a +=,解得.33=a综上可知,}.3,2,1{=A〖说明〗本题根据集合中元素之间的关系找到等式,从而求得集合A.在解决问题时,应注意分析题设条件中所给出的信息,根据条件建立方程或不等式进行求解.【例6】已知集合}02|{},023|{22≤+-=≤+-=a ax x x S x x x P ,若P S ⊆,求实数a 的取值组成的集合A.【解】}21|{≤≤=x x P ,设a ax x x f +-=2)(2.①当04)2(2<--=∆a a ,即10<<a 时,φ=S ,满足P S ⊆;②当04)2(2=--=∆a a ,即0=a 或1=a 时,若0=a ,则}0{=S ,不满足P S ⊆,故舍去;若1=a 时,则}1{=S ,满足P S ⊆.③当04)2(2>--=∆a a 时,满足P S ⊆等价于方程022=+-a ax x 的根介于1和2之间.即⎪⎪⎩⎪⎪⎨⎧≥-≥-<<><⇔⎪⎪⎩⎪⎪⎨⎧≥≥<--<>∆0340121100)2(0)1(22)2(10a a a a a f f a 或φ∈⇔a . 综合①②③得10≤<a ,即所求集合A }10|{≤<=a a .〖说明〗先讨论特殊情形(S=φ),再讨论一般情形.解决本题的关键在于对∆分类讨论,确定a 的取值范围.本题可以利用数形结合的方法讨论.0>∆【例7】(2005年江苏预赛)已知平面上两个点集{(,)||1|,M x y x y x y =++≥∈R },{(,)||||1|1,,N x y x a y x y =-+-≤∈R }. 若 MN ≠∅, 则 a 的取值范围是. 【解】由题意知 M 是以原点为焦点、直线 10x y ++= 为准线的抛物线上及其凹口内侧的点集,N 是以 (,1)a 为中心的正方形及其内部的点集(如图).考察 M N =∅ 时, a 的取值范围:令 1y =,代入方程|1|x y ++=, 得 2420x x --=,解出得2x = 所以,当211a <= 时, M N =∅. ………… ③令 2y =,代入方程|1|x y ++=得 2610x x --=. 解出得3x =3a >时, M N =∅. ………… ④因此, 综合 ③ 与 ④ 可知,当13a ≤≤,即[13a ∈ 时, M N ≠∅.故填[1.【例8】已知集合},,,{4321a a a a A =,},,,{24232221a a a a B =,其中4321a a a a <<<,N a a a a ∈4321,,,.若},{41a a B A = ,1041=+a a .且B A 中的所有元素之和为124,求集合A 、B.【解】 4321a a a a <<<,且},{41a a B A = ,∴211a a =,又N a ∈1,所以.11=a又1041=+a a ,可得94=a ,并且422a a =或.423a a =若922=a ,即32=a ,则有,12481931233=+++++a a 解得53=a 或63-=a (舍)此时有}.81,25,9,1{},9,5,3,1{==B A 若923=a ,即33=a ,此时应有22=a ,则B A 中的所有元素之和为100≠124.不合题意.综上可得, }.81,25,9,1{},9,5,3,1{==B A 〖说明〗本题的难点在于依据已知条件推断集合A 、B 中元素的特征.同时上述解答中使用发分类讨论的思想.分类讨论是我们解决问题的基本手段之一,将问题分为多个部分,每一部分的难度比整体都要低,这样就使问题变得简单明了.【例9】满足条件||4|)()(|2121x x x g x g -≤-的函数)(x g 形成了一个集合M,其中R x x ∈21,,并且1,2221≤x x ,求函数)(23)(2R x x x x f y ∈-+==与集合M 的关系.〖分析〗求函数23)(2-+=x x x f 集合M 的关系,即求该函数是否属于集合M,也就是判断该函数是否满足集合M 的属性.【解】|3||||)23()23(||)()(|212122212121++⋅-=++-++=-x x x x x x x x x f x f 取65,6421==x x 时, .||4||29|)()(|212121x x x x x f x f ->-=- 由此可见,.)(M x f ∉〖说明〗本题中M 是一个关于函数的集合.判断一个函数)(x f 是否属于M,只要找至一个或几个特殊的i x 使得)(i x f 不符合M 中的条件即可证明.)(M x f ∉【例10】对集合}2008,,2,1{ 及每一个非空子集定义唯一“交替和”如下:把子集中的数按递减顺序排列,然后从最大数开始,交替地加减相继各数,如}9,6,4,2,1{的“交替和”是612469=+-+-,集合}10,7{的“交替和”是10-7=3,集合}5{的“交替和”是5等等.试求A 的所有的“交替和”的总和.并针对于集合},,2,1{n 求出所有的“交替和”.〖分析〗集合A 的非空子集共有122008-个,显然,要想逐个计算“交替和”然后相加是不可能的.必须分析“交替和”的特点,故可采用从一般到特殊的方法.如{1,2,3,4}的非空子集共有15个,共“交替和”分别为:{1} 1;{2} 2 ;{3} 3;{4} 4;{1,2} 2-1; {1,3} 3-1;{1,4} 4-1;{2,3} 3-2;{2,4} 4-2;{3,4} 4-3;{1,2,3} 3-2+1;{1,2,4} 4-2+1;{1,3,4} 4-3=1;{2,3,4} 4-3+2;{1,2,3,4} 4-3+2-1.