人教版数学五年级下册体积和表面积
- 格式:doc
- 大小:15.00 KB
- 文档页数:3
人教版五年级数学下册长方体和正方体表面积和体积解决问题专项训练(50道含答案)1.学校活动室长15米,宽8米,高5米,门窗面积共24平方米。
要把活动室的天花板和四周的墙刷上涂料,一共要刷多少平方米?2.一种无盖的长方体水箱,长2.5dm,宽2.5dm,高3.5dm,制作一个这样的水箱,至少需要白铁皮多少平方分米?3.如图,这是一个铝合金框组成的鱼缸,侧面的每个面都是正方形,且边长为25厘米。
这个鱼缸的侧面准备全用玻璃,那么玻璃的总面积和铝合金框的总长度各是多少?4.如图,求这个正方体的表面积.5.爸爸买了一个长为30cm、宽为20cm、高为15cm的长方体礼盒,里面装有妈妈爱吃的长方体形状的花生酥,每块花生酥长5cm,宽3cm,高2cm。
(1)礼盒用彩纸包装,需要多少彩纸?(重叠部分不计算)(2)这个礼盒最多能装多少块花生酥?6.纸盒厂生产一种正方体纸板箱,棱长为40cm,做一个纸盒要多少平方厘米的纸板?它占空间多少立方厘米?合多少立方分米?7.有一个长8厘米,宽6厘米,高5厘米的长方体零件,在每个面的正中间挖去一个棱长为2厘米的小正方体,这个零件的体积与表面积各是多少?8.一个长方体形状的游泳池,长50m,宽30m,深2m。
要给游泳池的底面和四壁抹一层水泥,如果每平方米用水泥12千克,22吨水泥够不够用?9.有一个正方体木块,把它分成两个长方体木块后,表面积增加了24cm2,这个正方体木块原来的表面积是多少平方厘米?10.用纸皮做一个长1.2米、宽20分米、高60厘米无盖的长方体箱子用来堆放同学们收聚的矿泉水空瓶,至少要用多少平方分米的纸皮?11.一个集装箱长9米,宽3.2米,高2.5 米。
(1)制作这样一个集装箱至少需要多少平方米的钢板?(2)这个集装箱的容积大约是多少立方米?(箱壁厚度忽略不计)12.用240厘米唱的铁丝做一个最大的正方体框架,然后用纸板将6个面包起来做一个正方体纸盒,至少需要多少平方厘米纸板?这个纸盒的体积是多少立方厘米?13.求下面组合图形的面积.(单位:厘米)14.一个正方体的棱长之和是48厘米,那么它的表面积是多少平方厘米?15.一个正方体的表面积是48平方米,它的一个面的面积是多少平方米?16.做一个棱长为4分米的正方体无盖纸盒,至少需要用硬纸多少平方分米?17.小亚的房间长4.2米,宽3.5米,高3米,除去门窗的面积4.5平方米,房间的墙壁和天花板都贴上墙纸,这个房间至少需要多少平方米墙纸?18.一个长方体的食品盒长10厘米,宽6厘米,高13厘米.如果围着它贴一圈商标纸(上下面不贴),这张商标纸的面积至少要多少平方厘米?19.五年级一班的教室长9米、宽7.2米,学校计划暑假把四面墙粉刷绿色的墙围,要求从地面起1.1米高,计算一下这间教室粉刷墙围的面积是多少平方米.如果每平方米的粉刷费是5元,则粉刷这间教室需要多少钱?20.把一根144厘米的铁丝焊接成一个正方体框架,再在外面糊一层纸,糊纸的面积是多少平方米?21.如图,求这个长方体的表面积.22.做一个长5厘米、宽4厘米、高3厘米的长方体纸盒,至少要用多少平方厘米的硬纸板?23.一块正方体魔方的棱长是8厘米,它的表面积是多少?24.做一个没有盖的长方体玻璃缸,长60厘米,宽60厘米,高40厘米,共需要玻璃多少平方厘米?合多少平方米?25.一间教室长10米、宽6米、高4米,门窗面积为19.6平方米,要粉刷教室的四壁和顶棚,如果每平方米用涂料0.25千克,则共需要涂料多少千克?26.有一个棱长10厘米的正方体包装盒,在它的四壁贴上商标纸,这张商标纸的面积是多少?27.一个长方体玻璃钟罩,长15厘米,宽10厘米,高16厘米,它的表面积是多少平方厘米?28.一间教室长9 米,宽7 米,高3 米。
