固体物理 1(1)
- 格式:ppt
- 大小:4.44 MB
- 文档页数:47
固体物理讲义第一章前言:固体物理学是用自然科学的基本原理从微观上解释固体的宏观性质并阐明其规律的科学课程的主要内容晶体的物理性质与内部微观结构以及其组成粒子(原子、离子、电子)运动规律之间的关系●晶体结构(基于X射线衍射)●晶体结合与晶体缺陷●晶格振动(基于统计物理和量子力学研究固体热学性质)●固体能带论(基于量子力学和统计物理研究固体的导电性)第一章晶体结构内容:晶体中原子排列的形式及其数学描述主要包括:●晶体的周期结构●十四种布拉菲格子和七大晶系●典型的晶体结构●晶面和米勒指数●晶体的对称性固体的性质取决于组成固体的原子以及它们的空间排列。
例如同为碳元素组成的石墨(导体)、碳60和金刚石就有明显不同的特性。
1.1晶体的周期结构晶体结构的特征:周期性组成晶体的粒子(原子、分子、离子或它们的集团)在空间的排列具有周期性(长程有序、平移对称性*)对称性晶体的宏观形貌以及晶体内部微观结构都具有自身特有的对称性。
晶体可以看成是一个原子或一组原子以某种方式在空间周期性重复平移的结果。
晶体内部原子排列具有周期性是晶体的主要特征,另一个特征是由周期性所决定的对称性(表现在晶体具有规则的外形)。
周期排列所带来的物理后果的讨论是本课程的中心。
(对称性最初是用来描述某些图形或花样的几何性质,后来经过推广、加深,用它表示各种物理性质/物理相互作用/物理定律在一定变换下的不变性。
在这里,我们主要关注的是对称性最初的、狭义的意义,即几何图形和结构(不管有限还是无限)的对称性。
虽然眼睛看不到晶体中的原子,但是原子的规则排列往往在晶体的一些几何特征上明显的反映出来。
实际上,人们最初正是从大量采用矿物晶体的实践中,观察到天然晶体外型的几何规则性,从理论上推断晶体是由原子作规则的晶格排列所构成。
后来这种理论被X衍射所证实。
)布拉菲空间点阵和基元●为了描述粒子排列的周期性,把基元抽象为几何点,这些点的集合称为布拉菲点阵。
布拉菲点阵的特点:所有格点是等价的,即整个布拉菲点阵可以看成一个格点沿三个不同的方向,各按一定的周期平移的结果●格点:空间点阵中周期排列的几何点●基元:一个格点所代表的物理实体●空间点阵:格点在空间中的周期排列在理想的情况下,晶体是由全同的原子团在空间无穷重复排列而构成。
固体物理(黄昆)第一章总结(总5页)页内文档均可自由编辑,此页仅为封面第一章晶体结构1.晶格实例1.1面心立方(fcc)配位数12 格点等价格点数4 致密度0.74原胞基矢:()()()123222aa j kaa k iaa i j=+=+=+原胞体积3123()/4Ωa a a a=⋅⨯=NaCl: 两组面心立方格子平行穿套而成的复式格子基元= Na+ + Cl-具有面心立方:简单格子(Al、Cu、Ag; Ar Kr Xe Ne)、复式格子(Cao MgS 碱卤族等)1.2简单立方(SC)配位数6 格点等价格点数1 致密度0.52CsCl两组简单立方格子穿套而成的复式结构基元= Cs+ + Cl-钙钛矿结构:CaTiO3五个简单立方穿套而成基元:Ca、Ti、OI、OII、OIII (OI、OII、OIII 的化学环境各不相同,氧八面体) 典型晶体:BaTiO3、PbZrO3、LiNbO3、LiTaO3氯化铯型结构: CsCl, CsBr, CsI, TlCl, TlBr, TlI 等1.3体心立方(bcc)配位数8 格点等价格点数2 致密度0.68原胞基矢:123()2()2()2aa i j kaa i j kaa i j