从以上写出的“交替和”可以发现,除{4}以外,可以把{1,2,3,4}的子集分为两类:一类中包含4,另一类不包含4,并且构成这样的对应:设i A 是{1,2,3,4}中一个不含有的子集,令i A 与i A }4{相对应,显然这两个集合的“交替和”的和为4,由于这样的对应应有7对,再加上{4}的“交替和”为4,即{1,2,3.4}的所有子集的“交替和”为32.【解】集合}2008,,2,1{ 的子集中,除了集合}2008{,还有222008-个非空子集.将其分为两类:第一类是含2008的子集,第二类是不含2008的子集,这两类所含的子集个数相同.因为如果i A 是第二类的,则必有}2008{ i A 是第一类的集合;如果j B 是第一类中的集合,则j B 中除2008外,还应用1,2,……,2007中的数做其元素,即j B 中去掉2008后不是空集,且是第二类中的.于是把“成对的”集合的“交替和”求出来,都有2008,从而可得A 的所有子集的“交替和”为.2008220082008)22(2120072008⨯=+⨯- 同样可以分析},,2,1{n ,因为n 个元素集合的子集总数为n 2个(含φ,定义其“交替和”为0),其中包括最大元素n 的子集有12-n 个,不包括n 的子集的个数也是12-n 个,将两类子集一一对应(相对应的子集只差一个元素n ),设不含n 的子集“交替和”为S,则对应的含n 子集的“交替和”为S n -,两者相加和为n .故所有子集的“交替和”为.21n n ⋅-〖说明〗本题中"退到最简",从特殊到一般的思想及分类讨论思想、对应思想都有所体现,这种方法在数学竞赛中是常用的方法,在学习的过程中应注意强化.【例11】一支人数是5的倍数的且不少于1000人的游行队伍,若按每横排4人编队,最后差3人;若按每横排3人编队,最后差2人;若按每横排2人编队,最后差1人,求这支游行队伍的人数最少是多少?〖分析〗已知游行队伍的总人数是5的倍数,那么可设总人数为n 5.“按每横排4人编队,最后差3人”,从它的反面去考虑,可理解为多1人,同样按3人、2人编队都可理解为“多1人”,显然问题转化为同余问题.n 5被4、3、2除时都余地,即15-n 是12的倍数,再由总人数不少于1000人的条件,即可求得问题的解.【解】设游行队伍的总人数为)(5+∈N n n ,则由题意知n 5分别被4、3、2除时均余1,即15-n 是4、3、2的公倍数,于是可令)(1215+∈=-N m m n ,由此可得:5112+=m n ①要使游行队伍人数最少,则式①中的m 应为最少正整数且112+m 为5的倍数,应为2.于是可令)(25+∈+=N p q m ,由此可得:512]1)25(12[51+=++⋅=p p n ,25605+≥p n ② 所以10002560≥+p ,4116≥p . 取17=p 代入②式,得10452517605=+⨯=n故游行队伍的人数最少是1045人.〖说明〗本题利用了补集思想进行求解,对于题目中含有“至少”、“至多”、“最少”、“不都”、“都”等词语,可以根据补集思想方法,从词义气反面(反义词)考虑,对原命题做部分或全部的否定,用这种方法转化命题,常常能起到化繁为简、化难为易的作用,使之寻求到解题思想或方法,实现解题的目的.【例12】设n N ∈且n ≥15,B A ,都是{1,2,3,…,n }真子集,A B φ=,且A B ={1,2,3,…,n }.证明:A 或者B 中必有两个不同数的和为完全平方数.【证明】由题设,{1,2,3,…,n }的任何元素必属于且只属于它的真子集B A ,之一. 假设结论不真,则存在如题设的{1,2,3,…,n }的真子集B A ,,使得无论是A 还是B 中的任两个不同的数的和都不是完全平方数.不妨设1∈A ,则3∉A ,否则1+3=22,与假设矛盾,所以3∈B .同样6∉B ,所以6∈A ,这时10∉A ,,即10∈B .因n ≥15,而15或者在A 中,或者在B 中,但当15∈A 时,因1∈A ,1+15=24,矛盾;当15∈B 时,因10∈B ,于是有10+15=25,仍然矛盾.因此假设不真,即结论成立. 【赛向点拨】1.高中数学的第一个内容就是集合,而集合又是数学的基础.因此,深刻理解集合的概念,熟练地进行集合运算是非常重要的.由于本节中涉及的内容较多,所以抓好概念的理解和应用尤其重要.2.集合内容几乎是每年的高考与竞赛的必考内容.一般而言,一是考查集合本身的知识;二是考查集合语言和集合思想的应用.3.对于给定的集合,要正确理解其含义,弄清元素是什么,具有怎样的性质?这是解决集合问题的前提.4.集合语言涉及数学的各个领域,所以在竞赛中,集合题是普遍而又基本的题型之一.【针对练习】(A 组)1.(2006年江苏预赛) 设在xOy 平面上,20x y ≤<,10≤≤x 所围成图形的面积为31,则集合},1),{(≤-=x y y x M }1),{(2+≥=x y y x N 的交集N M 所表示的图形面积为( ) A.31 B.32 C.1 D.34 2. (2006年陕西预赛)b a ,为实数,集合M=x x f a P ab →=:},0,{},1,{表示把集合M 中的元素x 映射到集合P 中仍为x ,则b a +的值等于( )A.1-B.0C.1D.1± 3. (2004年全国联赛)已知M={}32|),(22=+y x y x ,N={}b mx y y x +=|),(,若对于所有的R m ∈,均有,φ≠⋂N M 则b 的取值范围是 A .[26,26-] B.(26,26-)C.(332,332-) D.[332,332-] 4. (2005年全国联赛) 记集合},6,5,4,3,2,1,0{=T },4,3,2,1,|7777{4433221=∈+++=i T a a a a a M i 将M 中的元素按从大到小的顺序排列,则第2005个数是( )A .43273767575+++ B .43272767575+++ C .43274707171+++ D .43273707171+++ 5. 