人教版小学数学五年级下册第三单元《长方体和正方体》教材分析1.通过观察、操作,学生能够认识长方体和正方体的特征以及它们的展开图。
2.学生能够理解体积(包括容积)的含义,并能够使用常用的度量单位(立方米、立方分米、立方厘米、升、毫升)建立1立方米、1立方分米、1立方厘米以及1升、1毫升的表象,并能够进行简单的换算。
3.学生能够掌握长方体、正方体的体积和表面积的计算方法,并能够解决一些简单的实际问题。
4.学生能够探索某些实物体积的测量方法。
长方体和正方体的认识本小节介绍了长方体和正方体的特征和形状,学生需要理解长方体各部分的名称,面、棱、顶点,并能够形成长方体和正方体的概念。
长方体一般是由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形,而正方体是由6个完全相同的正方形围成的立体图形,所有的棱长度相等。
长方体和正方体的体积和表面积计算本小节介绍了长方体和正方体的体积和表面积的计算方法,学生需要掌握体积计算公式的推导和体积单位间的进率及名数的换算。
同时,学生需要理解表面积的含义,并能够计算出长方体和正方体的表面积。
容积和容积单位本小节介绍了容积和容积单位的概念,学生需要理解容积的含义,并能够使用常用的容积单位(升、毫升)进行换算。
不规则物体的体积本小节介绍了如何测量不规则物体的体积,学生需要探索并掌握测量不规则物体体积的方法。
总体来说,本单元的教学目标是让学生通过观察、操作,认识长方体和正方体的特征以及它们的展开图,理解体积(包括容积)的含义,掌握长方体、正方体的体积和表面积的计算方法,并能够解决一些简单的实际问题。
同时,学生需要探索某些实物体积的测量方法。
同。
第二个价值是通过操作让学生深入理解长、宽、高的概念。
建议在活动中引导学生思考:为什么要把12条棱分成三组?为什么这三组棱分别叫长、宽、高?通过思考和操作,学生会逐渐理解长、宽、高的概念和它们之间的关系。
练五是应用题,要求学生根据长方体的特征计算面积、体积等。
第二单元因数和倍数1、因数、倍数:①一个数的因数的个数是有限的,最小的因数是1,最大的因数是它本身。
一个数的因数的求法:成对地按顺序找。
②一个数的倍数的个数是无限的,最小的倍数是它本身。
一个数的倍数的求法:依次乘以自然数。
③一个数的最大因数和最小倍数都是它本身。
如15的最大因数和最小倍数都是15。
2例题:1、从0、4、5、8、9中取出三个数字组成三位数,①在能被2整除的数中,最大的是(),最小的是()②在能被3整除的数中,最大的是(),最小的是()③在能被5整除的数中,最大的是(),最小的是()2、在四位数21□0的方框中填入一个数,使它能同时被2、3、5整除,最多能()种填法。
分别是。
3、质数和合数(1)质数和合数的意义:一个数,如果只有1和它本身两个因数,这样的数叫做质数;一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。
判断题:①所有的奇数都是质数。
()如②所有的偶数都是合数()如③在1,2,3……自然数中,除了质数以外都是合数。
()如④两个质数的和是偶数。
()如(2)质数×质数=合数每个合数都可以由几个质数相乘得到,质数相乘一定得合数。
(3)20以内的质数:有8个(2、3、5、7、11、13、17、19)100以内的质数有25个:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97100以内找质数、合数的技巧:看是否是2、3、5、7、11、13…的倍数,是就是合数,不是的就是质数。
