专题提升5与垂径定理有关的辅助线
- 格式:docx
- 大小:150.70 KB
- 文档页数:7
“垂径定理”与解题思路分析垂径定理及其推论是“圆”一章最先出现的重要定理,它是证明圆内线段、弧、角相等关系及直线垂直关系的重要依据,也是学好本章的基础,在学习中要注意以下几点:一.圆的辆对称是垂径定理的理论基础同学们在小学就已经知道了把圆沿着它的任意一条直径对折,直径两边的两个半圆就会重合在一起。
因此,课本首先通过一张圆形纸片沿着一条直径对折,直径两侧的两个半圆能重合这一事实,指出圆是轴对称图形,经过圆心的每一条直线都是它的对称轴,然后利用这一性质给出了垂径定理,并利用圆的对称性证明。
所以,圆的轴对称性是垂径定理的理论基础。
二.垂径定理及其推论的题设与结论之间的内在联系在垂径定理(推论)中,一是隐含着一条直线;二是该直线具有以下性质:(1)经过圆心,(2)垂直于弦,(3)平分这条弦,(4)平分这条弦所对的劣弧,(5)平分这条弦所对的优弧。
垂径定理可以简记为:由于垂径定理本身的结论有多个,因此在构造逆命题时也会有多个,这就需要掌握构造逆命题的技巧。
例如:以(1)、(3)为条件的逆命题为:如果过圆心的一条直线平分该圆内的一条弦(不是直径),那么这条直线垂直于弦,且平分弦所对的弧。
类似地,同学们一定会分别写出以(1)和(4)、(1)和(5)、(2)和(3)、(2)和(4)、(2)和(5)、(3)和(4)、(3)和(5)、(4)和(5)为条件的逆命题。
由于一条直线如果具备上述五条性质中的任何两条时,这条直线唯一确定,所以,上述九个逆命题都是真命题,它们都是垂径定理的推论。
垂径定理连同推论在内共十条定理。
对于这十条定理,同学们切不可死记硬背,关键要抓住它们的特点,即一条直线具有上面所说的五条性质中的任何两性质,就有其余三条性质(具有性质(1)、(3)时,所说的弦不是直径,这是因为如果这里的弦是直径的话,两条直径总是互相平分的,但它们未必垂直)。
三.灵活应用垂径定理及其推论解题垂径定理及其推论,主要应用于研究直径与同圆中的弦、弧之间的垂直平分关系,其内容虽然简单,但要能灵活应用却非易事。
考向4.8 垂径定理专题例(2020·浙江衢州·中考真题)如图,△ABC内接于⊙O,AB为⊙O的直径,AB=10,AC=6,连结OC,弦AD分别交OC,BC于点E,F,其中点E是AD的中点.(1)求证:∠CAD=∠CBA.(2)求OE的长.(1)证明:∵AE=DE,OC是半径,∴AC CD=,∴∠CAD=∠CBA;(2)解:如图:∵AB是直径,∴∠ACB=90°,∵AE=DE,∴OC⊥AD,∴∠AEC=90°,∴∠AEC=∠ACB,∴△AEC∽△BCA,∴CE AC AC AB=,∴6 610 CE=,∴CE=3.6,∵OC=12AB=5,∴OE=OC﹣EC=5﹣3.6=1.4.1、垂径定理是中考必考题,在填空、选择及大题中都要出现,理解并掌握其半径和弦的在位置关系垂直的前提下理解其数量关系。
2、本题考查了垂径定理,圆周角定理,相似三角形的判定和性质,证明△AEC∽△BCA是解题关键.1、垂径定理的理解:垂直定理是指在弦与半(直径)垂直的前提下形成的数量关系;2、涉及的知识点有:勾股定理、面积问题、相似、全等、等腰三角形的“三线合一”、圆周角与圆心角关系等等;3、涉及到的数学思想:方程思想、转化思想等等;一、单选题1.(2021·广东增城·一模)如图,AB是半圆O的直径,AC,BC是弦,OD⊥AC于点D,若OD=1.5,则BC等于()A.1.5 B.2 C.3 D.4.52.(2021·湖北黄冈·一模)如图,CD为⊙O的直径,弦AB⊥CD,垂足为M,若AB=12,OM:MD=5:8,则⊙O的周长为()A.26πB.13πC.965πD.39105π3.(2021·黑龙江香坊·一模)如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=8,AE=1,则弦CD的长是()A7B.7C.6 D.84.(2021·河南安阳·模拟预测)如图,⊙O的半径为5,弦AB=8,P是弦AB上的一个动点(不与A,B重合),下列符合条件的OP的值是()A .6.5B .5.5C .3.5D .2.55.(2021·全国·模拟预测)如图,AB 为O 的直径,CD 为O 的弦,AB CD ⊥于E ,下列说法错误的是( )A .CE DE =B .AC AD = C .OE BE = D .2∠=∠COB BAD 6.(2021·四川·成都市树德实验中学二模)如图,在半径为5的O 中,半径OD ⊥弦AB 于点C ,连接AO 并延长交O 于点E ,连接EC EB 、.若2CD =,则EC 的长为( )A .215B .8C .210D .213二、填空题 7.(2021·黑龙江香坊·三模)△ABC 为半径为5的⊙O 的内接三角形,若弦BC =8,AB =AC ,则点A 到BC 的距离为_____.8.(2021·西藏日喀则·二模)如图,已知⊙O 的直径CD 垂直于弦AB ,∠ACD=22.5°,若CD=6cm ,则AB 的长为_____cm .9.(2021·湖北咸宁·一模)如图,30PAC ∠=︒,在射线AC 上顺次截取3AD cm =,10DB cm =,以DB 为直径作O 交射线AP 于E 、F 两点,则线段EF 的长是__________cm .10.(2021·上海崇明·一模)如图,在直角坐标系中,以点P 为圆心的弧与x 轴交于A 、B 两点,已知点P 的坐标为()1,y ,点A 的坐标为()1,0-,那么点B 的坐标为___________.11.(2021·黑龙江·哈尔滨市萧红中学一模)如图将⊙O 沿弦AB 折叠,AB 恰好经过圆心O ,若⊙O 的半径为3,则AB 的长为_______.12.(2021·江苏·南通田家炳中学二模)AB 是O 的弦,OM AB ⊥,垂足为M ,连接OA .若60AOM ∠=︒,3OM =,则弦AB 的长为______.三、解答题13.(2021·河南·一模)已知如图,O 的直径AB 垂直于弦CD ,垂足为E ,15A ∠=︒,半径为2,则弦CD 的长为多少?14.(2021·河北承德·一模)如图,△ABC 中,AB=AC ,⊙O 是△ABC 的外接圆,BO 的延长交边AC 于点D .(1)求证:∠BAC=2∠ABD ;(2)当△BCD 是等腰三角形时,求∠BCD 的大小.一、填空题1.(2021·湖南长沙·中考真题)如图,在⊙O 中,弦AB 的长为4,圆心O 到弦AB 的距离为2,则AOC ∠的度数为______.2.(2021·黑龙江牡丹江·中考真题)半径等于12的圆中,垂直平分半径的弦长为________ . 3.(2021·四川阿坝·中考真题)如图,AB 为O 的直径,弦CD AB ⊥于点H ,若10AB =,8CD =,则OH 的长度为__.4.(2020·江苏南通·中考真题)已知⊙O 的半径为13cm ,弦AB 的长为10cm ,则圆心O 到AB 的距离为_____cm .5.(2021·辽宁朝阳·中考真题)已知⊙O 的半径是7,AB 是⊙O 的弦,且AB 的长为73,则弦AB 所对的圆周角的度数为__________.6.(2021·四川宜宾·中考真题)如图,⊙O 的直径AB =4,P 为⊙O 上的动点,连结AP ,Q 为AP 的中点,若点P 在圆上运动一周,则点Q 经过的路径长是______.7.(2020·黑龙江牡丹江·中考真题)AB 是O 的弦,OM AB ⊥,垂足为M ,连接OA .若AOM 中有一个角是30°,23OM =,则弦AB 的长为_________.8.(2021·贵州黔东南·中考真题)小明很喜欢钻研问题,一次数学杨老师拿来一个残缺的圆形瓦片(如图所示)让小明求瓦片所在园的半径,小明连接瓦片弧线两端AB ,量的弧AB 的中心C 到AB 的距离CD =1.6cm ,AB =6.4cm ,很快求得圆形瓦片所在圆的半径为 _________cm .9.