集合A,B 的并集A ∪B={a 1,a 2,a 3},当且仅当A≠B 时,(A,B)与(B,A)视为不同的对,则这样的(A,B)对的个数有( )A.27B.28.C.26D.256.设A={n |100≤n ≤600,n ∈N },则集合A 中被7除余2且不能被57整除的数的个数为______________.7. 已知2{430,}A x x x x R =-+<∈,12{20,2(7)50,}x B x a x a x x R -=+-++∈且≤≤.若A B ⊆,则实数a 的取值范围是 .8. 设M={1,2,3,…,1995},A 是M 的子集且满足条件: 当x ∈A 时,15x ∉A ,则A 中元素的个数最多是_______________.9. (2006年集训试题)设n 是正整数,集合M={1,2,…,2n }.求最小的正整数k ,使得对于M 的任何一个k 元子集,其中必有4个互不相同的元素之和等于10. 设A ={a |a =22x y -,,x y Z ∈},求证:⑴21k -∈A (k Z ∈); ⑵42 ()k A k Z -∉∈.11.(2006年江苏)设集合()12log 32A x x ⎧⎫⎪⎪=-≥-⎨⎬⎪⎪⎩⎭,21a B x x a ⎧⎫=>⎨⎬-⎩⎭.若A B ≠∅,求实数a 的取值范围.12. 以某些整数为元素的集合P 具有下列性质:①P 中的元素有正数,有负数;②P 中的元素有奇数,有偶数;③-1∉P ;④若x ,y ∈P ,则x +y ∈P 试判断实数0和2与集合P 的关系.(B 组)1. 设S 为满足下列条件的有理数的集合:①若a ∈S ,b ∈S ,则a +b ∈S , S ab ∈;②对任一个有理数r ,三个关系r ∈S ,-r ∈S ,r =0有且仅有一个成立.证明:S 是由全体正有理数组成的集合.2.321,,S S S 为非空集合,对于1,2,3的任意一个排列k j i ,,,若j i S y S x ∈∈,,则k S y x ∈- (1)证明:三个集合中至少有两个相等.(2)三个集合中是否可能有两个集无公共元素?3.已知集合:}1|),{(},1|),{(},1|),{(22=+==+==+=y x y x C ay x y x B y ax y x A 问(1)当a 取何值时,C B A )(为含有两个元素的集合?(2)当a 取何值时,C B A )(为含有三个元素的集合?4.已知{}22(,)4470,,A x y x y x y x y R =++++=∈, {}(,)10,,B x y xy x y R ==-∈.⑴请根据自己对点到直线的距离,两条异面直线的距离中 “距离”的认识,给集合A 与B 的距离定义;⑵依据⑴中的定义求出A 与B 的距离.5.设集合=P {不小于3的正整数},定义P上的函数如下:若P n ∈,定义)(n f 为不是n 的约数的最小正整数,例如5)12(,2)7(==f f .记函数f 的值域为M.证明:.99,19M M ∉∈6.为了搞好学校的工作,全校各班级一共提了P )(+∈N P 条建议.已知有些班级提出了相同的建议,且任何两个班级都至少有一条建议相同,但没有两个班提出全部相同的建议.求证该校的班级数不多于12-P 个.【参考答案】A 组1.解: N M 在xOy 平面上的图形关于x 轴与y 轴均对称,由此N M 的图形面积只要算出在第一象限的图形面积乘以4即得.为此,只要考虑在第一象限的面积就可以了.由题意可得,N M 的图形在第一象限的面积为A =613121=-.因此N M 的图形面积为32. 所以选B.2.解:由M=P,从而1,0==a a b ,即0,1==b a ,故.1=+b a 从而选C. 3. 解:M N ≠∅相当于点(0,b )在椭圆2223x y +=上或它的内部221,322b b ∴≤∴-≤≤.故选A. 4.解: 用p k a a a ][21 表示k 位p 进制数,将集合M 中的每个数乘以47,得 32123412347{777|,1,2,3,4}{[]|,1,2,3,4}.i i M a a a a a T i a a a a a T i '=⋅+⋅+⋅+∈==∈= M ' 中的最大数为107]2400[]6666[=.在十进制数中,从2400起从大到小顺序排列的第2005个数是2400-2004=396.而=10]396[7]1104[将此数除以47,便得M 中的数.74707171432+++故选C. 5.解:A=φ时,有1种可能;A 为一元集时,B 必须含有其余2元,共有6种可能;A 为二元集时,B 必须含有另一元.共有12种可能;A 为三元集时,B 可为其任一子集.共8种可能.故共有1+6+12+8=27个.从而选A.6.解:被7除余2的数可写为7k +2. 由100≤7k +2≤600.知14≤k ≤85.又若某个k 使7k +2能被57整除,则可设7k +2=57n . 即57256227778n n n nk n -+--===+. 即n -2应为7的倍数. 设n =7m +2代入,得k =57m +16. ∴14≤57m +16≤85. ∴m =0,1.于是所求的个数为85-(14-1)-2=70. 7.解:依题意可得{13}A x x =<<,设1()2x f x a -=+,2()2(7)5g x x a x =-++ 要使A B ⊆,只需()f x ,()g x 在(1,3)上的图象均在x 轴的下方,则(1)0f ≤,(3)0f ≤, (1)0g ≤,(3)0g ≤,由此可解得结果.8.解:由于1995=15⨯133,所以,只要n >133,就有15n >1995.