第八章 立体几何与空间向量
素能培优(九)球的切、接、截面问题
一、梳理提炼
1.几何体外接球问题
(1)解题关键是确定球心和半径,解题思维流程如下:
(2)求多面体的外接球的半径,常用方法:
①当三条棱两两互相垂直时,可恢复为长方体,利用长方体的体对角线为外接球的直径,
求出球的半径;
②直棱柱的外接球的球心为其上、下底面外接圆的圆心连线的中点,再根据勾股定理
外接圆的圆心.设点为外接球的球心,由球的性质可知 ⊥ 平面,作
⊥ ,垂足为,所以四边形为矩形, = = .设 = , = = ,
则 + −
= =
= + , 解得 = ,所以 = + = ,所以球的体积
三棱柱的所有顶点都在同一球面上,则该球的表面积是( C )
A.125π
B.144π
C.169π
D.244π
[解析] ∵ 三棱柱 − 的侧棱垂直于底面, = , = ,∠ = ∘ ,
= ,
∴ 可将三棱柱 − 补成长方体,且长方体的长,宽,高分别为3,4,12.
③作延长线找交点法:若直线相交但在立体几何中未体现,则可通过作延长线的方法先
找到交点,然后借助交点找到截面形成的交线.
④辅助平面法:若三个点两两都不在一个侧面或者底面中,则在作截面时需要作一个辅
助平面.
(2)作截面的步骤
①找截点:(方式1)延长截面上的一条直线,与几何体的棱、面(或其延长部分)相交,
交点即截点;(方式2)过一截点作另外两截点连线的平行线,交几何体的棱于截点.
②连截线:连接同一平面内的两个截点,形成截线.
③围截面:将各截线首尾相连,围成截面.