k=-++=-+=+-原胞体积:3123()/2Ωa a a a=⋅⨯=体心立方晶体: 碱金属、W、Mo、Nb、V、Fe等1.4六角密堆(hcp)配位数12 两种格点原子数6 基元数3 致密度0.74典型晶体举例:He, Be, Mg, Ti, Zn, Cd, Co, Y, Lu 等1.5金刚石结构最近邻原子数4 次近邻原子数12 致密度0.34晶体结构=布拉维格子(面心立方)+ 基元(A+B)*将金刚石结构中的基元置换成一对硫离子和锌离子,则为两个面心立方复合而成的复式结构,典型晶体:SiC, ZnSe, AlAs, GaP, GaAs 等2.晶体的周期性结构2.1基本概念晶体:1. 化学性质相同 2. 几何环境相同 基元:晶体结构中最小的重复单元布拉维点阵(布拉维格子): 112233R n a n a n a =++ 晶体结构 = 布拉维格子+基元原胞:由基矢1a 、2a 、3a 确定的平行六面体,是体积最小的周期性结构单元,原胞只包含一个格点晶胞:同时计及周期性及对称性的尽可能小的重复单元,原胞实际上是体积最小的晶胞2.2维格纳-赛茨原胞(WS 原胞)1. 作某个格点与其它格点的连接矢量2. 作所有这些连接矢量的垂直平分面3. 这些垂直平分面围起的凸多面体就是维格纳-赛茨原胞3. 晶向、晶面及其标志 晶列(向)指数:[l m n]晶面指数(米勒指数):( h k l )米勒指数是以晶胞基矢为基准,而面指数则以原胞基矢为基准标定4. 布里渊区倒格子空间中的维格纳-赛茨(WS )原胞,即所谓的第一布里渊区,布里渊区包含了所有能在晶体上发生布拉格反射的波的波矢22h h k G G ⋅=4.1简单立方的倒格矢(简单立方——简单立方)基矢123a aia aj a ak ⎧=⎪=⎨⎪=⎩ 倒格矢123(2π/a)(2π/a)(2π/a)b i b j b k ⎧=⎪=⎨⎪=⎩4.2体心立方晶格的倒格子(体心立方——面心立方)基矢1231()21()21()2a a i j k a a i j k a a i j k ⎧=-++⎪⎪⎪=-+⎨⎪⎪=+-⎪⎩ 倒格矢1232π()2π()2π()b j k a b k i a b i j a ⎧=+⎪⎪⎪=+⎨⎪⎪=+⎪⎩倒格矢可以表示为:1122332331122π[()()()]h G h b h b h b h h i h h j h h k a=++=+++++ 其中(h1 h2 h3)是米勒指数,h G 垂直于米勒指数,其第一布里渊区是一个正十二面体4.3面心立方晶格的倒格子(面心立方——体心立方)基矢1231()21()21()2a a j k a a k i a a i j ⎧=+⎪⎪⎪=+⎨⎪⎪=+⎪⎩ 倒格矢1232π()2π()2π()b i j k a b i j k a b i j k a ⎧=-++⎪⎪⎪=-+⎨⎪⎪=+-⎪⎩第一布里渊区为截角八面体即5. 晶体的宏观对称性xx xy xz x x y yx yy yz y z zx zy zz z D E D E D E εεεεεεεεε⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭5.1对于所有立方对称的晶体中,介电常数是一个对角张量:0 (,,,)x y z αβαβεεδαβ==该结论适用于一切具有二阶张量形式的宏观性质 (如电导率、热导率)5.2六角对称的晶体中,若坐标轴选取在六角轴的方向和与它垂直的平面内,则介电常数有如下形式// 0 00 00 0 εεε⊥⊥⎛⎫ ⎪ ⎪ ⎪⎝⎭ ,//////D E ε=, D E ε⊥⊥⊥=,六角对称的晶体有双折射现象5.3对称操作(正交变换:旋转、中心反演、镜面反映) 1. 旋转绕 z 轴旋转 q 角的正交矩阵cos sin 0sin cos 0 0 0 1θθθθ-⎛⎫ ⎪⎪ ⎪⎝⎭,中心反演的正交矩阵1 0 0 0 1 0 0 0 1-⎛⎫⎪- ⎪ ⎪-⎝⎭由于cost = (1 - m)/2 所以 m = -1 0 1 2 3,所以t = 0 2π/6 2π/4 2π/3 2π/2,没有所谓的5度轴和7度轴。