故取出所有大于133而不超过1995的整数. 由于这时己取出了15⨯9=135, … 15⨯133=1995. 故9至133的整数都不能再取,还可取1至8这8个数,即共取出1995—133+8=1870个数, 这说明所求数≥1870.另一方面,把k 与15k 配对,(k 不是15的倍数,且1≤k ≤133)共得133—8=125对,每对数中至多能取1个数为A 的元素,这说明所求数≤1870,综上可知应填1870.9.解:考虑M 的n +2元子集P={n -l ,n ,n +1,…,2n }.P 中任何4个不同元素之和不小于(n -1)+n +( n +1)+( n +2)=4 n +2,所以k ≥n +3.将M 的元配为n 对,B i =(i ,2 n +1-i ),1≤i ≤n . 对M 的任一n +3元子集A ,必有三对123,,i i i B B B 同属于A(i 1、I 2、I 3两两不同).又将M 的元配为n -1对,C I (i ,2n -i ),1≤i ≤n -1.对M 的任一n +3元子集A ,必有一对4i C 同属于A ,这一对4i C 必与123,,i i i B B B 中至少一个无公共元素,这4个元素互不相同,且和为2 n +1+2 n =4 n +1,最小的正整数k = n +310.10.解: ⑴∵k ,1k -∈Z 且21k -=22(1)k k --,∴21k -∈A ;⑵假设42 ()k A k Z -∈∈,则存在,x y Z ∈,使42k -=22x y -即()()2(21)x y x y k -+=- (*)由于x y -与x y +具有相同的奇偶性,所以(*)式左边有且仅有两种可能:奇数或4的倍数,另一方面,(*)式右边只能被4除余2的数,故(*)式不能成立.由此,42()k A k Z -∉∈.11.解:{}13A x x =-≤<,()(){}30B x x a x a =--<. 当0a >时,{}03B x a x a =<<<,由AB ≠∅得03a <<; 当0a <时,{}30B x a x a =<<<,由A B ≠∅得1a >-; 当0a =时,{}20B x x =<=∅,与A B ≠∅不符.综上所述,()()1,00,3a ∈-.12.解:由④若x ,y ∈P ,则x +y ∈P 可知,若x ∈P ,则)( N k P kx ∈∈(1)由①可设x ,y ∈P ,且x >0,y <0,则-y x =|y |x (|y |∈N )故x y ,-y x ∈P ,由④,0=(-y x )+x y ∈P .(2)2∉P .若2∈P ,则P 中的负数全为偶数,不然的话,当-(12+k )∈P (N k ∈)时,-1=(-12-k )+k 2∈P ,与③矛盾.于是,由②知P 中必有正奇数.设),( 12,2N n m P n m ∈∈--,我们取适当正整数q ,使12|2|->-⋅n m q ,则负奇数P n qm ∈-+-)12(2.前后矛盾B 组1.证明:设任意的r ∈Q ,r ≠0,由②知r ∈S ,或-r ∈S 之一成立.再由①,若r∈S ,则S r ∈2;若-r ∈S ,则S r r r ∈-⋅-=)()(2.总之,S r ∈2. 取r =1,则1∈S .再由①,2=1+1∈S ,3=1+2∈S ,…,可知全体正整数都属于S .设S q p ∈,,由①S pq ∈,又由前证知S q ∈21,所以21qpq q p ⋅=∈S .因此,S 含有全体正有理数.再由①知,0及全体负有理数不属于S .即S 是由全体正有理数组成的集合.2.证明:(1)若j i S y S x ∈∈,,则i k S x y x y S x y ∈-=--∈-)(,,所以每个集合中均有非负元素.当三个集合中的元素都为零时,命题显然成立.否则,设321,,S S S 中的最小正元素为a ,不妨设1S a ∈,设b 为32,S S 中最小的非负元素,不妨设,2S b ∈则b -a ∈3S .若b >0,则0≤b -a <b ,与b 的取法矛盾.所以b =0.任取,1S x ∈因0∈2S ,故x -0=x ∈3S .所以⊆1S 3S ,同理3S 1S ⊆.所以1S =3S .(2)可能.例如1S =2S ={奇数},3S ={偶数}显然满足条件,1S 和2S 与3S 都无公共元素.3.解:C B A )(=)()(C B C A .C A 与C B 分别为方程组(Ⅰ)⎩⎨⎧=+=+1122y x y ax (Ⅱ)⎩⎨⎧=+=+1122y x ay x 的解集.由(Ⅰ)解得(y x ,)=(0,1)=(212a a +,2211aa +-);由(Ⅱ)解得 (y x ,)=(1,0),(2211a a +-,212a a +) (1)使C B A )(恰有两个元素的情况只有两种可能: ①⎪⎪⎩⎪⎪⎨⎧=+-=+111012222a a a a ②⎪⎪⎩⎪⎪⎨⎧=+-=+011112222aa a a 由①解得a =0;由②解得a =1.故a =0或1时,C B A )(恰有两个元素.(2)使C B A )(恰有三个元素的情况是:212a a +=2211a a +- 解得21±-=a ,故当21±-=a 时,C B A )(恰有三个元素.4.解: (1)设1212,min P A P B d P P ∈∈=(即集合A 中的点与集合B 中的点的距离的最小值), 则称d 为A 与B 的距离.⑵解法一:∵A 中点的集合为圆22(2)(2)1,x y +++=圆心为(2,2)M --,令(,)P x y 是双曲线上的任一点,则2MP =22(2)(2)x y +++=224()8x y x y ++++=2()24()x y xy x y +-+++8=2()4()28x y x y ++++令t x y =+,则2MP =22428(2)24t t t ++=++当2t =-时,即102xy x y =-⎧⎨+=-⎩有解,∴min MP =∴1d = 解法二:如图,P 是双曲线上的任一点, Q 为圆22(2)(2)1x y +++=上任一点,圆心为M .