人教版五年级数学下册分数的意义和性质知识点
- 格式:doc
- 大小:24.00 KB
- 文档页数:2
五年级数学下《分数的意义和性质》知识点总结归纳
一、分数的意义
1.分数定义:分数是一种表示部分与整体关系的数,由分子和分母组成,分子表
示部分的大小,分母表示整体的等分份数。
2.分数单位:分数的基本单位是“1”,它可以代表一个整体或一个物体。
3.分数种类:分数可以分为真分数和假分数,真分数的分子小于分母,假分数的
分子大于或等于分母。
二、分数的性质
1.分数的基本性质:分数的分子和分母同时扩大或缩小相同的倍数,分数的大小
不变。
2.分数的大小比较:比较两个分数的大小时,可以先把它们化成同分母的分数,
再比较分子的大小。
如果分子相同,那么分母大的分数反而小。
3.约分与通分:约分是指将一个分数化成最简分数的过程,通分是将两个或多个
分数化为同分母的过程。
三、分数的运算
1.加法:分数的加法是将两个分数的分子相加,分母保持不变。
2.减法:分数的减法是将两个分数的分子相减,分母保持不变。
3.乘法:分数的乘法是将两个分数的分子相乘,分母相乘。
4.除法:分数的除法是将一个分数除以另一个分数等于乘以它的倒数。
四、特殊分数值
1.1/2:表示一半,即一个物体平均分成两份中的一份。
2.1/3:表示三分之一,即一个物体平均分成三份中的一份。
3.1/4:表示四分之一,即一个物体平均分成四份中的一份。
4.2/3:表示三分之二,即一个物体平均分成三份中的两份。
5.3/4:表示四分之三,即一个物体平均分成四份中的三份。
《分数的意义和性质》知识点归纳知识点一、分数的意义1、一个物体、一些物体或一个计量单位都可以看作一个整体。
一个整体可以用自然数1来表示,我们通常把它叫做单位“1”。
2、把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。
3、把单位“1”平均分成若干份,表示其中一份的数叫做分数单位。
例如9的分数单位是1。
知识点二、分数与除法的关系1、两个数相除可以用分数的形式表示,其中被除数是这个分数的分子,除数是这个分数的分母,分数线相当于除号。
同理,一个分数也可以看成两个数相除的形式。
式子表示:被除数÷除数=被除数除数(除数≠0)字母表示:a÷b=ab(b≠0)2、由于0不能为除数,因此0也不能为分母。
3、分数常见的列式计算问题:①把数a平均分成b份,求每份是多少。
②求一个数a是(占)另一个数b的几分之几。
③求一个数a是另一个数b的几倍。
以上问题的计算方法是一样的,都是求a÷b等于多少。
知识点三、真分数和假分数1、分子比分母小的分数叫做真分数。
真分数小于1 。
2、分子比分母大,或者分子相等分母的分数,叫做假分数。
假分数大于或等于1 。
温馨提示:11、22、33… 这些数是假分数。
3、由不为0的整数和真分数合成的数叫做带分数,带分数是假分数的另一种形式。
4、带分数的读法:先读整数部分,再读“又”字,最后读分数部分。
读作:二又三分之一。
例、2135、带分数的写法:先写整数部分,再写分数部分,整数部分的中间位置要与分数部分的分数线对齐。
例、五又六分之一写作:51。
66、带分数大于1 。
7、假分数化为整数或带分数的方法:①用假分数的分子除以分母,能整除的话,商就是所求的整数。
②用假分数的分子除以分母,不能整除的话,商就是带分数的整数部分,余数就是分数部分的分子,分母不变。
8、分数的基本性质:分数的分子和分母同时乘以或除以相同的数(0除外),分数的大小不变。
知识点四、公因数1、如果一个整数同时是几个整数的因数,则这个整数叫做它们的公因数。
第4单元 分数的意义与性质 单元总复习【本章主要内容】一、分数的意义:单位“1”的理解,分数与除法的关系 二、真分数和假分数 三、分数的基本性质 四、最大公因数与约分 五、最小公倍数与通分 六、分数与小数的互化 七、综合运用【知识归纳及题型练习】1、分数的意义:一个物体、一物体等都可以看作一个整体,把这个整体平均分成若干份,这样的一份或几份都可以用分数来表示。
2、单位“1”:一个整体可以用自然数1来表示,通常把它叫做单位“1”。
(也就是把什么平均分什么就是单位“1”。