4、最大、最小A的最小因数是:1;A的最大因数是:A;A的最小倍数是:A;最小的奇数是:1;最小的偶数是:0;最小的质数是:2;最小的合数是:4最小的自然数是:0;连续的两个质数是2、3。
例题:猜电话号码0592-A B C D E F G提示:A——5的最小倍数 B——最小的自然数 C——5的最大因数 D——它既是4的倍数,又是4的因数 E ——它的所有因数是1,2,3,6 F——它的所有因数是1, 3 G——它只有一个因数,这个号码就是附:判断(1)因为7×8=56,所以56是倍数,7和8是因数()因为(2)1是1,2,3,4,5…的因数()(3)14比12大,所以14的因数比12的因数多()(4)因为1.2÷0.6=2,所以1.2是0.6的倍数。
人教版五年级数学下册长方体和正方体表面积和体积解决问题专项训练2(50道含答案)1.计算下面图形的表面积和体积。
2.一个长方体,如果高增加3 厘米,就变成棱长为8 厘米的正方体。
原长方体的体积是多少?3.一个长方体高26cm,如下图,把它切成两个小长方体,表面积增加了80cm2,求原来长方体的体积。
4.红星农场运来的沙子。
现在把这些沙子铺在一个长24dm、宽20dm 的沙坑里,能铺多厚?5.在一个长为120cm、宽为60cm的长方体水箱里,浸没一块长方体的铁块后,水面就比原来上升2cm。
求铁块的体积。
6.一个游泳池长50米,宽25米,内蓄满水2500立方米。
(1)这个游泳池的高是多少米?(2)如果要把游泳池内贴上瓷砖,需下面规格的瓷砖多少块?边长是:5分米×5分米的正方形方砖(3)如果每块方砖1.4元,你会到哪个商店去购买更合算?7.有一个长方体的木料,截面是一个正方形,正方形的边长是2dm,这块木料的体积是.这块木料的长是多少分米?8.如图是一个长方体的空心管,掏空部分的长方体的长为10厘米,宽为7厘米。
求这根空心管的体积是多少?如果每立分米重7.8千克,这根管子重多少千克?(单位:厘米)9.有甲、乙两个水箱,从里面测量,甲水箱长12dm、宽8dm、高5dm,乙水箱长8dm、宽8dm、高6dm.甲水箱装满水,乙水箱空着.现将甲水箱里的一部分水抽到乙水箱中,使两箱水面高度一样.现在两个水箱的水面高多少分米?10.把下图所示的长方体木料切割成最大的正方体,正方体的体积是多少立方分米?最多能切成几个这样的正方体?11.有一个长方体的铁块,底面积是,高是4cm.把它锻造成一个截体的长是多少厘米.12.用右面的两块铁皮做一个无盖的长方体水箱。
(1)做好后里外都刷上防锈漆,刷漆的面积是多少?(2)这个水箱的容积是多少升?(忽略铁皮厚度和接头)13.一块正方体铁锭,棱长5分米.每立方分米的铁重7.8千克,这块铁锭重多少千克?14.一个长方体油箱的容积是30升.已知这个油箱底面长3分米,宽2.5分米,油箱的深是多少分米?(用方程解)15.有一个长方体,高2米,底面的周长是14米,宽3米.这个长方体的体积是多少?16.有一个正方体,底面周长是32分米,这个正方体的体积是多少?17.一个长方形水箱,长5分米,宽4分米,高3分米.装满水后倒入一个棱长是5分米的水箱内,水深多少分米?18.如图所示,在一个大长方体中挖去一个小长方体,求这个物体的表面积和体积.(单位:厘米)(按表面积、体积的顺序填写)19.一辆运土机运了36立方米的沙子,准备铺在一个长45米,宽20米的长方体沙坑里,所铺沙子的厚度是多少厘米?20.一个从里面量长和宽都是10厘米,高14厘米的长方体容器,装有8厘米深的水,现将一个铁球浸没在水中,这时量得水深是12厘米,铁球的体积是多少立方厘米?21.一个正方体容器,从里面量棱长是10厘米。