显然,P M MP +Q Q ≥(当P M 、Q 、三点共线时取等号)∴min 1d MP =-.5.解:记!18=n 时,由于1,2,……18都是n 的约数,故此时.19)(=n f 从而.19M ∈ 若存在P n ∈,使99)(=n f ,则对于小于99的正整数k ,均有n k |,从而n n |11,|9,但是1)11,9(=,由整数理论中的性质9×11=99是n 的一个约数,这是一个矛盾!从而.99M ∉6.证明:假设该校共有m 个班级,他们的建议分别组成集合m A A A ,,,21 。
第一章 集合与简易逻辑一、基础知识定义1 一般地,一组确定的、互异的、无序的对象的全体构成集合,简称集,用大写字母来表示;集合中的各个对象称为元素,用小写字母来表示,元素x 在集合A 中,称x 属于A ,记为A x ∈,否则称x 不属于A ,记作A x ∉。
例如,通常用N ,Z ,Q ,B ,Q +分别表示自然数集、整数集、有理数集、实数集、正有理数集,不含任何元素的集合称为空集,用∅来表示。
集合分有限集和无限集两种。
集合的表示方法有列举法:将集合中的元素一一列举出来写在大括号内并用逗号隔开表示集合的方法,如{1,2,3};描述法:将集合中的元素的属性写在大括号内表示集合的方法。
例如{有理数},}0{>x x 分别表示有理数集和正实数集。
定义2 子集:对于两个集合A 与B ,如果集合A 中的任何一个元素都是集合B 中的元素,则A 叫做B 的子集,记为B A ⊆,例如Z N ⊆。
规定空集是任何集合的子集,如果A 是B 的子集,B 也是A 的子集,则称A 与B 相等。
如果A 是B 的子集,而且B 中存在元素不属于A ,则A 叫B 的真子集。
定义3 交集,}.{B x A x x B A ∈∈=且定义4 并集,}.{B x A x x B A ∈∈=或定义5 补集,若},{,1A x I x x A C I A ∉∈=⊆且则称为A 在I 中的补集。
定义6 差集,},{\B x A x x B A ∉∈=且。
定义7 集合},,{b a R x b x a x <∈<<记作开区间),(b a ,集合},,{b a R x b x a x <∈≤≤记作闭区间],[b a ,R 记作).,(+∞-∞定理1 集合的性质:对任意集合A ,B ,C ,有:(1));()()(C A B A C B A = (2))()()(C A B A C B A =;(3));(111B A C B C A C = (4)).(111B A C B C A C =【证明】这里仅证(1)、(3),其余由读者自己完成。
集合容斥原理公式集合容斥原理是组合数学中的一个重要概念,它在解决计数问题时起到了非常重要的作用。
在实际问题中,我们常常需要计算满足若干条件的对象个数,而集合容斥原理就是一种非常有效的计数方法。
接下来,我们将介绍集合容斥原理的公式及其应用。
首先,我们来看一下集合容斥原理的基本概念。
在组合数学中,集合容斥原理用于计算若干个集合的并集中元素的个数。
假设我们有n个集合A1,A2,...,An,我们希望计算它们的并集中元素的个数。
集合容斥原理告诉我们,我们可以通过如下的公式来计算并集的元素个数:|A1 ∪ A2 ∪ ... ∪ An| = Σ|Ai| Σ|Ai ∩ Aj| + Σ|Ai ∩ Aj ∩ Ak| ... + (-1)^(n-1)|A1 ∩ A2 ∩ ... ∩ An|。
其中,|A|表示集合A中元素的个数,Σ表示求和。
公式右边的第一项是单独计算每个集合的元素个数,第二项是两两集合的交集元素个数之和,第三项是三个集合的交集元素个数之和,以此类推,最后一项是所有集合的交集元素个数。
通过这个公式,我们可以很方便地计算任意多个集合的并集中元素的个数。
这种计数方法在实际问题中有着广泛的应用,特别是在概率论、组合数学、计算机算法等领域。
接下来,我们来看一个具体的例子,以帮助理解集合容斥原理的应用。
假设有三个集合A、B、C,它们的元素个数分别为|A| = 100,|B| = 150,|C| = 200,且满足|A ∩ B| = 50,|A ∩ C| = 60,|B ∩ C| = 70,|A ∩ B ∩ C| = 10。
现在我们希望计算并集A ∪ B ∪ C中元素的个数。
根据集合容斥原理的公式,我们可以得到:|A ∪ B ∪ C| = |A| + |B| + |C| |A ∩ B| |A ∩ C| |B ∩ C| + |A ∩ B ∩ C|。
= 100 + 150 + 200 50 60 70 + 10。
= 330。
高中数学容斥问题
容斥问题是一种常见的数学问题,主要涉及到两个集合的元素数量计算。
在解决这类问题时,我们需要特别注意不要重复计算两个集合的交集部分。
基础公式
假设有两个集合 A 和 B,它们的交集为A∩B。
集合 A 的元素数量是 A
集合 B 的元素数量是 B
集合 A 和 B 的交集的元素数量是A∩B
那么,整个问题的关键在于理解以下公式:
A∪B = A + B − A∩B
这个公式告诉我们,要计算两个集合的并集的元素数量,我们不能简单地把两个集合的元素数量加起来,因为这样会把交集部分的元素计算两次。
所以我们需要减去交集部分的元素数量。
示例问题
假设一个班级里有30个学生,其中15个学生喜欢数学,12个学生喜欢科学,8个学生既喜欢数学又喜欢科学。
那么有多少个学生既不喜欢数学也不喜欢科学?