固体物理复习(⼀)晶体结构描述和布拉格定律预备知识1.晶胞Crystal structure = Lattice(点阵) * Basis(基元)以NaCl为例, NaCl晶体的点阵为⾯⼼⽴⽅结构, 其基元包含⼀个Na和⼀个Cl.三维点阵的类型:Triclinic: a1!=a2!=a3, θ1!=θ2!=θ3 ,修饰 PMonoclinic: a1!=a2!=a3, θ1=θ2=90°!=θ3,P,COrthorhombic: a1!=a2!=a3, θ1=θ2=θ3=90°,P,I,F,CTetragonal: a1=a2!=a3, θ1=θ2=θ3=90°,P,ICubic: a1=a2=a3, θ1=θ2=θ3=90°,P,I,FTrigonal: a1=a2=a3, θ1=θ2=θ3<120°, !=90°,PHexagonal: a1=a2!=a3, θ1=θ2=90°, θ3=120°,PP=原胞(1个点阵点), I=体⼼(2点阵点), F=⾯⼼(4点阵点), C=Side-centred, 即在顶⾯和底⾯添加点阵点4种修饰*7种晶格系统组合起来得到14种Bravais点阵2. 对称操作平移对称操作: T=u1a1+u2a2+u3a3, u1u2u3为整数, a1a2a3为基⽮基⽮ a1a2a3 = 晶格常数 a1a2a3点对称操作: 对应群论的点群操作3. 原胞原胞(primitive cell):点阵中的最⼩晶胞, ⼀个点阵点对应⼀个原胞.wigner-seitz胞:划分原胞的⼀种⽅式, 取点间连线的中垂线围成的最⼩⾯积.(wigner-seitz胞⽰意图)正格⼦与倒格⼦1.正格⼦正格⼦中的布拉格定律:2dsinθ=nλ2.倒格⼦由于正格⼦的布拉格理论⽆法描述散射的强度, 因此要对正格⼦进⾏傅⾥叶变化⾸先将⼀维电⼦浓度n(r)进⾏傅⾥叶展开n(r)=n0+Σ(C p cosθ+S p sinθ)=Σn p exp(iθ), 令-n p=n p*使n(r)为实数θ=2πpx/a由此引出倒格⼦的概念, 2πp/a为晶体倒格⼦, 或在傅⾥叶空间中的⼀个点.推⼴到三维有n(r)=Σn G exp(iG*r)G=v1b1+v2b2+v3b3,b1=2π·a2xa3/(a1·a2xa3), b2=2π·a3xa1/(a1·a2xa3),b3=2π·a1xa2/(a1·a2xa3)倒格⼦空间中的Wigner-Seitz胞称为布⾥渊区, 布⾥渊区在晶体电⼦能带理论中有重要地位接下来推导倒格⼦的布拉格定律:⾸先引⼊散射振幅F的定义F=∫dVn(r)exp(-iΔk·r)Δk为散射波与⼊射波的波⽮差k'-k将n(r)傅⾥叶展开F=∫dVΣn G exp(iG*r)exp(-iΔk·r)=Σ∫dVn G exp(i(G-Δk)·r)由此可以看出, 当Δk=G时F=Vn G, 发⽣弹性散射.发⽣弹性散射时, 光⼦能量E=ћω守恒, ω=ck, 因此⼊射波波⽮⼤⼩与散射波波⽮相等, 即k2=k'2因为k+G=k', 所以综上有(k+G)2=k'2即2k·G=G2, 此即倒格⼦空间的布拉格定律的形式.。