(2021·广西河池·中考真题)如图,在平面直角坐标系中,以()23M ,为圆心,AB 为直径的圆与x 轴相切,与y 轴交于A ,C 两点,则点B 的坐标是____________.10.(2021·江苏南京·中考真题)如图,AB 是O 的弦,C 是AB 的中点,OC 交AB 于点D .若8cm,2cm AB CD ==,则O 的半径为________cm .11.(2021·内蒙古通辽·中考真题)如图,AB 是⊙O 的弦,23AB =,点C 是⊙O 上的一个动点,且60ACB ∠=︒,若点M ,N 分别是AB ,BC 的中点,则图中阴影部分面积的最大值是__________.12.(2021·青海西宁·中考真题)如图,AB 是O 的直径,弦CD AB ⊥于点E ,10CD =,2BE =,则O 的半径OC =_______.13.(2021·四川德阳·中考真题)在锐角三角形ABC 中,∠A =30°,BC =2,设BC 边上的高为h ,则h 的取值范围是 __________________.14.(2021·四川成都·中考真题)如图,在平面直角坐标系xOy 中,直线32333y x =+与O 相交于A ,B 两点,且点A 在x 轴上,则弦AB 的长为_________.15.(2021·安徽·中考真题)如图,圆O 的半径为1,ABC 内接于圆O .若60A ∠=︒,75B ∠=︒,则AB =______.16.(2020·内蒙古鄂尔多斯·中考真题)如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,∠BCD =30°,CD =23,则阴影部分面积S 阴影=_____.17.(2021·湖北恩施·中考真题)《九章算术》被尊为古代数学“群经之首”,其卷九勾股篇记载:今有圆材埋于壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?如图,大意是,今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深CD 等于1寸,锯道AB 长1尺,问圆形木材的直径是多少?(1尺=10寸)答:圆形木材的直径___________寸;18.(2020·浙江·中考真题)如图,已知AB 是半圆O 的直径,弦CD ∥AB ,CD =8.AB =10,则CD 与AB 之间的距离是_____.19.(2020·湖北襄阳·中考真题)在⊙O 中,若弦BC 垂直平分半径OA ,则弦BC 所对的圆周角等于_________°.20.(2019·宁夏·中考真题)如图,AB 是圆O 的弦,OC AB ⊥,垂足为点C ,将劣弧AB 沿弦AB 折叠交于OC 的中点D ,若210AB =,则圆O 的半径为_____.21.(2020·青海·中考真题)已知⊙O 的直径为10cm ,AB ,CD 是⊙O 的两条弦,//AB CD ,8cm AB =,6cm CD =,则AB 与CD 之间的距离为________cm .22.(2021·辽宁本溪·中考真题)如图,AB 是半圆的直径,C 为半圆的中点,(2,0)A ,(0,1)B ,反比例函数(0)ky x x=>的图象经过点C ,则k 的值为________.23.(2019·辽宁盘锦·中考真题)如图,△ABC内接于⊙O,BC是⊙O的直径,OD⊥AC于点D,连接BD,半径OE⊥BC,连接EA,EA⊥BD于点F.若OD=2,则BC=_____.∆是O的内接正三角形,点O是圆心,点D,24.(2020·贵州贵阳·中考真题)如图,ABC∠的度数是____度.E分别在边AC,AB上,若DA EB=,则DOE25.(2020·黑龙江穆棱·5⊙O中,弦AB垂直于弦CD,垂足为P,AB=CD=4,则S△ACP=______.二、解答题26.(2021·山东临沂·中考真题)如图,已知在⊙O中,AB BC CD==,OC与AD相交于点E.求证:(1)AD∥BC(2)四边形BCDE为菱形.27.(2021·北京·中考真题)如图,O是ABC的外接圆,AD是O的直径,AD BC⊥于点E.∠=∠;(1)求证:BAD CADOE=,(2)连接BO并延长,交AC于点F,交O于点G,连接GC.若O的半径为5,3求GC和OF的长.28.(2021·浙江·中考真题)如图,已知AB是⊙O的直径,ACD∠是AD所对的圆周角,∠=︒.30ACD(1)求DAB∠的度数;(2)过点D作DE ABAB=,求DF的长.⊥,垂足为E,DE的延长线交⊙O于点F.若41.C【分析】先根据垂径定理得到AD=CD,则OD为△ABC的中位线,然后根据三角形中位线性质得到BC的长.解:∵OD⊥AC,∴AD=CD,而OA=OB,∴OD为△ABC的中位线,∴BC=2OD=2×1.5=3.故选:C.【点拨】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了垂径定理和三角形中位线性质.2.B解:试题分析:连接OA,根据垂径定理得到AM=12AB=6,设OM=5x,DM=8x,得到OA=OD=13x,根据勾股定理得到OA=132,则可求周长.解:连接OA,∵CD为⊙O的直径,AB⊥CD,∴AM=12AB=6,∵OM:MD=5:8,∴设OM=5x ,DM=8x ,∴OA=OD=13x ,∴AM=22OA OM -=12x=6,∴x=12,∴OA=132, ∴⊙O 的周长=2π•OA=13π.故选B .3.B【分析】根据垂径定理,构造直角三角形,连接OC ,在RT △OCE 中应用勾股定理即可. 解:试题解析:由题意连接OC ,得OE=OB-AE=4-1=3,CE=DE= 22OC OE -=7, CD=2CE=27,故选B .4.C【分析】连接OB ,作OM ⊥AB 与M .根据垂径定理和勾股定理,求出OP 的取值范围即可判断.解:连接OB ,作OM ⊥AB 与M .∵OM ⊥AB ,∴AM =BM =12AB =4, 在直角△OBM 中,∵OB =5,BM =4,∴2222543OM OB BM =--.∴35OP ≤<,故选:C .【点拨】本题考查了垂径定理、勾股定理,常把半弦长,半圆心角,圆心到弦距离转换到同一直角三角形中,然后通过直角三角形予以求解.5.C【分析】根据垂径定理解题.解:CD 为O 的弦,AB CD ⊥于E ,CE ED ∴=,AC AD =,BC BD =,2CD BD ∴=2COB BAD ∴∠=∠故选项A 、B 、D 正确,无法判断OE BE =,故选项C 错误,故选:C【点拨】本题考查垂径定理,是重要考点,难度较易,掌握相关知识是解题关键. 6.D【分析】由垂径定理和勾股定理得4AC BC ==,再证OC 是△ABE 的中位线,得26BE OC ==,然后由勾股定理求解即可.解:∵⊙O 的半径为5,∴OA =OD =5,∵CD =2,∴3OC OD CD =-=,∵OD ⊥AB , ∴4AC BC =,∵OA =OE ,∴OC 是△ABE 的中位线,∴BE =2OC =6,∴EC ==故选:D .【点拨】本题考查了垂径定理、勾股定理以及三角形中位线定理等知识;熟练掌握垂径定理和勾股定理是解题的关键.7.8或2【分析】分两种情况考虑:当三角形ABC 为锐角三角形时,过点A 作AH 垂直于BC ,根据题意得到AH 过圆心O ,连接OB ,在直角三角形OBH 中,由OB 与BH 长,利用勾股定理求出OH 的长,进而可求出AH 的长;当三角形ABC 为钝角三角形时,同理求出AH 的长即可;解:作AH ⊥BC 于H ,连结OB ,如图,∵AB=AC ,AH ⊥BC ,∴BH=CH=12BC=4,AH必过圆心,即点O在AH上,在Rt△OBH中,OB=5,BH=4,∴OH=22OB BH-=3,当点O在△ABC内部,如图1,AH=AO+OH=5+3=8,当点O在△ABC内部,如图2,AH=AO﹣OH=5﹣3=2,∴综上所述,点A到BC的距离为8或2,故答案为8或2.