第6章 汽车驱动防滑技术
- 格式:ppt
- 大小:1.26 MB
- 文档页数:35
驱动防滑系统的工作原理驱动防滑系统是一种车辆动力控制系统,通过对车轮进行控制来提高车辆的稳定性和操控性。
该系统的工作原理是通过传感器监测车轮的转速和其他相关参数,然后根据这些数据来进行实时调整,从而防止车轮打滑。
驱动防滑系统主要由以下几个组件组成:传感器、控制单元、执行器和制动系统。
传感器负责监测车轮的转速和其他参数,如转向角度、加速度等。
控制单元则根据传感器提供的数据进行计算和判断,并发送指令给执行器。
执行器根据控制单元的指令来调整车轮的转速,以达到防止打滑的效果。
制动系统则作为辅助手段,在必要时使用制动力来控制车轮的转速。
具体来说,驱动防滑系统的工作原理如下:1. 车轮转速监测:传感器安装在每个车轮上,用于监测车轮的转速。
它们可以通过磁传感器、光传感器或者其他技术来实现。
传感器将监测到的转速数据发送给控制单元。
2. 控制单元计算:控制单元接收传感器发送的数据,并进行实时计算和判断。
它会比较不同车轮的转速,判断是否存在打滑情况。
如果发现某个车轮的转速明显高于其他车轮,就认为该车轮可能存在打滑,并采取相应措施。
3. 转速调整:控制单元根据计算结果,向执行器发送指令来调整车轮的转速。
执行器可以采用多种方式实现,如通过控制发动机输出功率、调整刹车压力等。
具体的调整方式取决于车辆的具体设计和驱动防滑系统的实现方式。
4. 制动辅助:在必要时,驱动防滑系统可以通过制动系统来辅助调整车轮的转速。
例如,在某个车轮出现打滑时,控制单元可以发送指令给制动系统,增加该车轮的制动力,以减少打滑情况。
总的来说,驱动防滑系统通过监测车轮的转速和其他参数,实时计算并判断车轮是否存在打滑情况,然后通过调整车轮的转速来防止打滑。
这种系统可以提高车辆的稳定性和操控性,减少在低摩擦路面或急刹车时的打滑风险,提高车辆的安全性和可靠性。
需要注意的是,驱动防滑系统并不能完全消除车辆打滑的可能性,它只能在一定程度上减少打滑风险。
此外,不同车辆的驱动防滑系统可能会有不同的实现方式和性能表现,具体效果会受到车辆设计、传感器精度、控制算法等多种因素的影响。
第十章第十章汽车防滑控制系统第六章第一节概述一、制动过程分析驾车体会告诉我们,当行车在湿滑路面上突遇紧急情形而实施紧急制动时,汽车会发生侧滑,严峻时甚至会显现旋转调头,相当多的交通事故便由此而产生。
当左右侧车轮分别行驶于不同摩擦系数的路面上时,汽车的制动也可能产生意想不到的危险。
弯道上制动遇到上述情形则险情会更加严峻。
所有这些现象的产生,均源自于制动过程中的车轮抱死。
汽车防抱死制动装置确实是为了排除在紧急制动过程中显现上述非稳固因素,幸免显现由此引发的各种危险状况而专门设置的制动压力调剂系统。
图11.l是汽车在水平路面上制动时汽车的受力示意图,图中G是汽车的重力,FZ1和FZ2是前后轮上作用的地面支承力,FJ是汽车制动时作用在质心上的减速惯性力,Fxbl 和Fxb2。
是地面作用在车轮边缘上的摩擦力。
汽车制动减速的过程实际上确实是汽车在行驶方向上受到地面制动力Fxb而改变运动状态的过程。
制动成效的好坏完全取决于这种外界制动力的大小及其所具有的特性。
由于地面制动力是地面与轮胎之间的摩擦力,因此,它具有一样摩擦力的特性。
即:那车减速度(即惯性力)较小时,地面摩擦力未达到极限值,它可随所需惯性力增加而增加;稍汽车减速度(即惯性力)达到一定数值后,地面摩擦力达到其极限值,以后便不再增大。
按照摩擦的物理特性可知,现在Fxbmax=Fz·φ式中:Fxbmax——地面制动力(摩擦力)的最大值;Fi——作用在车轮上的法向载荷;φ——摩擦系数(通常称为附着系数)。
由此能够看出,在汽车紧急制动情形下,若欲提高制动效能,即缩短制动距离或增大制动减速度,必须设法增大Fxbmax。
为此,能够采取两条途径:一方面,能够通过提高正压力Fz来增大Fxbmax;另一方面,也能够通过提高摩擦系数φ中使Fxbmax 得以提高。
考虑到汽车具体使用情形,后一种途径更具有实际意义。
大量试验差不多证明,轮胎与路面之间的附着系数要紧受到三方面要素阻碍,即:①路面的类型、状况;②轮胎的结构类型、花纹、气压和材料;③车轮的运动方式和车速。
简述驱动防滑系统的控制方法
驱动防滑系统(ASR)的控制方法主要包括以下几种:
1. 逻辑门限值控制:这种方法不需要建立具体的数学模型,简化了驱动防滑控制器的开发过程。
2. PID控制:这是一种常用的控制方法,通过比例、积分和微分三个环节来调整系统参数,以达到理想的控制效果。
3. 最优控制:这种方法通过优化系统参数,使系统性能达到最优。