在这个问题中,我们可以这样分析:
喜欢数学或科学或两者都喜欢的学生数量是:15(数学) + 12(科学)− 8(两者都喜欢) = 19。
班级总人数是30。
那么既不喜欢数学也不喜欢科学的学生数量就是:30(总人数)− 19(喜欢数学或科学或两者都喜欢的学生数量)= 11。
通过这种方式,我们就能正确地计算出既不喜欢数学也不喜欢科学的学生数量。
数学竞赛培训教材(一)集合与容斥原理集合是一种基本数学语言、一种基本数学工具。
它不仅是高中数学的第一课,而且是整个数学的基础。
对集合的理解和掌握不能仅仅停留在高中数学起始课的水平上,而要随着数学学习的进程而不断深化,自觉使用集合语言(术语与符号)来表示各种数学名词,主动使用集合工具来表示各种数量关系。
如用集合表示空间的线面及其关系,表示平面轨迹及其关系、表示方程(组)或不等式(组)的解、表示充要条件,描述排列组合,用集合的性质进行组合计数等。
一、学习集合要抓住元素这个关键例1.设A={X∣X=a2+b2,a、b∈Z},X1,X2∈A,求证:X1X2∈A。
分析:A中的元素是自然数,即由两个整数a、b的平方和构成的自然数,亦即从0、1、4、9、16、25……,n2,……中任取两个(相同或不相同)数加起来得到的一个和数,本题要证明的是:两个这样的数的乘积一定还可以拆成两个自然数的平方和的形式,即(a2+b2)(c2+d2)=(M)2+(N)2,M,N∈Z 证明:设X1=a2+b2,X2=c2+d2,a、b、c、d∈Z.则X1X2=(a2+b2)(c2+d2)=a2c2+b2d2+b2c2+a2d2=a2c2+2ac·bd+b2d2+b2c2-2bc·ad+a2d2=(ac+bd)2+(bc-ad)2又a、b、c、d∈Z,故ac+bd、bc-ad∈Z,从而X1X2∈A练习:1.设两个集合S={x|x=12m+8n,m,n∈Z},T={x|x=20p+16q,p,q∈Z}.求证:S=T。
2.设M={a|a= x2-y2,x,y∈Z}.求证:(1)一切奇数属于M;(2)4k-2(k∈Z)不属于M;(3)M中任意两个数的积仍属于M。
3.已知函数f(x)=x2+ax+b,a,b∈R,且A={x|x=f(x)},B={x|x=f[f(x)]}.(1)求证:A B;(2)若A={-1,3}时,求集合B.二、集合中待定元素的确定例2.已知集合M ={X ,XY ,lg(xy)},S ={0,∣X ∣,Y},且M =S ,则(X +1/Y)+(X2+1/Y2)+……+(X2002+1/Y2002)的值等于( ).分析:解题的关键在于求出X 和Y 的值,而X 和Y 分别是集合M 与S 中的元素。
集合与简易逻辑一、基础知识定义1 一般地,一组确定的、互异的、无序的对象的全体构成集合,简称集,用大写字母来表示;集合中的各个对象称为元素,用小写字母来表示,元素在集合A中,称属于A,记为,否则称不属于A,记作。
例如,通常用N,Z,Q,B,Q+分别表示自然数集、整数集、有理数集、实数集、正有理数集,不含任何元素的集合称为空集,用来表示。
集合分有限集和无限集两种。
集合的表示方法有列举法:将集合中的元素一一列举出来写在大括号并用逗号隔开表示集合的方法,如{1,2,3};描述法:将集合中的元素的属性写在大括号表示集合的方法。
例如{有理数},分别表示有理数集和正实数集。
定义2 子集:对于两个集合A与B,如果集合A中的任何一个元素都是集合B中的元素,则A 叫做B的子集,记为,例如。
规定空集是任何集合的子集,如果A是B的子集,B也是A的子集,则称A与B相等。
如果A是B的子集,而且B中存在元素不属于A,则A叫B的真子集。
定义3 交集,定义4 并集,定义5 补集,若称为A在I中的补集。
定义6 差集,。
定义7 集合记作开区间,集合记作闭区间,R记作定理1 集合的性质:对任意集合A,B,C,有:(1)(2);(3)(4)【证明】这里仅证(1)、(3),其余由读者自己完成。
(1)若,则,且或,所以或,即;反之,,则或,即且或,即且,即(3)若,则或,所以或,所以,又,所以,即,反之也有定理2 加法原理:做一件事有类办法,第一类办法中有种不同的方法,第二类办法中有种不同的方法,…,第类办法中有种不同的方法,那么完成这件事一共有种不同的方法。
定理3 乘法原理:做一件事分个步骤,第一步有种不同的方法,第二步有种不同的方法,…,第步有种不同的方法,那么完成这件事一共有种不同的方法。
二、方法与例题1.利用集合中元素的属性,检验元素是否属于集合。
例1 设,求证:(1);(2);(3)若,则[证明](1)因为,且,所以(2)假设,则存在,使,由于和有相同的奇偶性,所以是奇数或4的倍数,不可能等于,假设不成立,所以(3)设,则(因为)。