【点拨】本题考查三角形的外接圆与外心,垂径定理及其推论,熟练掌握三角形的外接圆的性质和垂径定理是解答关键,还要注意分类讨论.8.32【分析】连接AO,如图,由OA=OC得到∠OCA=∠CAO=22.5°,则利用三角形外角性质可得∠AOD=45°,接着根据垂径定理得到AE=BE,且可判断△OAE为等腰直角三角形,然后根据等腰直角三角形的性质可得22OE AE AO==,322AE=,所以AB=2AE=32.解:如图,连接AO,OA=OC,∴∠OCA=∠CAO=22.5°,∴∠AOD=45°,∵CD⊥AB,∴AE=BE,△OAE为等腰直角三角形,而CD=6,∴OA=3,则2OE AE AO==32=根据垂径定理,232AB AE == . 故答案为32 .【点拨】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了等腰三角形的性质.9.6【分析】过O 点作OH EF ⊥于H ,连OF ,根据垂径定理得EH FH =,在Rt AOH 中,358AOAD OD ,30A ∠=︒,利用含30度的直角三角形三边的关系可得到142OH OA ,再利用勾股定理计算出HF ,由2EF HF 得到答案.解:过O 点作OH EF ⊥于H ,连OF ,如图则EH FH =,在Rt AOH 中,358AO AD OD ,30A ∠=︒,则142OH OA ,在Rt OHF 中,4OH =,5OF =,则223HFOF OH , 则26EF HF cm .故答案为6.【点拨】本题考查了垂径定理,含30度的直角三角形三边的关系以及勾股定理,熟悉相关性质是解题的关键.10.()3,0【分析】连接P A 、PB ,作PF AB ⊥于点F ,再根据圆的垂径定理即可得出答案. 解:如图,连接P A 、PB ,作PF AB ⊥于点F ,根据题意可知OF =1,再由垂径定理可知,AF =BF =AO +OF =2,所以OB =OF +BF =1+2=3,即B 点坐标为(3,0).故答案为:(3,0)..【点拨】本题考查垂径定理.作出PF AB ⊥,再结合垂径定理“垂直于弦的直径平分弦且平分这条弦所对的两条弧”是解答本题的关键.11.2π【分析】连接OA 、OB ,作OC ⊥AB 于C ,根据翻转变换的性质得到OB=OA ,根据等腰三角形的性质、三角形内角和定理求出∠AOB ,根据弧长公式计算即可.解:连接OA 、OB ,作OC ⊥AB 于C ,由题意得,OC=12OA , ∴∠OAC=30°,∵OA=OB ,∴∠OBA=∠OAC=30°,∴∠AOB=120°, ∴12032180180n r AB πππ⨯===, 故答案为:2π.【点拨】本题考查的是弧长的计算、垂径定理、含30度角的直角三角形的性质、翻转变换的性质,掌握弧长公式是解题的关键.12.6【分析】利用垂径定理得到AM BM =,由60AOM ∠=︒,利用正切求出AM ,得到AB 的长.解:如图,OM AB ⊥,AM BM ∴=,∵60AOM ∠=︒,3OM = ∴tan 333AM OM AOM =∠,26AB AM ∴==,故答案为6.【点拨】本题主要考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.同时也考查了解三角形.13.2【分析】根据垂径定理得到CE =DE ,∠CEO =90°,根据圆周角定理得到∠COE =30°,根据直角三角形的性质得到CE =12OC =1,最后由垂径定理得出结论. 解:∵O 的直径AB 垂直于弦CD ,∴CE DE =,90CEO ∠=︒,∵15A ∠=︒,∴30COE ∠=︒,在Rt OCE 中,2OC =,30COE ∠=︒, ∴112CE OC ==,(直角三角形中,30度角所对的直角边是斜边的一半) ∴22CD CE ==.【点拨】本题是圆的计算题,考查了垂径定理和勾股定理的运用,是常考题型;熟练掌握垂直弦的直径平分这条弦,并且平分弦所对的两条弧是解题的关键.14.(1)见解析;(2)67.5°或72°【分析】(1)连接OA .利用垂径定理以及等腰三角形的性质解决问题即可.(2)分三种情形:①若BD=CB ,则∠C=∠BDC=∠ABD+∠BAC=3∠ABD .②若CD=CB ,则∠CBD=∠CDB=3∠ABD .③若DB=DC ,则D 与A 重合,这种情形不存在.分别利用三角形内角和定理构建方程求解即可.解:(1)连接OA ,如下图1所示:∵AB=AC,∴AB AC,∴OA⊥BC,∴∠BAO=∠CAO.∵OA=OB,∴∠ABD=∠BAO,∴∠BAC=2∠ABD.(2)如图2中,延长AO交BC于H.①若BD=CB,则∠C=∠BDC=∠ABD+∠BAC=3∠ABD.∵AB=AC,∴∠ABC=∠C,∴∠DBC=2∠ABD.∵∠DBC+∠C+∠BDC=180°,∴8∠ABD=180°,∴∠C=3∠ABD=67.5°.②若CD=CB,则∠CBD=∠CDB=3∠ABD,∴∠C=4∠ABD.∵∠DBC+∠C+∠CDB=180°,∴10∠ABD=180°,∴∠BCD=4∠ABD=72°.③若DB=DC,则D与A重合,这种情形不存在.综上所述:∠C的值为67.5°或72°.【点拨】本题考查了垂径定理,等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,注意分类讨论思想的应用.1.45︒【分析】先根据垂径定理可得122AC AB ==,再根据等腰直角三角形的判定与性质即可得. 解:由题意得:OC AB ⊥,4AB =,122AC AB ∴==, 2OC =,AC OC ∴=,Rt AOC ∴是等腰直角三角形,45AOC =∴∠︒,故答案为:45︒.【点拨】本题考查了垂径定理、等腰直角三角形的判定与性质,熟练掌握垂径定理是解题关键.2.123解:试题分析:圆心为O ,AB 为弦,半径与弦的交点为C ,则OC ⊥AB ,OA=12,OC=6,根据勾股定理可得AC=63,所以AB=2AC=123.考点:垂径定理.3.3【分析】连接OC ,由垂径定理可求出CH 的长度,在Rt △OCH 中,根据CH 和⊙O 的半径,即可由勾股定理求出OH 的长.解:连接OC ,Rt △OCH 中,OC=12AB=5,CH=12CD=4; 由勾股定理,得:2222543OC CH --;即线段OH 的长为3.故答案为:3.【点拨】本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.4.12【分析】如图,作OC⊥AB于C,连接OA,根据垂径定理得到AC=BC=12AB=5,然后利用勾股定理计算OC的长即可.解:如图,作OC⊥AB于C,连接OA,则AC=BC=12AB=5,在Rt△OAC中,OC=22135=12,所以圆心O到AB的距离为12cm.故答案为:12.【点拨】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.5.60°或120°【分析】∠ACB和∠ADB为弦AB所对的圆周角,连接OA、OB,如图,过O点作OH⊥AB于H,根据垂径定理得到AH=BH=732,则利用余弦的定义可求出∠OAH=30°,所以∠AOB =120°,然后根据圆周角定理得到∠ACB=60°,根据圆内接四边形的性质得到∠ADB=120°.