)3、分数单位:把单位“1”平均分成若干份,表示其中一份的数叫做分数单位。
如54 的分数单位是51。
4、分数与除法 A÷B=B A (B≠0,除数不能为0,分母也不能够为0) 例如: 4÷5= 54【练习1】涂涂涂涂涂涂涂涂涂涂涂涂涂涂涂涂【解析过程】【练习2】(2018--2019禅城区期末统考) 把m 9的铁丝平均截成8段,3段占全长的)()(,每段长_______m 【解析过程】5、真分数和假分数、带分数①、真分数:分子比分母小的分数叫真分数。
真分数<1。
②、假分数:分子比分母大或分子和分母相等的分数叫假分数。
假分数≥1 ③、带分数:带分数由整数和真分数组成的分数。
带分数>1.读作几又几分之几。
4、真分数<1≤假分数 真分数<1<带分数 6、假分数与整数、带分数的互化(1)假分数化为整数或带分数,用分子÷分母,商作为整数,余数作为分子, 如:510=10÷5=2 521=21÷5=4 51(2)整数化为假分数,用整数乘以分母得分子 如:2=48)( 2×4=8 (8作分子) (3)带分数化为假分数,用整数乘以分母加分子,得数就是假分数的分子,分母不变,如:551=526)( 5×5+1=26(4)1等于任何分子和分母相同的分数。
如:1=22 = 33 = 44 = 55 =… = 100100=…【练习3】617是一个_______分数,它的分数单位是______,它有_______个这样的分数单位,再添上__________个这样的分数单位是最小的合数。
知识点1.一个物体或是几个物体组成的一个整体都可以用自然数1来表示,我们通常把它叫做单位“1”。
2.把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。
例如3/7表示把单位“1”平均分成7份,取其中的3份。
3.5/8米按分数的意义,表示:把1米平均分成8份,取其中的5份。
按分数与除法的关系,表示:把5米平均分成8份,取其中的1份。
4.把单位“1”平均分成若干份,表示其中一份的数叫分数单位。
5.分数和除法的关系是:分数的分子相当于除法中的被除数,分数的分数线相当于除法中的除号,分数的分母相当于除法中的除数,分数的分数值相当于除法中的商。
6.把一个整体平均分成若干份,求每份是多少,用除法。
总数÷份数=每份数。
7.求一个数量是另一个数量的几分之几,用除法。
一个数量÷另一个数量=几分之几(几倍。
8.分子比分母小的分数叫真分数。
真分数小于1。
9.分子比分母大或分子和分母相等的分数叫做假分数。
假分数大于1或等于1。
10.带分数包括整数部分和分数部分,分数部分应当是真分数。
带分数大于1。
11.把假分数化成带分数的方法是用分子除以分母,商是整数部分,余数是分子,分母不变。
把带分数化成假分数的方法是用整数部分乘分母的积加原来的分子作分子,分母不变。
12.整数可以看成分母是1的假分数。
例如5可以看成是5/1。
13.分数的分子和分母同时乘或除以相同的数(0除外,分数的大小不变。
这叫做分数的基本性质。
14.几个数公有的因数叫做它们的公因数,其中最大的公因数叫作它们的最大公因数。
最小公因数一定是1。
15.几个数公有的倍数叫做它们的公倍数,其中最小的公倍数叫作它们的最小公倍数。
没有最大的公倍数。
16.求最大公因数或最小公倍数可以用列举法,也可以用短除法分解质因数。
17.公因数只有1的两个数叫做互质数。
分子和分母只有公因数1的分数,叫做最简分数。
(分子和分母是互质数的分数叫做最简分数。
最简分数不一定是真分数。
人教版五年级数学下册分数的意义和性质知识点第四章分数的意义和性质一、分数的意义1、分数的产生:当我们进行测量、分割物品或计算时,有时会得到非整数的结果,这时我们可以使用分数来表示。
2、单位“1”的含义:一个物体或一组物体可以被视为一个整体,这个整体可以用自然数1来表示,也称为整体“1”。
3、分数的意义:将单位“1”平均分成若干份,表示其中一份或几份的数就是分数。
分数的形式用n为自然数,m为非零整数表示。
4、分数单位的意义:将单位“1”平均分成若干份,表示其中一份的数。
5、分数单位及其个数:一个分数的分母是几,它的分数单位就是几分之一;分子是几,它就有几个这样的分数单位。
