CRH3-380BL型动车组列车网络控制系统
- 格式:ppt
- 大小:2.11 MB
- 文档页数:46
CRH380B 系动车组列车网络系统的调试与诊断摘要:现在,我国的高铁运营逐渐现代化,但车辆运行中有很多不确定因素,影响了列车网络系统的正常运行。
描述了技术要求和硬件选择以及CRH380B列车的概况。
介绍故障诊断和检查,最后根据铁路列车的实际工作环境,以CAN总线数字通信模块为基础,构建新型高速列车乘务员通信实时监视管理系统,实现乘务员的控制,各种信息和数据传输获得了有效的记录和快速的更新。
关键词:CRH380B型动车组:;列车网络系统;调试;诊断作为新型高速、自动化、舒适的车辆群,CRH380B车辆群在运行中会产生大量的数据和信息(状态读取、监控、故障诊断、乘客服务等信息),这些信息是所有车辆的安全、快速、如何保证准确的传递是我国车辆修理的重要组成部分,本文分析介绍了CRH380B车辆网络系统的配置和调整方法,并说明了一些典型的故障原因和对应的处理方法。
一、CRH380B动车组概况1.1编组形式CRH380B和车辆群是8次组的形式相同,但是网络构造与其他同一组不同,CRH380B有2个动力单元。
首先由牵引车、变压器车、中间车和餐车组成。
由变压器车、中级车、第一等车组成。
如图所示,不同动力单位之间的通信连接主要通过列车总线进行。
1.2CRH380B系动车组列车网络系统的概述CRH380B的手推车是8辆编组4动4拖分散型动力车的构造。
整个编组列车由两个四轴牵引传动单元共同组成。
每4节车厢分别构成一个四轴牵引传动单元。
所有机车牵引机内部的所有动力系统配置和网络结构都应该是一样的。
包括两辆高速铁路列车、两辆电力牵引车、一个司机主辅助变压器、三个司机辅助的主变压器、以及一台中央电力控制器等动力设备的配套基础设施。
CRH380B的车辆网络系统以现有的CRH3小型车为基础进行了改进,EC01~BC05和IC06~EC08分别构成了两个完全的列车网络系统。
在每套独立的中央网络管理系统中,有一个中央网络控制管理单元和主网关、中继器、分布式网络输入端和输出控制站、人机交互界面(等整套网络基础设备,共同发挥着充分的作用。
CRH380BL动车组门系统的网络控制
CRH380BL动车组门系统的网络控制
李文斌;冀云;王景波;郭凤媛;鲁彦男
【期刊名称】《科技信息》
【年(卷),期】2013(000)007
【摘要】随着我国铁路事业的蓬勃发展,高速动车组技术发展得到了前所未有的机遇.基于目前列车采取网络控制,如何实现列车网络的实时性、稳定性成为了研究的重点.本文针对在京广线运行的国产CRH380BL动车组门系统的网络控制进行了深入的研究,并根据国内外列车网络技术的发展以及结合我国列车网络技术的发展状况,提出了未来适合国情列车的列车网络.
【总页数】2页(96,113)
【关键词】CRH380BL;列车通信网络;门系统;网络控制
【作者】李文斌;冀云;王景波;郭凤媛;鲁彦男
【作者单位】中国北方机车车辆工业集团公司唐山轨道客车有限责任公司,河北唐山063035;中国北方机车车辆工业集团公司唐山轨道客车有限责任公司,河北唐山063035;中国北方机车车辆工业集团公司唐山轨道客车有限责任公司,河北唐山063035;中国北方机车车辆工业集团公司唐山轨道客车有限责任公司,河北唐山063035;中国北方机车车辆工业集团公司唐山轨道客车有限责任公司,河北唐山063035 【正文语种】中文
【中图分类】
【相关文献】
1.CRH380B、CRH380BL动车组客室空调系统故障的一些应急处理方法 [J], 张。
第六章动车组信息网络为实现车载数据通信的国际标准化,国际电工技术委员会IEC于1999年通过了一项列车通信网络专用标准TCN(IEC-61375-1)。
该标准将列车通信网络分为列车级通信网络WTB (绞接式列车总线)和车辆级通信网络MVB(多功能车辆总线)。
第一节信息及网络系统一、通信与网络原理CRH380B(L)动车组列车通信和控制网络以及子系统和传统电路技术形成了列车总体网络控制系统。
列车控制网络TCN包括列车级通信网络WTB(绞接式列车总线)和车辆级通信网络MVB(多功能车辆总线),这两个系统都采用了双路冗余线传输。
列车级通信网络WTB用于经常联挂和解编的重联车辆,具有可变的拓扑结构。
多功能车辆总线MVB用于每辆车或一个牵引单元内设备之间的数据通信,具有固定的拓扑结构。
为了提高可用性,使用一个主链结构实现车辆总线 MVB 的拓扑结构,MVB分支段通过中继器连接至主链上。