奥数容斥问题奥数容斥问题是数学竞赛中一个经典的计数原理问题。
通过运用容斥原理,我们可以解决集合之间的重复计数问题。
本文将介绍奥数容斥问题的定义、原理和应用,并通过具体的例题进行说明。
首先,让我们来了解奥数容斥问题的定义。
在组合数学中,容斥原理用于计算多个集合的交集和并集的元素个数。
具体而言,在包含多个集合的问题中,容斥原理帮助我们消除了重复计数的问题。
接下来,我们将详细介绍奥数容斥问题的原理。
假设有n个集合A_1, A_2, ..., A_n,我们的目标是计算它们的并集以及交集中元素的个数。
利用容斥原理,我们可以先计算每个集合的元素个数,再根据交集的元素个数进行加减运算,以消除重复计数的影响。
具体而言,假设A表示所有集合的并集,A_1, A_2, ..., A_n 分别表示这些集合。
根据容斥原理,我们可以得出以下公式:|A_1 ∪ A_2 ∪ ... ∪ A_n| = |A_1| + |A_2| + ... + |A_n| - |A_1 ∩ A_2| - |A_1 ∩ A_3| - ... - |A_(n-1) ∩ A_n| + ... + (-1)^(n-1) |A_1 ∩ A_2 ∩ ... ∩A_n|其中,|X| 表示集合 X 的元素个数。
上述公式中,第一项表示每个集合的元素个数之和,第二项表示两个集合的交集元素个数之和,第三项表示三个集合的交集元素个数之和,以此类推。
交替的符号(-1)^(n-1) 用于保证加减运算的正确性。
了解了奥数容斥问题的定义和原理之后,下面我们将通过一个具体的例题来说明其应用。
例题:某班级共有60名学生,其中30人会打乒乓球,40人会弹钢琴,20人既会打乒乓球又会弹钢琴。
请问至少会其中一项技能的学生有多少人?解析:我们可以定义集合 A 表示会打乒乓球的学生,集合 B 表示会弹钢琴的学生。
根据题目给出的信息,我们有 |A| = 30,|B| = 40,|A ∩ B| = 20。
集合容斥原理集合容斥原理是组合数学中的一种重要方法,常常用于解决计数问题。
它的核心思想是通过对不同集合的交集和并集进行分析,从而得到最终的计数结果。
在实际问题中,集合容斥原理可以帮助我们简化计数过程,提高计数的准确性和效率。
接下来,我们将详细介绍集合容斥原理的基本概念和应用方法。
首先,我们来了解一下集合容斥原理的基本概念。
在集合论中,我们将一个或多个集合的交集和并集记为符号∩和∪。
对于两个集合 A 和 B,它们的交集记为A ∩ B,表示既属于集合 A 又属于集合B 的元素组成的集合;它们的并集记为 A∪ B,表示属于集合 A 或属于集合 B 的元素组成的集合。
而集合容斥原理正是基于对交集和并集的分析,通过排除重复计数来得到最终的计数结果。
在应用集合容斥原理解决计数问题时,我们通常遵循以下几个步骤。
首先,确定需要计数的对象,将其划分为若干个集合。
然后,分别计算每个集合的元素个数,并结合集合的交集和并集进行分析。
接下来,利用容斥原理,排除重复计数,得到最终的计数结果。
举个简单的例子来说明集合容斥原理的应用。
假设有一个集合 A 包含了所有能被 2 整除的自然数,集合 B 包含了所有能被 3 整除的自然数。
我们希望计算出在集合 A 和集合 B 中的元素个数之和。
根据集合容斥原理,我们可以通过计算集合A 的元素个数、集合B 的元素个数,以及集合 A 和集合 B 的交集元素个数来得到最终的结果。
具体计算过程中,需要注意排除重复计数,从而得到正确的计数结果。
除了简单的例子之外,集合容斥原理在实际问题中也有着广泛的应用。
例如,在组合数学、概率论、数论等领域,集合容斥原理都扮演着重要的角色。
通过灵活运用集合容斥原理,我们可以解决各种复杂的计数问题,为实际问题的求解提供了有力的工具和方法。
总之,集合容斥原理是一种重要的计数方法,它通过对集合的交集和并集进行分析,帮助我们简化计数过程,提高计数的准确性和效率。
在实际问题中,我们可以灵活运用集合容斥原理,解决各种复杂的计数问题,为实际问题的求解提供有力的工具和方法。
高中数学竞赛讲义(一)──集合与简易逻辑(总10页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--高中数学竞赛讲义(一)──集合与简易逻辑一、基础知识定义1 一般地,一组确定的、互异的、无序的对象的全体构成集合,简称集,用大写字母来表示;集合中的各个对象称为元素,用小写字母来表示,元素在集合A中,称属于A,记为,否则称不属于A,记作。