反过来说,分数也可以看作两个数相除,其中分子表示被除数,分母表示除数,分数线表示除号,分数值表示商。
6、两个整数相除,可以用分数表示商,a÷b=n/m(m≠0)。
得到的商表示的是两个数的关系,没有单位名称。
二、真分数和假分数1、真分数:分子比分母小的分数,小于1.2、假分数:分子比分母大或相等的分数,大于或等于1.3、带分数:由整数(不包括0)和真分数合成的分数。
可以将带分数转化为假分数或整数。
比较量一个数,即比较量÷标准量=标准量另一个数。
4、假分数化成整数或带分数的方法:分子除以分母,如果分子是分母的倍数,可以化成整数;如果不是倍数,可以化成带分数,商是带分数的整数部分,余数是分数部分的分子,分母不变。
三、分解质因数1、定义:将一个合数表示为几个质数相乘的形式,其中每个质数都是这个合数的质因数。
2、方法:枝状图式分解法、短除法。
3、书写方法:要分解的数写在等号左边,质因数用连乘的形式写在等号右边。
四、分数的基本性质1、性质:分数的分子和分母同时乘以或除以相同的数(除外),分数的大小不变。
2、性质的应用:可以将不同分母的分数化为同分母的分数;可以将一个分数化为指定分母的分数。
五、约分1、几个数公有的因数叫做这几个数的公因数。
第13讲期末复习——分数知识点一:分数1.分数的意义:①把单位“1"平均分成若干份,表示这样的一份或者几份的数叫作分数。
②把单位"1"平均分成若干份,表示其中的一份的数,叫作分数单位。
【提示】描述一个分数时,不要忘记“平均分”。
2.分数与除法的关系:①被除数÷除数=被除数除数→分子分母②因为0不能作除数,所以分数的分母不能为0,③被除数相当于分子,除数相当于分母【提示】注意数量与分率的区别3.分数的分类:①真分数:分子比分母小的分数叫作真分数,真分数小于1。
②假分数:分子比分母大或者分子和分母相等的分数叫作假分数。
假分数大于或等于1。
③带分数:假分数可以写成整数与真分数合成的数,通常叫作带分数。
【提示】假分数大于1或等于1,它的倒数小于或等于14.分数的基本性质:①意义:分数的分子和分母都乘或者除以相同的数(0除外),分数的大小不变。
②约分:把一个分数化成同它相等但是分子、分母都比较小的分数,叫作约分。
(分子、分母是互为质数的分数,叫作最简分数。
)③通分:把异分母分数分别化成和原来分数相等的同分母分数,叫作通分。
【提示】把一个分数改写成指定分母的分数后,只是大小不变,而分数单位却发生了变化。
5.分数的大小比较:①分母相同,分子大的分数大;②分子相同,分母小的分数大③分子分母都不同,先通分,在比较或都化成小数再比较大小6. 倒数:乘积是1的两个数互为倒数;1的倒数是1,0没有倒数。
【提示】①倒数是相对于两个数来说的,它们互相依存,可以说一个数是另一个数的倒数,不能孤立地说某一个数是倒数②求一个数的倒数的方法:分子、分母交换位置。
求整数的倒数,可以先把整数看成分母是1的分数,再交换分子、分母的位置。
求小数的倒数,可以先把小数化成分数,再交换分子、分母的位置。
7.分数和小数的互化1.把分数化成小数的方法:用分数的分子除以分母。
2.把小数化成分数的方法:如果是一位小数就写成十分之几,是两位小数就写成百分之几,是三位小数就写成千分之几,……综合练习一.选择题(共12小题) 1.(2020秋•民乐县期末)最小的质数与最小合数的和的倒数是( )A .6B .16C .342.(2020秋•德江县期末)一根绳子分为两段,第一段为34,第二段为34米,( )长。
4 分数的意义和性质一、了解分数的产生,理解分数的意义,明确分数与除法的联系。
1.实际生活中,在进行测量、分物或计算时,往往不能正好....得到整数的结果.......,在这种情况下就产生了另一种数——分数..。
2.一个物体、一个计量单位或是一些物体等都可以看作一...个整体...,这个整体可以用自然数1表示,通常把它叫做单位“...1.”.。
3.把单位“1”平均..分成若干份,这样的一份或几份都可以用分数来表示。
4.把单位“....1.”平均分成若干份........,.表示其中一份的数........叫做分.数单位...。
一个分数的分母是几,它的分数单位就是几分之一,分子是几,它就有几个这样的分数单位。