五年级数学下册长方体和正方体的表面积练习题(人教版)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(五年级数学下册长方体和正方体的表面积练习题(人教版))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为五年级数学下册长方体和正方体的表面积练习题(人教版)的全部内容。
长方体和正方体表面积练习题一、填空。
1、一根长96厘米的铁丝围成一个正方体,这个正方体的棱长是()厘米。
2、一个长方体的棱长总和是80厘米,长10厘米,宽是7厘米。
高是()厘米。
3、至少需要()厘米长的铁丝,才能做一个底面周长是18厘米,高3厘米的长方体框架。
4、一个长方体的长、宽、高都扩大2倍,它的表面积就( ).二、应用题。
1、一个面的面积是36平方米的正方体,它所有的棱长的和是多少厘米?2、用一根铁丝刚好焊成一个棱长8厘米的正方体框架,如果用这根铁丝焊成一个长10厘米、宽7厘米的长方体框架,它的高应该是多少厘米?3、天天游泳池,长25米,宽10米,深1.6米,在游泳池的四周和池底砌瓷砖,如果瓷砖的边长是1分米的正方形,那么至少需要这种瓷砖多少块4、把棱长12厘米的正方体切割成棱长是3厘米的小正方体,可以切割成多少块?5、一种长方体硬纸盒,长10厘米,宽6厘米,高5厘米,有2平方米的硬纸板210张,可以做这样的硬纸盒多少个?(不计接口)6、一个长方体的棱长和是72厘米,它的长是9厘米,宽6厘米,它的表面积是多少平方厘米?长方体和正方体表面积练习题1、填空。
(3)一个长方体的长是6分米,宽1。
5分米,高3分米,它的表面积是( )平方分米.(4)一个正方体的棱长是0.5分米,它的表面积是()平方分米。
人教版五年级数学下册长方体和正方体表面积和体积解决问题专项训练(50道含答案)1.学校活动室长15米,宽8米,高5米,门窗面积共24平方米。
要把活动室的天花板和四周的墙刷上涂料,一共要刷多少平方米?2.一种无盖的长方体水箱,长2.5dm,宽2.5dm,高3.5dm,制作一个这样的水箱,至少需要白铁皮多少平方分米?3.如图,这是一个铝合金框组成的鱼缸,侧面的每个面都是正方形,且边长为25厘米。
这个鱼缸的侧面准备全用玻璃,那么玻璃的总面积和铝合金框的总长度各是多少?4.如图,求这个正方体的表面积.5.爸爸买了一个长为30cm、宽为20cm、高为15cm的长方体礼盒,里面装有妈妈爱吃的长方体形状的花生酥,每块花生酥长5cm,宽3cm,高2cm。
(1)礼盒用彩纸包装,需要多少彩纸?(重叠部分不计算)(2)这个礼盒最多能装多少块花生酥?6.纸盒厂生产一种正方体纸板箱,棱长为40cm,做一个纸盒要多少平方厘米的纸板?它占空间多少立方厘米?合多少立方分米?7.有一个长8厘米,宽6厘米,高5厘米的长方体零件,在每个面的正中间挖去一个棱长为2厘米的小正方体,这个零件的体积与表面积各是多少?8.一个长方体形状的游泳池,长50m,宽30m,深2m。
要给游泳池的底面和四壁抹一层水泥,如果每平方米用水泥12千克,22吨水泥够不够用?9.有一个正方体木块,把它分成两个长方体木块后,表面积增加了24cm2,这个正方体木块原来的表面积是多少平方厘米?10.用纸皮做一个长1.2米、宽20分米、高60厘米无盖的长方体箱子用来堆放同学们收聚的矿泉水空瓶,至少要用多少平方分米的纸皮?11.一个集装箱长9米,宽3.2米,高2.5 米。