该结构的优点在于如果车内一个MVB分支段出现故障,不会对本牵引单元其他车的通信产生影响。
CRH380B(L)动车组网络拓扑结构如图6-1所示。
图6-1 CRH380B(L)动车组网络拓扑结构示意图(头车)二、列车通信网络的构成与功能CRH380B(L)型网络控制系统设备包括:中央控制单元、人机接口显示屏、牵引控制单元、制动控制单元、辅助控制单元、输入输出模块及温度采集单元、中继器等,如图6-2所示。
图6-2 动车组网络系统设备示意图(局部)(一)中央控制单元(CCU)U的组成CRH380B(L)动车组每个牵引单元内有两个CCU,其中一个CCU以主控CCU方式工作,另一个以从控CCU方式工作。
中央控制单元(CCU)由MVB32板卡、各控制板卡及网关板卡等元件组成,如图8-3所示。
图6-3 动车组中央控制单元CCU(1)网关:每个牵引单元有两个网关,但只有加载在主CCU上的网关参与WTB和MVB 通讯,从CCU上的网关不工作。
网关负责从列车总线(WTB)到车辆总线(MVB)的处理数据的信号编辑和信息数据发送,反过来也一样。
试论CRH380B系动车组列车网络系统的调试与诊断作者:刘洪迎来源:《科学与财富》2019年第08期摘要:经济的不断发展推动了我国铁路事业的快速发展,并且CRH380B动车组得到了铁路行业的广泛应用,但是在该动车组中,经常会出现一些列车网络系统故障。
基于此,本文将从当前列车网络系统的概况出发,对诊断和调试列车网络系统的策略进行分析与探究,希望为相关人员提供一些帮助和建议。
关键词:动车组;列车网络;网络系统引言:CRH380B动车组是由中国北车集团唐山轨道客车有限责任公司、长春轨道客车股份有限公司在CRH3C型电力动车组基础上自主研发的CRH系列高速动车组,也是“中国高速列车自主创新联合行动计划”的重点项目之一,并将以此为基础研制时速400公里的CIT400B检测车。
由于CRH380B动车组运行中会有大量信息数据需要传输,确保其传输的准确、快速、安全成为维护车辆的重要环节。
因此,研究诊断和调试列车网络系统的策略具有一定现实意义。
一、当前列车网络系统的概况目前,CRH380B动车组是一种分散型的动力电动车组,其结构是四动四拖、八辆编组。
整个列车包括两个不同的牵引单元,每个牵引单元由4节车厢组成。
同时,各牵引单元的网络结构与动力配置基本相同,都是1个中央控制单元、3个辅助变流器、1台主变压器、2节拖车、2节动车。
在CRH380B动车组中,列车的网络系统对CRH3系列车型进行了改进,从ec01到bc05、从ic06到ec08的列车网络系统都十分完整。
二、诊断和调试列车网络系统的策略(一)软件上载通常来讲,软件上载会在CRH380B动车组的调试初期进行,这样一来,不但能够使接下来的功能试验需求得到满足,还可以让工作人员根据软件上载状态来进行单车网络系统的检车工作,确保其准备就绪。
如果CRH380B动车组网络线缆与设备处于正常状态,则klip绿灯为常亮,如果右边mvb指示灯或中间I/O指示灯亮起,则CRH380B动车组出现了一些网络问题。
第5章功能组分析5.1 TCN发展概述高速列车为保证旅客乘车的安全与舒适,需对机车和车辆的各种设备进行可靠地控制、监测和诊断。
随着现场总线技术的发展,这种过程控制已从集中型的直接控制系统发展成为基于网络的分布式控制系统。
现场控制总线出现于上世纪80年代,是一种开放式数字化多点通信的底层控制网络。
这种总线技术把单个分散的测量控制设备变成网络节点,以现场总线为纽带,完成现场自动化设备之间的多点数字通信。
相互共享信息。
它打破了原来孤立的直接控制系统的信息孤岛局面,既是一个分布式控制系统,又是一个开放的通信网络。
所以非常适合在列车上应用,既可用于车辆控制,又可传输旅客信息和进行故障诊断。
目前已发展出了很多总线技术,如WorldFIP、LonWorks、CAN总线及Profibus等,它们各有特点,在各个方面发挥着重要的作用。
但由于多方面的原因,而未被业界一致接受作为列车通信网的行业标准。
为实现车载数据通信的国际标准化,国际电工技术委员会IEC于1999年通过了一项列车通信网络专用标准TCN(IEC-61375-1)。
该标准将列车通信网络分成用于连接各节可动态编组的列车级通信网络WTB(绞接式列车总线)和用于连接车辆内固定设备的车辆通信网络MVB(多功能车辆总线)。
5.1.1 TCN网络列车通信网络是一种面向控制、连接车载设备的数据通信系统,是分布式列车控制系统的核心,其集列车控制系统、故障检测与诊断系统以及旅客信息服务系统于一体,以车载微机为主要技术手段,并通过网络实现列车各个系统之间的信息交换,最终达到对车载设备的集散式监视、控制和管理目的,实现列车控制系统的智能化、网络化与信息化。