5.两个数相除,商可以用分数来表示,即被除数...÷.除数..=.,用字母表示为a .÷.b=..(.b .≠.0.).。
反之...,.分数也...可以看作两个数相除.........,.分数的分子相当于被除数...........,.分母相当于除......数.,.分数线相当于除号........。
6.求一个数是另一个数(0除外)的几分之几的问题的解题方法:一个数÷另一个数=,.即比较量....÷.标.温馨提示:把谁平均分,就应该把谁看作单位“1”。
分成若干份是指分成除0以外的任意整数份,分时一定是平均分,只有平均分才可以用分数来表示。
分数与除法之间的联系非常紧密,但分数不等同于除法,二者之间有一定的区别:除法是一种运算,分数是一种数。
特别注意:因为除法算式中的除数不能为0,所以在分数中分母也不能为0。
温馨提示:任何整数(0除外)都可以化成分母是1的假分数。
准量..=.,.商表示的是两个数的倍比关系.............(也可以称部分与整体的关系........),没有单位名称......。
7.分数不但可以表示部分与整体的关系........,还可以表示具体..的数量...。
五年级数学下册第四单元知识点总结第一篇:五年级数学下册第四单元知识点总结五年级数学下册第四单元知识点总结(新人教版)第四单元分数的意义和性质1、分数的意义:一个物体、一物体等都可以看作一个整体,把这个整体平均分成若干份,这样的一份或几份都可以用分数来表示。
2、单位“1”:一个整体可以用自然数1来表示,通常把它叫做单位“1”。
(也就是把什么平均分什么就是单位“1”。
)3、分数单位:把单位“1”平均分成若干份,表示其中一份的数叫做分数单位。
如4/5的分数单位是1/5。
4、分数与除法A÷B=A/B(B≠0,除数不能为0,分母也不能够为0)例如:4÷5=4/55、真分数和假分数、带分数1、真分数:分子比分母小的分数叫真分数。
真分数<1。
2、假分数:分子比分母大或分子和分母相等的分数叫假分数。
假分数≧13、带分数:带分数由整数和真分数组成的分数。
带分数>1.4、真分数<1≤假分数真分数<1<带分数6、假分数与整数、带分数的互化(1)假分数化为整数或带分数,用分子÷分母,商作为整数,余数作为分子,如:(2)整数化为假分数,用整数乘以分母得分子如:(3)带分数化为假分数,用整数乘以分母加分子,得数就是假分数的分子,分母不变,如:(4)1等于任何分子和分母相同的分数。
如:7、分数的基本性质:分数的分子和分母同时乘以或除以相同的数(0除外),分数的大小不变。
8、最简分数:分数的分子和分母只有公因数1,像这样的分数叫做最简分数。
一个最简分数,如果分母中除了2和5以外,不含其他的质因数,就能够化成有限小数。
反之则不可以。
9、约分:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。
如:24/30=4/510、通分:把异分母分数分别化成和原来相等的同分母分数,叫做通分。
如:2/5和1/4 可以化成8/20和5/2011、分数和小数的互化(1)小数化为分数:数小数位数。
一位小数,分母是10;两位小数,分母是100…… 如:0.3=3/10 0.03=3/100 0.003=3/1000(2)分数化为小数:方法一:把分数化为分母是10、100、1000…… 如:3/10=0.3 3/5=6/10=0.6 1/4=25/100=0.25 方法二:用分子÷分母如:3/4=3÷4=0.75(3)带分数化为小数:先把整数后的分数化为小数,再加上整数12、比分数的大小:分母相同,分子大,分数就大;分子相同,分母小,分数才大。
课前热身1.用分数表示图中的阴影部分。
2.根据下面的分数把图形涂上你喜欢的颜色。
二.教学内容知识点1:分数的意义1.分数的产生。
把一物体平均分成若干份后,每份不能得到一个整体;量一个物体的长度时,得不到一个整体;……这时,需要把一个整体(或者单位“1”)平均分成若干份,用它的一份或几份来表示,这就产生了分数。
2.分数的意义。
(1)分数的意义。
把单位“1”平均分成若干份,表示其中的一份或者几份的数,叫做分数。
(2)分数单位的意义。
把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。