(1)制作这样一个集装箱至少需要多少平方米的钢板?(2)这个集装箱的容积大约是多少立方米?(箱壁厚度忽略不计)12.用240厘米唱的铁丝做一个最大的正方体框架,然后用纸板将6个面包起来做一个正方体纸盒,至少需要多少平方厘米纸板?这个纸盒的体积是多少立方厘米?13.求下面组合图形的面积.(单位:厘米)14.一个正方体的棱长之和是48厘米,那么它的表面积是多少平方厘米?15.一个正方体的表面积是48平方米,它的一个面的面积是多少平方米?16.做一个棱长为4分米的正方体无盖纸盒,至少需要用硬纸多少平方分米?17.小亚的房间长4.2米,宽3.5米,高3米,除去门窗的面积4.5平方米,房间的墙壁和天花板都贴上墙纸,这个房间至少需要多少平方米墙纸?18.一个长方体的食品盒长10厘米,宽6厘米,高13厘米.如果围着它贴一圈商标纸(上下面不贴),这张商标纸的面积至少要多少平方厘米?19.五年级一班的教室长9米、宽7.2米,学校计划暑假把四面墙粉刷绿色的墙围,要求从地面起1.1米高,计算一下这间教室粉刷墙围的面积是多少平方米.如果每平方米的粉刷费是5元,则粉刷这间教室需要多少钱?20.把一根144厘米的铁丝焊接成一个正方体框架,再在外面糊一层纸,糊纸的面积是多少平方米?21.如图,求这个长方体的表面积.22.做一个长5厘米、宽4厘米、高3厘米的长方体纸盒,至少要用多少平方厘米的硬纸板?23.一块正方体魔方的棱长是8厘米,它的表面积是多少?24.做一个没有盖的长方体玻璃缸,长60厘米,宽60厘米,高40厘米,共需要玻璃多少平方厘米?合多少平方米?25.一间教室长10米、宽6米、高4米,门窗面积为19.6平方米,要粉刷教室的四壁和顶棚,如果每平方米用涂料0.25千克,则共需要涂料多少千克?26.有一个棱长10厘米的正方体包装盒,在它的四壁贴上商标纸,这张商标纸的面积是多少?27.一个长方体玻璃钟罩,长15厘米,宽10厘米,高16厘米,它的表面积是多少平方厘米?28.一间教室长9 米,宽7 米,高3 米。
(完整版)新人教版五年级数学下册各单元知识点总结(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)新人教版五年级数学下册各单元知识点总结(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)新人教版五年级数学下册各单元知识点总结(word版可编辑修改)的全部内容。
人教版五年级数学下册知识点班级: 姓名:第一单元观察物体1、由几个大小相同的小正方体摆成的立体图形,从同一个方向观察,看到的图形可能是相同的,也可能是不同的。
根据一个方向看到的图形摆立体图形,有多种摆法。
2、从同一个方向观察物体最多只能看到三个面。
几何视图一般是根据三个方向观察到的形状进行绘制。
3、根据两个方向观察到的形状能确定所用小正方体的个数。
根据三个方向观察到的形状摆小正方体结果只有一种。
第二单元因数和倍数1、在整数除法中,如果商是整数而没有余数,我们就说被除数是除数的倍数,除数是被除数的因数。
因数和倍数是相互依存的,不能单独存在。
)2、注意:为了方便,在研究因数和倍数时候,我们所说的数指的是自然数(一般不包括0)3、找因数的方法:①乘法②除法; 找倍数的方法:逐次乘自然数。
4、①一个数的最小因数是1,最大因数是它本身.一个数的最小倍数是它本身,没有最大的倍数。
②一个数的因数的个数是有限的,一个数的倍数的个数是无限的。
一个数的最大因数和最小倍数是相等的都是它本身.③1是所有非0自然数的因数。
也是任一自然数(0除外)的最小因数。
④一个数的因数至少有1个,这个数是1。
⑤一个数的因数都小于等于他本身,一个数的倍数都大于等于他本身。
(人教版)五年级数学下册长方体和正方体的表面积和体积(人教版)五年级数学下册长方体和正方体的表面积和体积班级姓名分数一、填空题。
1.一个长方体框架长8厘米,宽6厘米,高4厘米,做这个框架共要()厘米铁丝,是求长方体(),在表面贴上塑料板,是求长方体(),在里面能盛()升水是求(),这个盒子有()立方米是求()。