解:∠ACB和∠ADB为弦AB所对的圆周角,连接OA、OB,如图,过O点作OH⊥AB于H,则AH=BH=12AB73,在Rt△OAH中,∵cos∠OAH=AHOA=73273∴∠OAH=30°,∵OA=OB,∴∠OBH=∠OAH=30°,∴∠AOB=120°,∴∠ACB=1∠AOB=60°,2∵∠ADB+∠ACB=180°,∴∠ADB=180°﹣60°=120°,即弦AB所对的圆周角的度数为60°或120°.故答案为60°或120°.【点拨】本题考查了圆周角定理:同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了垂径定理.6.2π【分析】连接OQ,以OA为直径作⊙C,确定出点Q的运动路径即可求得路径长.解:连接OQ.在⊙O中,∵AQ=PQ,OQ经过圆心O,∴OQ⊥AP.∴∠AQO=90°.∴点Q在以OA为直径的⊙C上.∴当点P在⊙O上运动一周时,点Q在⊙C上运动一周.∵AB=4,∴OA=2.∴⊙C的周长为2π.∴点Q经过的路径长为2π.故答案为:2π【点拨】本题考查了垂径定理的推论、圆周角定理的推论、圆周长的计算等知识点,熟知相关定理及其推论是解题的基础,确定点Q的运动路径是解题的关键.7.12或4【分析】分∠OAM=30°,∠AOM=30°,两种情况分别利用正切的定义求解即可. 解:∵OM⊥AB,∴AM=BM,若∠OAM=30°,则tan∠OAM=2333 OMAM AM==,∴AM=6,∴AB=2AM=12;若∠AOM=30°,则tan∠AOM=3323AM AMOM==,∴AM=2,∴AB=2AM=4.故答案为:12或4.【点拨】本题考查了垂径定理,三角函数,解题时要根据题意分情况讨论.8.4【分析】圆的两弦的中垂线的交点,就是圆心;连接AC,作AC的中垂线,与直线CD的交点就是圆心,已知圆心即可作出圆;连接圆心与A,根据勾股定理即可求得半径.解:如图,连接OA ,∵CD 是弦AB 的垂直平分线, ∴1 3.22AD AB ==, 设圆的半径是r .在直角△ADO 中, 3.2 1.6AO r AD DO r ===-,, .根据勾股定理得,()2223.2 1.6r r =+- ,∴4r =故答案为:4【点拨】本题主要考查圆的确定和垂径定理,熟练掌握垂径定理得出关于半径的方程是解题的关键.9.(4,35)-【分析】如图,连接BC ,设圆与x 轴相切于点D ,连接MD 交BC 与点E ,结合已知条件,则可得BC MD ⊥,勾股定理求解EM ,进而即可求得B 的坐标.解:如图,连接BC ,设圆与x 轴相切于点D ,连接MD 交BC 与点E ,则MD x ⊥轴,AB 为直径,则90ACB ∠=︒,BC MD ∴⊥,//BC x ∴轴,()23M ,,3MB MD ∴==,2CE EB ==, 2222325ME MB EB ∴=-=-=,CB 4=,35DE MD ME ∴=-=-,//BC x 轴,(4,35)B ∴-.故答案为:(4,35)-.【点拨】本题考查了圆的性质,直径所对的圆周角是直角,垂径定理,切线的性质,勾股定理,坐标与图形,掌握以上知识是解题的关键.10.5【分析】连接OA ,由垂径定理得AD =4cm ,设圆的半径为R ,根据勾股定理得到方程2224(2)R R =+-,求解即可解:连接OA ,∵C 是AB 的中点,∴OC AB ⊥∴14cm 2AD AB == 设O 的半径为R ,∵2cm CD =∴(2)cm OD OC CD R =-=-在Rt OAD ∆中,222OA AD OD =+,即2224(2)R R =+-,解得,5R =即O 的半径为5cm故答案为:5【点拨】本题考查的是垂径定理及勾股定理,根据垂径定理判断出OC 是AB 的垂直平分线是解答此题的关键.11.4334【分析】阴影面积由弓形ADB 面积加上△MNB 的面积,而弓形面积不变,因此只需要求出△MNB 的最大面积,由M ,N 为AB ,BC 的中点,所以MN 是△ABC 的中位线,所以△BMN ∽△BAC ,所以S △BMN =14S △ABC ,求出△ABC 的最大面积即可,而AB 边为定值,当点C 到AB 的距离最大,三角形面积最大,当CM ⊥AB 时,三角形面积最大,即可求出阴影面积最大值.解:连接OA ,OB ,连接OM ,如图∵60ACB ∠=︒ ,∴2120AOB ACB ∠=∠=︒,∵M 为AB 中点,∴OM ⊥AB ,132AMBM AB ,60AOM BOM∴30OAM ∠=︒,设OM =x ,则AO =2x ,在Rt △AOM 中222,OM AM AO 即 222(3)(2)x x += , 解得x =1, 即1,2OM AO ,S 弓形ADB =S 扇形OADB AOB S =2120214231336023,∵M ,N 为边AB ,BC 的中点,∴MN ∥AC ,∴BMNBAC , ∴14BMN ABC S S ,当C ,O ,M 在同一直线上时,△ABC 的面积最大,由垂径定理可知,AC =BC ,又∵∠ACB =60°,∴△ABC 为等边三角形,∴AC =,在Rt △ACM 中, 2222(23)(3)3CMAC AM ,∴ABC S的最大值为:132⨯=, ∴1133=33444BMN ABC S S , ∴阴影面积的最大值为:4334333434. 故填:4334. 【点拨】本题考查弓形面积,扇形面积,圆心角与圆周角关系,三角形的中位线,相似三角形的性质,垂径定理,勾股定理,解题关键是将不规则面积转化为规则图形的面积. 12.294【分析】设半径为r ,则OC OB r ==,得到2OE r =-,由垂径定理得到5CE =,再根据勾股定理,即可求出答案.解:由题意,设半径为r ,则OC OB r ==,∵2BE =,∴2OE r =-,∵AB 是O 的直径,弦CD AB ⊥于点E ,∴点E 是CD 的中点,∵10CD =,∴1052CE ==, 在直角△OCE 中,由勾股定理得222OC CE OE =+, 即2225(2)r r =+-,解得:294r =. 故答案为:294. 【点拨】本题考查了垂径定理,勾股定理,解题的关键是熟练掌握垂径定理和勾股定理进行解题.13.2323h <+ 【分析】如图,BC 为O 的弦,2OB OC ==,证明OBC ∆为等边三角形得到60BOC ∠=︒,则根据圆周角定理得到30BAC ∠=︒,作直径BD 、CE ,连接BE 、CD ,则90DCB EBC ∠=∠=︒,当点A 在DE 上(不含D 、E 点)时,ABC ∆为锐角三角形,易得323CD BC ==,当A 点为DE 的中点时,A 点到BC 的距离最大,即h 最大,延长AO 交BC 于H ,如图,根据垂径定理得到AH BC ⊥,所以1BH CH ==,3OH =,则23AH =+,然后写出h 的范围. 解:如图,BC 为O 的弦,2OB OC ==,2BC =,OB OC BC ∴==,OBC ∴∆为等边三角形,60BOC ∴∠=︒,1302BAC BOC ∴∠=∠=︒, 作直径BD 、CE ,连接BE 、CD ,则90DCB EBC ∠=∠=︒,∴当点A 在DE 上(不含D 、E 点)时,ABC ∆为锐角三角形,在Rt BCD ∆中,30D BAC ∠=∠=︒,323CD BC ∴==,当A 点为DE 的中点时,A 点到BC 的距离最大,即h 最大,延长AO 交BC 于H ,如图,A 点为DE 的中点,∴AB AC =,AH BC ∴⊥,1BH CH ∴==,33OH BH ∴==,23AH OA OH ∴=+=+,h ∴的范围为2323h <+.故答案为2323h <+.【点拨】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.半圆(或直径)所对的圆周角是直角,90︒的圆周角所对的弦是直径.也考查了垂径定理和勾股定理.14.