分数都是由几个分数单位组成的。
(3)分数在直线上的表示。
根据分数的意义,在直线上用点表示所给定的分数或把直线上的点用分数表示出来。
典例剖析分数的意义和性质(1)例1 你能举例说明61的含义吗?分析:我们可以画图来帮助说明。
解:如图,把一个圆形纸片平均分成6份,其中一份就是这张圆形纸片的61;一条线段 平均分成6份,其中的一份就是这条线段的61;我们也可以将12颗糖果看作一个整体,平均分 成6份,每一份都是这些糖果的61。
解题技巧我们不仅可以将一个物体看作一个整体,也可以将许多物体看作一个整体,平均分成若干份,表示这样的一份或几份,都可以用分数来表示。
例2 举例说明分数单位的含义。
分析:把单位“1”平均分成若干份,表示其中一份的数叫做分数单位。
解:例如,65的分数单位是61,它有5个这样的分数单位;127的分数单位是121,它有7个这样的分数单位。
61和121都是分数单位。
解题技巧分母不同的分数,它们的分数单位也不同。
一个分数的分母越大,分数单位越小;分母越小,分数单位越大。
自我测量1、先读出下面各分数,再写出每个分数的分数单位。
(1)在生活垃圾中,废纸约占53。
53的分数单位是( ),它有( )个这样的单位。
(2)一般人脚的长度大约是他身高的71。
71的分数单位是( ),它有( )个这样的单位。
(3) 陆地占地球总面积的10029。
一、分数的产生和意义1.分数的产生在进行测量、分物或计算时,往往不能正好得到整数的结果,这是常用分数来表示2.分数的意义一个正方形的14表示把一个正方形平均分成4份,每份是这个正方形的14分数的意义:一个物体、一个计量单位或是一些物体等都可以把它看做一个整体。
把这个整体平均分成若干份,这样的一份或几份都可以用分数来表示单位“1”的含义:一个整体可以用自然数1来表示,通常把它叫做单位“1”例:说出下面分数的意义(1)青少年近视人数占全国近视总人数的25(2)全国每年因交通事故死亡的人数占意外死亡人数的3103。
分数单位的意义整数的计数单位有_____________________________________ 例:一堆糖有12颗,把它们平均分成2份,每份是这堆糖的( ) 平均分成3份,2份是这堆糖的( ) 平均分成4份,3份是这堆糖的( )把单位“1"平均分成若干份,表示其中一份的数叫做分数单位.例如23 的分数单位是13例1:把一堆苹果平均分成4份,这样的3份是( ),它的分数单位是( ),它里面有( )个这样的分数单位。
例2:写出下面分数的分数单位:1578 1013 66 1135 例3:分数与对应的数量一包饼干有12块,3个小朋友分一包饼干,平均每人分( )包,( )包 是( )块例4:用直线上的点表示分数 (1)12 14 34 (2)13 23 56 练习:1。
用下面的分数表示对应的阴影部分,正确吗?34( ) 13( ) 34( ) 34( ) 2.有12个玩具平均分给3个小朋友,每个小朋友分得( )( ),也就是( )个如果把这12个玩具分给6个小朋友,每个小朋友分得( )( ),也就是( )个 3。
理解下面分数的具体含义(1)阳光小学五年级一班一共有男生26人,占全班总人数的12。
(2)国家林业局宣布,我国森林面积达到2.08亿公顷,森林覆盖率为21.63100,人工林面积居世界首位4。
人教版小学五年级下册数学分数知识点总结小学是我们整个学业生涯的基础,所以小朋友们一定要培养良好的学习习惯,查字典数学网为同学们特别提供了小学五年级下册数学分数知识点总结,希望对大家的学习有所帮助!1、分数的意义和性质分子比分母小的分数叫真分数,真分数小于1。
分子比分母大或分子和分母相等的分数叫假分数,假分数大于1或等于1。
把分数化为同它相等,但分子分母都比较小的分数叫做约分。
约分应用了分数的基本性质。
分数化简包括两步:一是约分;二是把假分数化成整数或带分数。
把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。
通分的根据是分数的基本性质。
=0.5 =0.25 =0.75 =0.2 =0.4 =0.6 =0.8=0.125 =0.375 =0.625 =0.875 =0.05 =0.04。
