物质代谢的联系及其调节
- 格式:ppt
- 大小:2.41 MB
- 文档页数:41
第九章物质代谢的联系与调节内容提要物质代谢是生命的本质特征,是生命活动的物质基础。
体内各种物质代谢是相互联系、相互制约的。
体内物质代谢的特点:①整体性;②在精细调节下进行;③各组织器官物质代谢各具特色;④具有共同的代谢池;⑤ATP是共同能量形式;⑥NADPH是代谢所需的还原当量。
各代谢途径之间可通过共同枢纽性中间产物互相联系和转变。
糖、脂肪、蛋白质等营养素在供应能量上可互相代替,互相制约,但不能完全互相转变,因为有些代谢反应是不可逆的。
各组织、器官有独特的代谢方式。
肝是物质代谢的中心。
从肠道吸收进入人体的营养素,几乎都是经肝的处理和中转;各器官所需的营养素大多也通过肝的加工或转变,有的代谢终产物还需通过肝解毒和排出。
代谢调节可分为三级水平:一是细胞水平调节,主要通过改变关键酶的活性来实现。
酶活性调节有两种方式:酶的变构调节和酶蛋白的化学修饰调节。
变构调节系变构剂与酶的调节亚基结合引起酶分子构象改变,导致其催化活性改变,不涉及共价键与组成的变化。
而酶的化学修饰调节是酶催化的化学反应,涉及酶蛋白的化学结构共价键与组成的变化;有磷酸化、甲基化、乙酰化等方式,以磷酸化为主;化学修饰调节具有放大效应;以调节代谢强度为主。
变构调节与化学修饰调节两者相辅相成,均为快调节。
二是激素水平调节,通过激素与靶细胞受体特异结合,将激素信号转化为细胞内一系列化学反应,最终表现出激素的生物学效应。
根据受体在细胞内的部位不同,激素可分为膜受体激素(蛋白质、肽类及儿茶酚胺类激素),通过与膜受体结合可将信号跨膜传递入细胞内,胞内受体激素(类固醇激素、甲状腺素),可通过细胞膜进入细胞内与胞内受体(大多在核内)结合,形成二聚体,作为转录因子与DNA上特定核苷酸序列即激素反应元件(HRE)结合,以调控该元件所辖特定基因的表达。
三是神经系统可通过内分泌腺间接调节代谢,也可直接对组织、器官直接施加影响,进行整体调节,从而使机体代谢处于相对稳定状态。
物质代谢的联系与调节第一节物质代谢的特点(一)整体性体内各种物质包括糖、脂、蛋白质、水、无机盐、维生素等的代谢不是彼此孤立各自为政,而是同时进行的,而且彼此互相联系,或相互转变,或相互依存,构成统一的整体。
(二)代谢调节机体存在精细的调节机制,不断调节各种物质代谢的强度、方向和速度以适应内外环境的变化。
代谢调节普遍存在于生物界,是生物的重要特征。
(三)各组织、器官物质代谢各具特色由于各组织、器官的结构不同,所含有酶系的种类和含量各不相同,因而代谢途径及功能各异,各具特色。
例如肝在糖、脂、蛋白质代谢上具有特殊重要的作用,是人体物质代谢的枢纽。
(四)各种代谢物均具有各自共同的代谢池无论是体外摄人的营养物或体内各组织细胞的代谢物,只要是同一化学结构的物质在进行中间代谢时,不分彼此,参加到共同的代谢池中参与代谢。
(五)ATP是机体能量利用的共同形式糖、脂及蛋白质在体内分解氧化释出的能量,均储存在ATP的高能磷酸键中。
(六)NADPH是合成代谢所需的还原当量参与还原合成代谢的还原酶则多以NADPH为辅酶,提供还原当量。
如糖经戊糖磷酸途径生成的NADPH既可为乙酰辅酶A合成脂酸,又可为乙酰辅酶A 合成固醇提供还原当量。
第二节物质代谢的相互联系一、在能量代谢上的相互联系乙酰辅酶A是三大营养物共同的中间代谢物,三羧酸循环是糖、脂、蛋白质最后分解的共同代谢途径,释出的能量均以ATP形式储存。
从能量供应的角度看,这三大营养素可以互相代替,并互相制约。
二、糖、脂和蛋白质代谢之间的联系体内糖、脂、蛋白质和核酸等的代谢不是彼此独立,而是相互关联。
它们通过共同的中间代谢物,即两种代谢途径汇合时的中间产物,三羧酸循环和生物氧化等联成整体。
(一)糖代谢与脂代谢的相互联系当摄人的糖量超过体内能量消耗时,除合成少量糖原储存在肝及肌肉外,生成的柠檬酸及ATP可变构激活乙酰辅酶A竣化酶,使由糖代谢源源而来的大量乙酰辅酶A得以羧化成丙二酰辅酶A,进而合成脂酸及脂肪在脂肪组织中储存,即糖可以转变为脂肪。
第十一章物质代谢的相互联系及其调节第一节物质代谢的相互联系一、糖、脂、蛋白质在能量代谢上的相互联系二、糖、脂、蛋白质及核酸代谢之间的相互联系第二节物质代谢的调节一、细胞水平的代谢调节二、激素水平的代谢调节三、整体水平的代谢调节第十一章物质代谢的相互联系及其调节物质代谢、能量代谢与代谢调节是生命存在的三大要素。
生命体都是由糖类、脂类、蛋白质、核酸四大类基本物质和一些小分子物质构成的。
虽然这些物质化学性质不同,功能各异,但它们在生物体内的代谢过程并不是彼此孤立、互不影响的,而是互相联系、互相制约、彼此交织在一起的。
机体代谢之所以能够顺利进行,生命之所以能够健康延续,并能适应千变万化的体内、外环境,除了具备完整的糖、脂类、蛋白质与氨基酸、核苷酸与核酸代谢和与之偶联的能量代谢以外,机体还存在着复杂完善的代谢调节网络,以保证各种代谢井然有序、有条不紊地进行。
第一节物质代谢的相互联系一、糖、脂、蛋白质在能量代谢上的相互联系糖类、脂类及蛋白质都是能源物质均可在体内氧化供能。
尽管三大营养物质在体内氧化分解的代谢途径各不相同,但乙酰CoA是它们代谢的中间产物,三羧酸循环和氧化磷酸化是它们代谢的共同途径,而且都能生成可利用的化学能ATP。
从能量供给的角度来看,三大营养物质的利用可相互替代。
一般情况下,机体利用能源物质的次序是糖(或糖原)、脂肪和蛋白质(主要为肌肉蛋白),糖是机体主要供能物质(占总热量50%~70%),脂肪是机体储能的主要形式(肥胖者可多达30%~40%)。
机体以糖、脂供能为主,能节约蛋白质的消耗,因为蛋白质是组织细胞的重要结构成分。
由于糖、脂、蛋白质分解代谢有共同的代谢途径限制了进入该代谢途径的代谢物的总量,因而各营养物质的氧化分解又相互制约,并根据机体的不同状态来调整各营养物质氧化分解的代谢速度以适应机体的需要。
若任一种供能物质的分解代谢增强,通常能代谢调节抑制和节约其它供能物质的降解,如在正常情况下,机体主要依赖葡萄糖氧化供能,而脂肪动员及蛋白质分解往往受到抑制;在饥饿状态时,由于糖供应不足,则需动员脂肪或动用蛋白质而获得能量。