长方体的短就是6厘米,阔就是4厘米,低就是4厘米,它的棱长总和就是()厘米,六个面中最小的面积就是()平方厘米,表面积就是()平方厘米,体积就是()立方厘米,()条棱成正比。
2.一瓶可乐的容积大约是230();一个雪糕的体积是20();一台冰箱的容积大约是180();一瓶眼药水约有12()。
3.1立方分米的1个正方体可以分为()个1立方厘米的小正方体,如果把这些大正方体排在一排,一共短()分后米。
4.用长2厘米、宽1厘米、高1厘米的长方体木块拼成一个正方体,至少用()个这样的长方体。
拼成的正方体的表面积是()平方厘米。
5.搞一个长6分米,阔4分米,低1.5分米的抽屉,至少须要木板()。
6.一根铁丝长36厘米,如果搞一个正方体框架,棱长就是()厘米;如果搞一个低和阔都就是2厘米的长方体框架,短就是()厘米。
7.一个长方体水池占地6平方米,他深1.5米,池内最多能容水()升。
8.把一个棱长2分米的正方体,切成两个相等的长方体,表面积增加了()。
9.至少()个棱长2厘米的小正方体可以拼成一个大正方体。
10.一个长方体的长、阔、低各不断扩大了3倍,它的体积不断扩大了()倍。
11.把5个棱长1厘米的小正方体拆成长方体,这个长方体的表面积就是()。
12.一个长方体的玻璃缸,长4分米、宽3分米、高5分米,倒入水后量得水深3.5分米,倒入的水有()升。
13.用两个长6厘米,阔3厘米,低1厘米的长方体拆成一个表面积尽可能大的正方体,这个拆成的长方体的表面积就是()平方厘米。
14.一个长方体的体积是30立方厘米,长是5厘米,高是3厘米,宽是()。
体积和表面积
求实小学范仙
一、教学目标
1.通过应用表面积的相关知识,探索多个正方体的叠放方法,使其表面积最小的最优策略。
2.通过解决包装中的数学问题,渗透数形结合的思想方法,体会面和体之间的关系。
3.通过动手操作、同伴交流,经历不断的猜测、验证,体验解决数学问题的基本过程和方法,提高解决问题的能力,感受数学与生活的密切联系。
二、教学重点
探索长方体体积一定时,长宽高的数值越接近,表面积就越小。
三、教学难点
灵活快速地找出表面积最小的包装策略。
四、学具准备
小正方体
五、教学过程
(一)情境引入
云南白药厂要设计一种新纸箱,正好能装12个棱长为1分米的正方体盒子,怎样设计纸箱?
(二)新授
1.学生操作活动
(1)猜一猜
设计的纸箱形状是什么样?
(2)摆一摆
借助小正方体摆出来,并找出相应的长宽高。
(3)说一说
a.提示位置变换属于同一种类型。
b.可以设计哪些形状的长方体?
长宽高
12dm 6dm 1dm
6dm 2dm 1dm
4dm 3dm 1dm
3dm 2dm 2dm
c. 观察四种方案长宽高与12的关系。
(是12的因数)
(4)猜一猜
你推荐哪一种方案?(哪一种方案的表面积最小?)(5)算一算
当长宽高分别为3dm、2dm、2dm时,表面积最小。
2.探究规律
(1)观察、发现
a.观察长宽高和表面积,发现了什么?
长宽高的数值越接近,表面积就越小。
b.小组交流
为什么长宽高的数值越接近,表面积就会越小?
c.操作演示
(2)小结
体积一定时,长宽高的数值越接近,表面积就越小。
3.练一练
正好能装64个棱长1分米的小正方体,你将提供怎样的方案?为什么?100个呢?
4.回顾小结
(三)深化应用
如果把正方体换为长方体,怎样设计纸箱,表面积最小?包装的学问还有很多,要用智慧的眼光去发现。
六、板书设计
长方体和正方体的应用
体积长宽高表面积
12dm 6dm 1dm 50 d㎡12d㎡ 6dm 2dm 1dm 40 d㎡
4dm 3dm 1dm 38 d㎡
3dm 2dm 2dm 32 d㎡
体积一定时,长宽高的数值越接近,表面积就越小。