【分析】过O作OE⊥AB于C,根据垂径定理可得AC=BC=12AB,可求OA=2,OD在Rt△AOD中,由勾股定理AD=△OAC∽△DAO,由相似三角形性质可求AC解:过O作OE⊥AB于C,∵AB为弦,∴AC=BC=12AB,∵直线y与O相交于A,B两点,∴当y=0x=,解得x=-2,∴OA=2,∴当x=0时,y=∴OD在Rt△AOD中,由勾股定理AD=∵∠ACO=∠AOD=90°,∠CAO=∠OAD,∴△OAC∽△DAO,AC AOAO AD=即2AOACAD===,∴AB=2AC故答案为【点拨】本题考查直线与圆的位置关系,垂径定理,直线与两轴交点,勾股定理,三角形相似判定与性质,掌握以上知识、正确添加辅助线是解题关键.15.2【分析】先根据圆的半径相等及圆周角定理得出∠ABO =45°,再根据垂径定理构造直角三角形,利用锐角三角函数解直角三角形即可解:连接OB 、OC 、作OD ⊥AB∵60A ∠=︒∴∠BOC =2∠A =120°∵OB =OC∴∠OBC =30°又75B ∠=︒∴∠ABO =45°在Rt △OBD 中,OB =1∴BD ==22∵OD ⊥AB ∴BD =AD 2∴AB 22【点拨】本题考查垂径定理、圆周角定理,正确使用圆的性质及定理是解题关键16.23π 【分析】连接OC .证明OC ∥BD ,推出S 阴=S 扇形OBD 即可解决问题.解:连接OC .∵AB ⊥CD ,∴BC BD =,CE =DE 3∴∠COD =∠BOD ,∵∠BOD =2∠BCD =60°,∴∠COB =60°,∵OC =OB =OD ,∴△OBC ,△OBD 都是等边三角形,∴OC =BC =BD =OD ,∴四边形OCBD 是菱形,∴OC//BD ,∴S △BDC =S △BOD , ∴S 阴=S 扇形OBD , ∵OD =sin 60ED ︒=2, ∴S 阴=2602360π••=23π, 故答案为:23π. 【点拨】本题考查扇形的面积,菱形的判定和性质,平行线的判定和性质等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.17.26【分析】延长DC ,交⊙O 于点E ,连接OA ,由题意易得DE 即为⊙O 的直径,1CD =寸,10AB =寸,则有5AC =寸,设OA =x 寸,最后根据垂径定理及勾股定理可进行求解. 解:延长DC ,交⊙O 于点E ,连接OA ,如图所示:由题意得CD ⊥AB ,点C 为AB 的中点,1CD =寸,10AB =寸,∴DE 为⊙O 的直径,∴5AC =寸,设OA =x 寸,则()1OC x =-寸,∴在Rt △AOC 中,222AC OC OA +=,即()22251x x +-=,解得:13x =,∴圆形木材的直径为26寸;故答案为26.【点拨】本题主要考查垂径定理,熟练掌握垂径定理是解题的关键.18.3【分析】过点O 作OH ⊥CD 于H ,连接OC ,先利用垂径定理得到CH=4,然后在Rt △OCH 中,利用勾股定理即可求解.解:过点O 作OH ⊥CD 于H ,连接OC ,如图,则CH =DH =12CD =4,在Rt △OCH 中,OH 2254-3,所以CD 与AB 之间的距离是3.故答案为3.【点拨】此题主要考查垂径定理和勾股定理,熟练掌握垂径定理和勾股定理是解题关键. 19.120°或60°【分析】根据弦BC 垂直平分半径OA 及OB=OC 证明四边形OBAC 是矩形,再根据OB=OA ,OE=12求出∠BOE=60°,即可求出答案.解:设弦BC 垂直平分半径OA 于点E ,连接OB 、OC 、AB 、AC ,且在优弧BC 上取点F ,连接BF 、CF ,∴OB=AB ,OC=AC ,∵OB=OC ,∴四边形OBAC 是菱形,∴∠BOC=2∠BOE ,∵OB=OA ,OE=12, ∴cos ∠BOE=12,∴∠BOE=60°,∴∠BOC=∠BAC=120°,∴∠BFC=12∠BOC=60°,∴ 弦BC 所对的圆周角为120°或60°,故答案为:120°或60°.【点拨】此题考查圆的基本知识点:圆的垂径定理,同圆的半径相等的性质,圆周角定理,菱形的判定定理及性质定理,锐角三角函数,熟练掌握圆的各性质定理是解题的关键. 20.32.【分析】连接OA ,设半径为x ,用x 表示OC ,根据勾股定理建立x 的方程,便可求得结果.解:解:连接OA ,设半径为x ,将劣弧AB 沿弦AB 折叠交于OC 的中点D ,23OC x ∴=,OC AB ⊥, 1102AC AB ∴= 222OA OC AC -=,222()103x x ∴-=, 解得,32x =.故答案为32.【点拨】本题主要考查了圆的基本性质,垂径定理,勾股定理,关键是根据勾股定理列出半径的方程.21.7或1.【分析】分两种情况考虑:当两条弦位于圆心O 同一侧时,当两条弦位于圆心O 两侧时;利用垂径定理和勾股定理分别求出OE 和OF 的长度,即可得到答案.解:分两种情况考虑:当两条弦位于圆心O 一侧时,如图1所示,过O 作OE ⊥CD ,交CD 于点E ,交AB 于点F ,连接OC ,OA ,∵AB ∥CD ,∴OE ⊥AB ,∴E 、F 分别为CD 、AB 的中点,∴CE=DE=12CD=3cm ,AF=BF=12AB=4cm ,在Rt △AOF 中,OA=5cm ,AF=4cm ,根据勾股定理得:OF=3cm ,在Rt △COE 中,OC=5cm ,CE=3cm ,根据勾股定理得:OE═4cm ,则EF=OE -OF=4cm -3cm=1cm ;当两条弦位于圆心O 两侧时,如图2所示,同理可得EF=4cm+3cm=7cm ,综上,弦AB 与CD 的距离为7cm 或1cm .故答案为:7或1.【点拨】此题考查了垂径定理,勾股定理,利用了分类讨论的思想,熟练掌握垂径定理是解本题的关键.22.94 【分析】连接CD ,并延长交x 轴于点P ,分别求出PD ,PO ,CD 和PC 的长,过点C 作CF ⊥x 轴于点F ,求出PF ,CF 的长,进一步得出点C 的坐标,从而可得出结论. 解:连接CD ,并延长交x 轴于点P ,如图,∵C 为半圆的中点,∴CP ⊥AB ,即∠ADP =90°又∠AOB =90°∴∠APD =∠ABO∵A (2,0),B (0,1)∴AO =2,OB =1 ∴2222125AB AO BO +=+= ∴152AD AB == 又1tan 2PD OB A AD OA === ∴115522PD AD === ∴5535PC PD CD =+= ∴2222555()()424AP PD AD =++ ∴53244OP AO AP =-=-= 过点C 作CF ⊥x 轴于点F , ∴sin sin 5CF AO APD ABO PC AB ∠=∠=== ∴353255CF PC == ∴22223533()()424PF PC CF --∴333442OF OP PF =+=+== ∴点C 的坐标为(32,32) ∵点C 在反比例函数(0)k y x x=>的图象上 ∴339224k =⨯=, 故答案为:94 【点拨】本题考查反比例函数的解析式,解题的关键是利用过某个点,这个点的坐标应适合这个函数解析式;求出点C 坐标是关键.23.【分析】根据垂径定理得到AD =DC ,由等腰三角形的性质得到AB =2OD =2×2=4,得到∠BAE =∠CAE =12∠BAC =12×90°=45°,求得∠ABD =∠ADB =45°,求得AD =AB =4,于是得到DC =AD =4,根据勾股定理即可得到结论.解:∵OD ⊥AC ,∴AD =DC ,∵BO =CO ,∴AB =2OD =2×2=4,∵BC 是⊙O 的直径,∴∠BAC =90°,∵OE ⊥BC ,∴∠BOE =∠COE =90°,∴BE EC =,∴∠BAE =∠CAE =12∠BAC =12×90°=45°,∵EA ⊥BD ,∴∠ABD =∠ADB =45°,∴AD =AB =4,∴DC =AD =4,∴AC =8,∴BC故答案为【点拨】本题考查了三角形的外接圆与外心,圆周角定理,垂径定理,勾股定理,正确的识别图形是解题的关键.24.120【分析】本题可通过构造辅助线,利用垂径定理证明角等,继而利用SAS定理证明三角形全等,最后根据角的互换结合同弧所对的圆周角等于圆心角的一半求解本题.