列车通信网络即列车控制、诊断信息数据通信网络,其将列车微机控制系统的各个层次、各个单元之间连接起来,作为系统信息交换和共享的渠道,从而实现全列车环境下的信息交换。
列车通信网络是铁路列车车辆之间和车辆内部可编程设备互连传送控制、检测与诊断信息的数据通信网络。
第5章功能组分析5.1 TCN发展概述高速列车为保证旅客乘车的安全与舒适,需对机车和车辆的各种设备进行可靠地控制、监测和诊断。
随着现场总线技术的发展,这种过程控制已从集中型的直接控制系统发展成为基于网络的分布式控制系统。
现场控制总线出现于上世纪80年代,是一种开放式数字化多点通信的底层控制网络。
这种总线技术把单个分散的测量控制设备变成网络节点,以现场总线为纽带,完成现场自动化设备之间的多点数字通信。
相互共享信息。
它打破了原来孤立的直接控制系统的信息孤岛局面,既是一个分布式控制系统,又是一个开放的通信网络。
所以非常适合在列车上应用,既可用于车辆控制,又可传输旅客信息和进行故障诊断。
目前已发展出了很多总线技术,如WorldFIP、LonWorks、CAN总线及Profibus等,它们各有特点,在各个方面发挥着重要的作用。
但由于多方面的原因,而未被业界一致接受作为列车通信网的行业标准。
为实现车载数据通信的国际标准化,国际电工技术委员会IEC于1999年通过了一项列车通信网络专用标准TCN(IEC-61375-1)。
该标准将列车通信网络分成用于连接各节可动态编组的列车级通信网络WTB(绞接式列车总线)和用于连接车辆内固定设备的车辆通信网络MVB(多功能车辆总线)。
5.1.1 TCN网络列车通信网络是一种面向控制、连接车载设备的数据通信系统,是分布式列车控制系统的核心,其集列车控制系统、故障检测与诊断系统以及旅客信息服务系统于一体,以车载微机为主要技术手段,并通过网络实现列车各个系统之间的信息交换,最终达到对车载设备的集散式监视、控制和管理目的,实现列车控制系统的智能化、网络化与信息化。
列车通信网络即列车控制、诊断信息数据通信网络,其将列车微机控制系统的各个层次、各个单元之间连接起来,作为系统信息交换和共享的渠道,从而实现全列车环境下的信息交换。
列车通信网络是铁路列车车辆之间和车辆内部可编程设备互连传送控制、检测与诊断信息的数据通信网络。
CRH380B型高速动车组车载监控数据网络技术升级浅析摘要:为能够实时监控高速动车组高速运行中的各种运行参数及其故障信息,及时发现和处置相关故障,保证高速动车组能够安全稳定可靠的工作,提出一种升级的4G无线网络传输技术。
通过高速无线传输网络技术对高速动车组进行全天候的实时监控,是保证车组正常运行的必要条件。
关键词:高速动车组;4G网络;无线传输技术;实时监控;中图分类号:TN919 文献标识码:A引言随着高速动车组技术的飞速发展,我国高速动车组以其高速、稳定、安全、舒适等优势赢得了全球的青睐;高速动车组集合了各学科的大量高新技术,包括牵引系统、制动系统、网络系统、转向架系统、辅助系统等。
其中网络系统是高速动车组各个系统数据的载体和媒介,通过车载远程网络系统能够实时监控动车组运行中的各个系统参数和信息,保证动车组维护人员和客户对动车组的实时监控和响应,保证动车组正常稳定运行。
因此一套高效稳定、速度快的车载网络传输系统尤其必要,现阶段部分车载远程网络数据系统传输还处于2G网络系统,亟待更新车载远程数据网络传输系统。
以满足日常动车组维护和客户的需求。
1现状及意义高速动车组车载远程数据传输网络系统是保障车组正常运行和日常维护的重要手段之一。
也是车组运行故障信息处置时效的必要条件之一;一旦出现故障或者故障信息有延时,都将影响车组正常稳定运行。
车载远程数据传输系统受限于车组网络系统和地面网络系统的影响。
CRH380B型动车组上部分使用的网络系统还是2G网络。
随着移动网络技术的迅猛发展,高速动车组急需更新换代车载无线数据传输系统,以满足日益增长的车载数据监控系统,及其客户对动车组实时监控的需求。
本文针对原有CRH380B型动车组车载远程数据传输系统进行了系统升级的方案设计,通过试验验证方案的正确性和可行性,对于解决动车组监控数据的无线传输系统的要求有重要的意义。
2高速动车组车载数据无线传输系统概述:适用于中国高速动车组的远程无线传输装置采用MVB网络技术、以太网技术、GPRS无线传输技术、WLAN无线局域网技术,能够满足检修部门对运行动车组动态跟踪监控、提供远程技术支持和故障应急指导并即时组织维修的实际需求。