例如,通常用N,Z,Q,B,Q+分别表示自然数集、整数集、有理数集、实数集、正有理数集,不含任何元素的集合称为空集,用来表示。
集合分有限集和无限集两种。
集合的表示方法有列举法:将集合中的元素一一列举出来写在大括号内并用逗号隔开表示集合的方法,如{1,2,3};描述法:将集合中的元素的属性写在大括号内表示集合的方法。
例如{有理数},分别表示有理数集和正实数集。
定义2 子集:对于两个集合A与B,如果集合A中的任何一个元素都是集合B中的元素,则A叫做B的子集,记为,例如。
规定空集是任何集合的子集,如果A是B的子集,B也是A的子集,则称A与B相等。
如果A是B的子集,而且B中存在元素不属于A,则A叫B的真子集。
定义3 交集,定义4 并集,定义5 补集,若称为A在I中的补集。
定义6 差集,。
定义7 集合记作开区间,集合记作闭区间,R记作定理1 集合的性质:对任意集合A,B,C,有:(1)(2);(3)(4)【证明】这里仅证(1)、(3),其余由读者自己完成。
(1)若,则,且或,所以或,即;反之,,则或,即且或,即且,即(3)若,则或,所以或,所以,又,所以,即,反之也有定理2 加法原理:做一件事有类办法,第一类办法中有种不同的方法,第二类办法中有种不同的方法,…,第类办法中有种不同的方法,那么完成这件事一共有种不同的方法。
定理3 乘法原理:做一件事分个步骤,第一步有种不同的方法,第二步有种不同的方法,…,第步有种不同的方法,那么完成这件事一共有种不同的方法。
第一讲集合与容斥原理
李宁
本讲主要内容有:集合的有关概念、运算和容斥原理。
学习这一讲,要注意深刻理解集合的概念,掌握集合的思想方法和容斥原理,善于运用集合的语言和方法表示数量关系,并会用集合分拆、容斥原理等方面的知识和方法解决有关的数学问题
1集合
1.1集合与集合的关系
若A中元素都是B中元素,则称A为B的子集,记作A⊆B,若A⊆B,且B 中至少有一元素b/∈A,则称A为B的真子集,记作A B
若A⊆B,且B⊆A,则A=B
集合与集合的关系,有如下性质:
1.ϕ⊆A,特别地,若A=ϕ,则ϕ A
2.A⊆B,B⊆C,则A⊆C
3.A∪B=B⇔A⊆B;A∩B=A⇔A⊆B
4.若A中元素有n个,则A的子集共有2n个,真子集有2n−1个
1.2集合的运算
A∩B={x|x∈A且x∈B}
A∪B={x|x∈A或x∈B}
C S A={x|x∈S且x/∈A}
关于集合运算有以下常用结论:
1.等幂律:A∩A=A,A∪A=A
2.同一律:A∩U=A,A∪U=U,A∩ϕ=ϕ,A∪ϕ=A
3.交换律:A∩B=B∩A,A∪B=B∪A
4.结合律:A∩(B∩C)=(A∩B)∩C,A∪(B∪C)=(A∪B)∪C
5.分配率:A∩(B∪C)=(A∩B)∪(A∩C),A∪(B∩C)=(A∪B)∩(A∪C)
A B
A B
C
图1-1:文氏图
2容斥原理
若记有限集合A中的元素个数为|A|,则由图(1-1)可知:
|A∪B|=|A|+|B|−|A∩B|,
|A∪B∪C|=|A|+|B|+|C|−|A∩B|−|B∩C|−|A∩C|+|A∩B∩C|
(1)一般地,对于n个有限集合S1,S2,···,S n,则有
|S1∪S2∪···∪S n|=
∑
1 i n |S i|−
∑
1 i j n
|S i∩S j|+
∑
1 i j k n
|S i∩S j∩S k|
−···+(−1)k−1
∑
1 i1<i2<···<i k n |S i1∩S i2∩···∩S i
k
|
+···+(−1)n−1|S1∩S2∩···∩S n|
(2)
其中符号
∑
1 i1<i2<···<i k n |S i1∩S i2∩···∩S i
k
|表示S1,···,S n中任取k个集合的交的元
素个数的总和。
我们称上述公式为容斥原理
1.已知集合M={直线},N={抛物线},则M∩N中元素个数为
A.0
B.1
C.2
D.不存在
2.已知全集I={1,2,3,4,5},A∩B={2},C I A∩B={1,4},则C I B=
A.{3}
B.{5}
C.{1,2,4}
D.{3,5}
3.已知A n={x|2n<x<2n+1,且x=7m+1,m,n∈N}。
则A6的各元素之和为
A.1089
B.990
C.891
D.792
4.已知集合A={x|x2+(P+2)x+1=0},且A∩R+=ϕ,则实数P的范围
A.P −2
B.P 0
C.−4<P<0
D.P>−4
5.已知集合M={x,xy,lg(xy)},N={0,|x|,y},并且M=N,那么(
x+
1
y
)
+
(
x2+1
y2
)
+
(
x3+
1
y3
)
+···+
(
x2003+
1
y2003
)
的值等于多少?。