解:连接OA,OB,作OH⊥AC,OM⊥AB,如下图所示:因为等边三角形ABC,OH⊥AC,OM⊥AB,由垂径定理得:AH=AM,又因为OA=OA,故△OAH≅△OAM(HL).∴∠OAH=∠OAM.又∵OA=OB,AD=EB,∴∠OAB=∠OBA=∠OAD,∴△ODA≅△OEB(SAS),∴∠DOA=∠EOB,∴∠DOE=∠DOA+∠AOE=∠AOE+∠EOB=∠AOB.又∵∠C=60°以及同弧AB,∴∠AOB=∠DOE=120°.故本题答案为:120.【点拨】本题考查圆与等边三角形的综合,本题目需要根据等角的互换将所求问题进行转化,构造辅助线是本题难点,全等以及垂径定理的应用在圆综合题目极为常见,圆心角、弧、圆周角的关系需熟练掌握.25.12或32或92【分析】作OE垂直于AB于E,OF垂直于CD于F,连接OD、OB,则可以求出OE、OF 的长度,进而求出OP的长度,进一步得PE与PF长度,最后可求出答案.解:如图所示,作OE垂直于AB于E,OF垂直于CD于F,∴AE =BE =1AB 2=2,DF=CF=12CD =2, 在Rt OBE △中,∵5BE=2,∴OE=1,同理可得OF=1,∵AB 垂直于CD ,∴四边形OEPF 为矩形,又∵OE =OF =1,∴四边形OEPF 为正方形,又∵ACP S △ 有如图四种情况,∴(1)ACP S △=12AP∙CP=12×1×3=32, (2)ACP S △=12AP∙PC=12×1×1=12, (3)ACP S △=12PC∙PA=12×3×3=92, (4)ACP S △=12AP∙PC=12×3×1=32, 故答案为:12或32或92【点拨】本题主要考查的是垂径定理和勾股定理还有圆的综合运用,熟练掌握方法是关键. 26.(1)见解析;(2)见解析【分析】(1)连接BD ,根据圆周角定理可得∠ADB =∠CBD ,根据平行线的判定可得结论;(2)证明△DEF ≌△BCF ,得到DE =BC ,证明四边形BCDE 为平行四边形,再根据BC CD 得到BC =CD ,从而证明菱形.。
垂径定理辅助线的做法
垂径定理是圆的基本性质之一,它指出经过圆心的直径垂直于该圆的弦,并且平分弦所对的弧。
在解决与垂径定理相关的问题时,通常需要添加辅助线来帮助证明。
以下是一些常见的垂径定理辅助线的做法:
1. 连接弦与直径的交点与圆心的线段。
这条线段是直径,它将垂直于弦,并且平分弦所对的弧。
2. 作出弦的中垂线。
中垂线将通过圆心并与直径垂直。
这条线将平分弦,并且平分弦所对的弧。
3. 作出圆心到弦的垂足,然后连接垂足与弦与直径的交点。
这条线段将垂直于弦,并且平分弦所对的弧。
4. 作出圆心到弦的两个端点的线段,然后连接这两个线段的延长线与直径的交点。
这两个交点将平分弦,并且平分弦所对的弧。
以上是常见的垂径定理辅助线的做法,可以根据具体的问题选择合适的方法来添加辅助线,帮助证明垂径定理。
专题12垂径定理、圆周角和圆心角的关系(6个知识8种题型)【目录】倍速学习四种方法【方法一】脉络梳理法知识点1.垂径定理(重点)知识点2.垂径定理的推论(难点)知识点3.圆周角(重点)知识点4.圆周角定理(重点)知识点5.圆周角定理的推论(难点)知识点6.圆内接四边形的概念与性质(重点)【方法二】实例探索法题型1.最短距离问题题型2.辅助线的添加方法题型3.方程思想题型4.垂径定理的实际应用题型5.圆中角度的计算题型6.圆内接四边形与圆周角定理的综合应用题型7.动点问题题型8.圆周角定理与其他几何知识的综合【方法三】成果评定法【学习目标】1.掌握垂径定理,并会运用垂径定理进行简单的计算。
2.掌握与垂径定理有关的推论,并能运用这一推论解决相关问题。
3.认识圆周角,掌握圆周角和圆心角的关系,直径所对的圆周角的特征。
4.能运用圆心角和圆周角的关系、直径所对的圆周角的特征解决相关问题。
【知识导图】【倍速学习五种方法】【方法一】脉络梳理法知识点1.垂径定理(重点)垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.【例1】.(2022秋•锡山区校级月考)如图,在⊙O中,OC⊥AB于点C,若⊙O的半径为10,AB=16,则OC的长为.【变式】.(2022秋·江苏南京·九年级南京市第一中学校考阶段练习)如图,AB是⊙O的直径,弦CD⊥AB 于点E,则下列结论一定正确的个数有()①CE =DE ;②BE =OE ;③ CBBD =;④∠CAB =∠DAB .A .4个B .3个C .2个D .1个知识点2.垂径定理的推论(难点)推论1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.推论2:弦的垂直平分线经过圆心,并且平分弦所对的两条弧.推论3:平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.【例2】.(2022秋·九年级统考期中)如图,O 的弦8AB =,M 是AB 的中点,且3OM =,则O 的半径等于()A .7B .4C .5D .6【变式】.(2023秋·浙江台州·九年级统考期末)如图,在正方形网格中,一条圆弧经过、、A B C 三点,那么这条圆弧所在圆的圆心是().A .点PB .点QC .点RD .点M知识点3.圆周角(重点)1.圆周角定义:像图中∠AEB 、∠ADB 、∠ACB 这样的角,它们的顶点在圆上,并且两边都与圆相交的角叫做圆周角.2.圆心角与圆周角的区别与联系【例3】观察下图中角的顶点与两边有何特征?指出哪些角是圆周角?知识点4.圆周角定理(重点)在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.【例4】如图,100AOB ∠= ,点C 在O 上,且点C 不与A、B 重合,则ACB ∠的度数为()A.50 B.80 或50 C.130 D.50 或130【变式】如图,AB 是⊙O 的弦,∠AOB=80°则弦AB 所对的圆周角是.知识点5.圆周角定理的推论(难点)半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.要点诠释:(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交.(2)圆周角定理成立的前提条件是在同圆或等圆中.(3)圆心与圆周角存在三种位置关系:圆心在圆周角的一边上;圆心在圆周角的内部;圆心在圆周角的外部.(如下图)【例5】(2023秋·江苏·九年级专题练习)如图,CD 是O 的直径,A 、B 是O 上的两点,若40ACD ∠=︒,则ABC ∠的度数为()A .50︒B .40︒C .20︒D .140︒【变式】如图,⊙A 过点O(0,0),C(3,0),D(0,1),点B 是x 轴下方⊙A 上的一点,连接BO 、BD ,则∠OBD 的度数是.知识点6.圆内接四边形的概念与性质(重点)(1)定义:圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形.(2)性质:圆内接四边形对角互补,外角等于内对角(即它的一个外角等于它相邻内角的对角).【例6】(2022秋•靖江市期末)如图,已知四边形ABCD内接于⊙O.求证:∠A+∠C=180°.【变式】如图已知四边形ABCD内接于⊙O,∠ABC=70°,则∠ADC的度数是.【方法二】实例探索法题型1.最短距离问题题型2.辅助线的添加方法A.6B.题型3.方程思想3.