4. 神经网络控制:利用神经网络的自学习能力,对系统进行控制。
5. 滑模控制:在系统状态发生变化时,滑模控制能够快速响应并稳定系统。
6. 模型跟踪控制:使控制系统按照预定的模型进行工作,以达到理想的控制效果。
这些控制方法都是为了实现驱动防滑系统的功能,即通过识别路面状态,针对不同路况采用不同的滑转率控制策略,通过限制驱动轮的驱动转矩使车辆能在不同路面上充分利用附着力,防止车辆在驱动力急剧变化中发生驱动轮相对地面产生过度的滑转,从而使车辆轮胎相对地面的附着力降低。
以上内容仅供参考,建议咨询汽车专业技术人员了解具体的控制方法。
关于汽车驱动防滑控制技术的探讨摘要随着汽车行驶速度的提高,道路行车密度的增大,汽车行驶安全性已经受到了高度关注。
汽车的行驶安全性能要求不断提高,汽车安全系统已经成为汽车研究发展的重要部分。
汽车安全系统主要依靠制动踏板的制动装置保证汽车行驶安全,汽车照明系统辅助警示与提醒,至今在主动安全系统中汽车防抱死〔ABS)等技术,以及汽车辅助安全系统如安全带,安全气囊等的广泛应用,而且有更多的安全性系统参与制动与动力分配系统的发展,如汽车驱动防滑系统〔ASR〕,汽车电子稳定系统(ESP),汽车电子制动力分配系统(EBD),汽车辅助刹车系统(BA),汽车自适应巡航速度控制系统等(ACC),保证汽车在危险状况下行驶的安全性。
上述这些系统具有智能化的控制作用,根据车辆的行驶状况,自动地完成对汽车制动性能、转向辅助等的控制,无需人的主动性操作,可见汽车安全系统已经向智能型方向发展。
本文探讨了ASR系统的原理、发展、现状及与ABS系统的关系,简要讨论了当前较先进,运用较广泛的ESP系统。
介绍了汽车驱动防滑控制系统常用的四种控制方式。
以日系车丰田ABS/TRC系统为例分析了ASR系统的基本组成和工作原理。
关键词:汽车驱动防滑系统ASR 汽车防抱死系统ABS汽车电子稳定系统ESP 汽车驱动力控制系统TRC汽车驱动防滑系统(Acceleration Slip Regulation,简称ASR),是一种主动安全装置,可根据车辆的行驶行为使车辆驱动轮在恶劣路面或复杂路面条件下得到最佳纵向驱动力,能够在驱动过程中,特别在起步、加速、转弯等过程中防止驱动车轮发生过分滑转,使得汽车在驱动过程中保持方向稳定性和转向操纵能力及提高加速性能等。
驱动防滑系统是汽车制动防抱死系统功能的自然扩展,它的作用是维持汽车行驶时的方向稳定性,并尽可能利用车轮—路面间的纵向附着能力,提供最大的驱动力。
在装备了ABS的汽车上,ASR系统添加了发动机输出力矩的调节和驱动轮制动压力的调节功能后,所用的车轮转速传感器和压力调节器可全部为ASR所利用。
简述驱动防滑系统的基本工作原理一、引言驱动防滑系统是现代汽车中的一个重要安全系统,它能够提高车辆在湿滑路面上的行驶稳定性和控制性,降低车辆失控的风险。
本文将从驱动防滑系统的基本工作原理、主要部件和应用场景三个方面进行详细介绍。
二、基本工作原理驱动防滑系统是由传感器、电控单元、液压控制单元和执行机构等组成的。
其基本工作原理如下:1. 传感器检测车轮速度驱动防滑系统中装有轮速传感器,用于检测车轮转速。
当某一车轮发生打滑时,其转速将会快于其他车轮,此时传感器会向电控单元发送信号。
2. 电控单元计算刹车力与牵引力之差接收到传感器发来的信号后,电控单元会根据算法计算出刹车力与牵引力之差。
当这个差值超过一定程度时,就说明某一车轮已经打滑了。
3. 液压控制单元调整刹车压力或牵引力为了避免车轮打滑,液压控制单元会对刹车压力或牵引力进行调整。
当某一车轮发生打滑时,液压控制单元会立即减小该车轮的牵引力或增加其刹车力,以使其恢复正常的行驶状态。
4. 执行机构实现调整液压控制单元通过执行机构来实现牵引力和刹车力的调整。
执行机构通常由电磁阀和液压缸组成,当电磁阀接收到信号后,它会控制液压缸的工作,从而改变刹车或牵引力的大小。
三、主要部件驱动防滑系统包含多个主要部件,下面将逐一进行介绍:1. 轮速传感器轮速传感器是驱动防滑系统中最关键的部件之一。
它能够检测每个车轮的转速,并将检测结果发送给电控单元。
目前市场上常见的轮速传感器有两种类型:磁性传感器和霍尔传感器。
2. 电控单元电控单元是驱动防滑系统中负责计算和处理信号的部件。
它可以根据传感器发来的信号,计算出刹车力和牵引力之间的差值,并向液压控制单元发送指令。
3. 液压控制单元液压控制单元是驱动防滑系统中负责调整刹车力和牵引力的部件。
它可以根据电控单元发来的指令,通过执行机构来实现对刹车或牵引力的调整。
4. 执行机构执行机构是驱动防滑系统中负责实现刹车或牵引力调整的部件。
通常由电磁阀和液压缸组成,当电磁阀接收到信号后,它会控制液压缸的工作,从而改变刹车或牵引力的大小。