2、分数的加减法同分母分数加减法:分母不变,只把分子相加减。
教师范读的是阅读教学中不可缺少的部分,我常采用范读,让幼儿学习、模仿。
如领读,我读一句,让幼儿读一句,边读边记;第二通读,我大声读,我大声读,幼儿小声读,边学边仿;第三赏读,我借用录好配朗读磁带,一边放录音,一边幼儿反复倾听,在反复倾听中体验、品味。
异分母分数加减法:先通分,再按照同分母分数加减法的方法进行计算。
宋以后,京师所设小学馆和武学堂中的教师称谓皆称之为“教谕”。
至元明清之县学一律循之不变。
明朝入选翰林院的进士之师称“教习”。
到清末,学堂兴起,各科教师仍沿用“教习”一称。
其实“教谕”在明清时还有学官一意,即主管县一级的教育生员。
而相应府和州掌管教育生员者则谓“教授”和“学正”。
“教授”“学正”和“教谕”的副手一律称“训导”。
于民间,特别是汉代以后,对于在“校”或“学”中传授经学者也称为“经师”。
在一些特定的讲学场合,比如书院、皇室,也称教师为“院长、西席、讲席”等。
带分数加减法: 带分数相加减,整数部分和分数部分分别相加减,再把所得的结果合并起来。
第四章 人教版五年级数学下册分数的意义和性质知识点
一、分数的意义
1、分数的产生:在测量、分物或计算不能正好得到整数结果时;用分数表示
2、单位“1”的含义:一个物体、一些物体都可以看作一个整体;这个整体可用自然数1来表示;也叫做整体“1”
3、分数的意义:把单位“1”平均分成若干份;表示这样的一份或几份的数叫做分数.形式用m n (m 、n 为自然数;且m ≠0)表示
4、分数单位的意义:把单位“1”平均分成若干份;表示其中一份的数
5、分数单位及其个数:一个分数的分母是几;它的分数单位就是几分之一;分子是几;它就有几个这样的分数单位
6、两个整数相除;可以用分数表示商;a ÷b=
b
a (
b ≠0).反过来说;分数也可以看作两个数相除;分子→被除数;分母→除数;分数线→除号;分数值→商 7、求一个数是另一个数的几分之几:一个数÷另一个数=
另一个数
一个数;即比较量÷标准量=标准量比较量;得到的商表示的是两个数的关系;没有单位名称
二、真分数和假分数
1、真分数:分子比分母小的分数;小于1
2、假分数:分子比分母大或相等的分数;大于或等于1
3、带分数:由整数(不包括0)和真分数合成的分数
4、假分数化成整数或带分数的方法:分子除以分母;分子是分母倍数时;能化成整数;不是倍数时;能化成带分数;商是带分数的整数部分;余数是分数部分的分子;分母不变
三、分解质因数
1、定义
把一个合数用几个质数相乘的形式表示;每个质数都是这个合数的质因数
2、方法
枝状图式分解法、短除法
3、书写方法
要分解的数写在等号左边;质因数用连乘的形式写在等号右边
四、分数的基本性质
1、性质:分数的分子和分母同时乘以或除以相同的数(0除外);分数的大小不变
2、性质的应用:可以把不同分母的分数化成同分母的分数;可以把一个分数化为指定分母的分数
五、约分
1、几个数公有的因数叫做这几个数的公因数.其中最大的一个;叫最大公因数
2、公因数只有1的两个数叫互质数
3、求两个数的最大公因数
短除法:把两个数共有的质因数从小到大依次作为除数;连续去除这两个数;直到商是互质数为止;把所有除数相乘;得最大公因数
4、两个数成倍数关系时;较小数是最大公因数.互质的两个数最大公因数是1
5、最简分数:分子和分母只有公因数1的分数
6、约分:把一个分数化成和它相等;但分子和分母都比较小的分数
六、通分
1、几个数公有的倍数;叫这几个数的公倍数.其中最小的一个;叫最小公倍数
2、短除法求最小公倍数:最大公因数乘以商
3、较大数是较小数的倍数;较大数是最小公倍数.互质的两个数;积是它们的最小公倍数
4、公分母:把异分母分数化成同分母分数;这个相同的分母叫它们的公分母;最小的一个叫最小公分母
5、通分的意义:把异分母分数化成和原来分数相等的同分母分数
6、通分方法:用原分母的最小公倍数作公分母;后把各分数化成用这个最小公倍数作分母的分数
七、分数和小数的互化
1、小数化分数:原来是几位小数就在1后面写几个0作分母;把原来的小数点去掉作分子;能约分的要约分
2、分数化小数:分子除以分母
3、判断最简分数能否化成有限小数:如果分母中只含有质因数2或5;就能;否则不能。