(2022秋•江宁区校级月考)如图是一个隧道的横截图,它的形状是以点O为圆心的一部分,如果M是⊙O中弦CD的中点,EM经过圆心O交⊙O于点E,若CD=4m,EM=6m,则⊙O的半径为m.题型4.垂径定理的实际应用4.(2022秋•如皋市校级月考)兴隆蔬菜基地建圆弧形蔬菜大棚的剖面如图所示,已知AB=16m,半径OA=10m,高度CD为m.5.(2022•钟楼区校级模拟)筒车是我国古代发明的一种水利灌溉工具,如图1,筒车盛水桶的运行轨道是以轴心O为圆心的圆,如图2,已知圆心O在水面上方,且⊙O被水面截得弦AB长为4米,⊙O半径长为3米.若点C为运行轨道的最低点,则点C到弦AB所在直线的距离是()A.1米B.2米C.米D.米6.(2022秋•泰州月考)如图,有一座拱桥是圆弧形,它的跨度AB=60米,拱高PD=18米.(1)求圆弧所在的圆的半径r的长;(2)当洪水泛滥到跨度只有30米时,要采取紧急措施,若拱顶离水面只有4米,即PE=4米时,是否要采取紧急措施?题型5.圆中角度的计算7.(2022秋•鼓楼区期末)如图,AB为⊙O的直径,D是弦AC延长线上一点,AC=CD,DB的延长线交⊙O 于点E,连接CE.(1)求证∠A=∠D;(2)若的度数为108°,求∠E的度数.题型6.圆内接四边形与圆周角定理的综合应用8.(2022秋•宿城区期末)如图,四边形ABCD内接于一圆,CE是边BC的延长线.(1)求证∠DAB=∠DCE;(2)若∠DAB=60°,∠ACB=70°,求∠ABD的度数.9.(2022秋•镇江期中)如图,四边形ABCD为⊙O的内接四边形,∠EAD=∠BAC,BA、CD延长线交于点E.求证:BD=BC.题型7.动点问题10.(2023·江苏泰州·统考中考真题)已知:A 、B 为圆上两定点,点C 在该圆上,C ∠为 AB 所对的圆周角.知识回顾(1)如图①,O 中,B 、C 位于直线AO 异侧,135AOB C ︒∠+∠=.①求C ∠的度数;②若O 的半径为5,8AC =,求BC 的长;逆向思考(2)如图②,P 为圆内一点,且120APB ∠<︒,PA PB =,2APB C ∠=∠.求证:P 为该圆的圆心;拓展应用(3)如图③,在(2)的条件下,若90APB ∠=︒,点C 在P 位于直线AP 上方部分的圆弧上运动.点D 在P 上,满足2CD CB CA =-的所有点D 中,必有一个点的位置始终不变.请证明.题型8.圆周角定理与其他几何知识的综合11.(2023•滨江区一模)如图1,AB 为⊙O 的直径,CD ⊥AB 于点E ,,BF 与CD 交于点G .(1)求证:CD =BF .(2)若BE =1,BF =4,求GE 的长.(3)连结GO ,OF ,如图2,求证:.【方法三】成果评定法一.选择题(共6小题)1.(2023秋•惠山区校级期中)如图,AB 是O 的直径,弦CD AB ⊥于点E ,10AB cm =,8CD cm =,则BE 的长为()A .5cmB .3cmC .2cmD .1.5cm2.(2023春•鼓楼区校级月考)如图,在正方形ABCD 中,4AB =,以边CD 为直径作半圆O ,E 是半圆O 上的动点,EF DA ⊥于点F ,EP AB ⊥于点P ,设EF x =,EP y =22x y +()A .231-B .423-C .251-D .252-3.(2023秋•滨湖区校级期中)“圆材埋壁”是我国古代数学名著《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺.问:径几何?”用现在的几何语言表达即:如图,弦AB CD ⊥,垂足为点D ,1CD =寸,1AB =尺(10寸),则圆的直径长度是()A .12寸B .24寸C .13寸D .26寸4.(2023秋•铜山区校级月考)如图,点A 、B 、C 在O 上,30ACB ∠=︒,则AOB ∠的度数是()A .30︒B .40︒C .60︒D .65︒5.(2023•苏州)如图,AB 是半圆O 的直径,点C ,D 在半圆上, CDDB =,连接OC ,CA ,OD ,过点B 作EB AB ⊥,交OD 的延长线于点E .设OAC ∆的面积为1S ,OBE ∆的面积为2S ,若1223S S =,则tan ACO ∠的值为()A 2B .223C .75D .326.(2023秋•梁溪区校级期中)如图,DCE ∠是O 内接四边形ABCD 的一个外角,若82DCE ∠=︒,那么BOD ∠的度数为()A.160︒B.164︒C.162︒D.170︒二.填空题(共6小题)7.(2023秋•滨海县期中)如图,点A,B,C,D在OABD∠=.∠=︒,则ADC上,30CAD∠=︒,508.(2023秋•镇江期中)如图,某圆弧形拱桥的跨度16=,则该拱桥的半径为m.CD m=,拱高5AB m9.(2023秋•高新区校级期中)如图是一个圆柱形的玻璃保温水杯,将其横放,截面是个半径为5cm的圆,杯内水面8=,则水的最大深度CD是cm.AB cm10.(2023秋•丰县期中)如图,点A是半圆上的一个三等分点,点B是 AD的中点,P是直径CD上一动点,O+的最小值为.的半径是2,则PA PB11.(2023秋•鼓楼区校级月考)如图,已知OPA=,的弦,点P在弦AB上.若4的半径为7,AB是OPB=,则OP的长为.612.(2023秋•建湖县期中)如图,点A 、B 、C 在O 上,//BC OA ,连接BO 并延长,交O 于点D ,连接AC 、DC .若18A ∠=︒,则D ∠的大小为︒.三.解答题(共6小题)13.(2023秋•仪征市期中)如图,在以点O 为圆心的两个同心圆中,大圆的弦AB 交小圆于点C 、D .(1)求证AC BD =;(2)若3AC =,大圆和小圆的半径分别为6和4,则CD 的长度是.14.(2023秋•广陵区期中)如图,四边形ABCD 内接于O ,BC 为O 的直径,//OA CD .(1)若70ABC ∠=︒,求BAD ∠的度数;(2)求证: AB AD =.15.(2023秋•句容市期中)已知:如图,C ,D 是以AB 为直径的O 上的两点,分别连接OC 、OD 、AD 、CD 、BC ,且//OD BC ,求证:AD DC =.16.(2023秋•淮安区期中)某地有一座圆弧形拱桥,桥下水面宽度AB为24m,拱顶高出水面8m(即8)=,CD m ⊥,OC AB(1)求出该圆弧形拱桥所在圆的半径;(2)现有一艘宽10m,船舱高出水面7.5m的货船要经过这里,此货船能顺利通过这座桥吗?17.(2023秋•邳州市期中)“圆材埋壁”是我国古代著名数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”此问题的实质是解决下面的问题:如图,CD为OAB=,求CD的长.的直径,弦AB CDCE=,10⊥于点E,118.(2023秋•泗阳县期中)如图,AB是O∠的度数.∠=︒,求ABDDCB的弦,30的直径,CD是O。
专题提升5与垂径定理有关的辅助线i如图所示为一圆柱形输水管的横截面,阴影部分为有水部分,若水面水管底部到水面的距离为 2 cm则该输水管的半径为(C)【解】连结OA过点O作OC L AB交AB于点D设该输水管的半径为r(cm).■/ AB宽为 8 cm ,••• AD= 4 cm.•/ DC= 2 cm,「. OD= (r — 2) cm , r2= (r — 2)2+ 42,• r = 5(cm).T CD= 8, OC= 5,「. 0D= 3.2 2 2由已知,得CDL AB贝U AD= 5 — 3 , 解得AD= 4. • AB= 8.3.已知O O的直径CD= 10 cm , AB是O O的弦,ABL CD垂足为M且AB= 8 cm,贝U AC的长为(C)A. 2 i15 cm B . 4 .'5 cmC. 2 '5 cm 或 4 ''5 cm D . 2 :3 cm 或 4 '3 cm【解】连结AO当点C的位置如解图①所示时,易得AC= 'AM+ ClM= ,'42 + 82 = 4 ■'5(cm); 当点C的位置如解图②所示时,易得AC= ,;22+ 42= 2 : 5(cm).(第3题解)4.如图,O O的直径为10 cm ,弦AB为8 cm, P是弦AB上一点.若OP的长是整数,则满足条件的点P 有(D)A. 3 cmB. 4 cm(第1题)C. 5 cmD. 6 cmAB宽为8 cm,输2.如图,石拱桥的桥顶到水面的距离A. 4 mB. 5 m【解】连结0AC. 6 mD. 8 mOC为5 m,则水面宽AB为(D)【解】 连结OC OA1 ••• AB= 2CD OP= 2CDr 2 = OP + CP = 2OP,• R = .'5OP r = :'2OP • R =-50.6.如图,O O 的半径OP= 10 cm,弦AB 过OP 的中点 Q 且/ OQ B= 45°,则弦 AB 的弦心距 为©fcm,弦AB 的长为5 14cm.(第6题)【解】 过点O 作OCL AB 于点C,连结OA•••O O 的半径OP= 10 cm ,弦AB 过OP 的中点 Q• OQ= 5 cm.•••/ OCQ : 90°, / OQ & 45° ,A. 2 个B. 3 个C. 【解】 过点O 作OCL AB 于点C,连结 1•/ OA= 5, AC= 2AB= 4,「. OC= 3.• 3w OPc 5,「. OP 的长为 3 或 4 或 5.当O 片3时,点P 只能与点C 重合;当O 圧4时, 2个点P;当OP= 5时,点P 与点A 或点B 重合. 综上所述,满足条件的点 P 有5个.5.如图,在以点 O 为圆心的同心圆中,大圆的弦 弦心距OP = 2CD 4个OAD. 5个点P 可以在 AC 上,也可以在 BC 上,•••有 AB 交小圆于点 C, D, AB= 2CD 弦AB 的 OPL AB•••OP = CP =2AF ? •/ R 2=O P + A P = 50P ,(第4题)•••△ OCC为等腰直角三角形,••• 0C= cm.在Rt △ AOC 中,根据勾股定理,得 AO ,:0A — 00 弓4cm , •- AB= 2AG= 5 14 cm.7.已知O 0的半径为2,弦BC = 2 :'3 , A 是O O 上一点,且AB= AC 直线A0与 BC 交于点D, 则AD 的长为1或3.【解】 VO 0的半径为2,弦BC = 2 (3, A 是O 0上一点,且AB= AC • ADL BC1• BD= 2BC = ;3分两种情况讨论:①如解图①所示,连结 0B在 Rt △ OBD 中, B D + O D= O B, 即(⑶2+ 0D = 22,解得 0D= 1.• AD= 0A- 0D= 2 — 1= 1.②如解图②所示,连结 0B 同理于①,得AD= OAF 0D= 2+ 1 = 3.&如图,在 Rt △ AOB^,Z 0= 90°, 0A= 6,0B= 8.以点0为圆心,0A 长为半径作圆交 AB 于点C,求BC 的长.【解】 过点0作AB 的垂线,垂足为AB = \;oA+ O B = 6 + 8 = 10,• AE = AC )- OE = :62— 4.8 2= 3.6 ,• AC= 2AE= 7.2 ,• BC= AB- AC = 10 — 7.2 = 2.8.9 .如图,AB 为O O 的直径,弦 CD/ AB 弦DEL AB 求证:AC= BE【解】 过圆心0作OGL CD 交O O 于点G,交CD 于点H0E= 0A- 0B_ 6 x 8AB = 7Q ~ =4.8(第7题解)E ,连结OC(第8题)(第9题)•/ OGL CD 二C G= D G又••• CD/ AB ••• OGLABAG= BG • AC= BD•••DE!AB且AB是O O的直径,• B D= B E • AC= B Ek10.如图,半径为 5的O P与y轴交于点M O, — 4), NO, — 10),函数y=x(x<0)的图象X过点P,求k的值.【解】过点P作PAL MN于点A,连结PM, PN•点M(0 , — 4) , N(0, — 10) , • MN= 6.•/ PA L MN1•MA= 2MN= 3.•- OA= | — 4| + 3= 7.在 Rt△ MPA中 ,PA= PM— MA= & — 32 = 4 ,•••点 R — 4, — 7).一k将点F( — 4, — 7)的坐标代入y= X,得k= 28.z\.11.已知△ ABC内接于O O且AB= AC O O的半径等于 6 cm ,点O到BC的距离为2 cm, 求AB的长. 【解】①当△ ABC是锐角三角形时,如解图①所示,连结OB OA延长AO交BC于点D, 易知AD L BC 在 Rt △ OBE中,•OB= 6 cm , OD= 2 cm ,•BD^ *J O B— OD= — 2 = 4 #2(cm).在 Rt △ ABD中 , •/ AD- OAF OD- 6 + 2 = 8(cm) , BD- 4 ,2 cm , • AB= ,AD+ BD = .82+( 4 ,'2) 2 = 4 . 6(cm).(第11题解)②当△ ABC是钝角三角形时,如解图②所示,连结OB OA OA与BC交于点D,易知OAL BC 在 Rt △ OBD 中,■/OB= 6 cm, O* 2 cm,••• BD= 'OB— OD= 62— 22= 4、■‘2(cm).在 Rt △ ABD中,■/ AD^ OA- O* 6 — 2= 4(cm) , BD^ 4 '2 cm ,• AB= :'BD+ AD = ; (4 2 ) 2 + 42 = 4 ,'3(cm).综上所述,AB的长为4 :‘6 cm或4 :3 cm.12•如图所示为一座桥,桥拱是弧形’(水面上的部分),测量时,只测得桥拱下水面宽AB为16 m,桥拱最高处C离水面4 m.(1) 求桥拱所在圆的半径.(2) 若大雨过后,桥下水面宽为12 m,问:水面上涨了多少?(第12题)【解】(1)如解图①,设点O为AB勺圆心,连结OA OC OC交AB于点D根据题意,可得C是AB勺中点,OC L AB1 1• AD= 2AB= 2X16 = 8(m).设O O的半径为x(m),则在Rt△ OAD中,OA= A D+ OD,即卩x2= 82 + (x — 4)2,解得x= 10.•桥拱所在圆的半径为 10 m.(第12题解)(2)设河水上涨到EF的位置,如解图②,这时EF= 12 m, EF// AB则OC L ER垂足为M ,1•EM= 2EF= 6 m.连结OE则有OE= 10 m.•OM= ,OE—E M = 102— 62= 8(m).•/ OD= OC- CD= 10 — 4= 6(m),••• DM= 01— OD= 8 — 6= 2(m),即水面上涨了 2 m.13.工人师傅为检测该厂生产的一种铁球的大小是否符合要求,设计了一个尺寸(单位:cm)如图①所示的工件槽,其中工件槽的两个底角均为90° .将形状规则的铁球放入槽内时,若同时具有如图①所示的A, B, E三个接触点,则该球的大小就符合要求•如图②是过球心0 及A B, E三点的截面示意图,已知O 0的直径就是铁球的直径,AB是O O的弦,CD与O 0 交于点E, ACL CD BDL CD请你结合图①中的数据,计算这种符合要求的铁球的直径.(第13题)(第13题解)【解】由题图①②可知E为O 0上AB勺中点,连结0E交AB于点F,如解图,贝y OEL AB 且AF= BF= 8.易知EF= AC= 4 ,• 0F= 0E- EF= 0E- 4.连结0A 贝y 0A= A F + 0F,即0A= 82+ (0A- 4)2,解得0A= 10.故铁球的直径为 10X 2= 20(cm).。