整式的加减
- 格式:doc
- 大小:347.00 KB
- 文档页数:15
整式的加减运算整式是指由常数、变量及它们的积和积的幂次和(其中幂次是非负整数)构成的式子。
整式的加减运算是指将两个整式进行相加或相减的操作。
在进行整式的加减运算时,需注意一些规则和步骤。
一、加法运算整式的加法运算是将两个整式的各项按照同类项进行相加,并将得到的同类项合并。
下面通过几个具体的例子来介绍整式的加法运算。
例一:将多项式3x^2+2x+5和4x^2-3x+1相加。
解:首先将同类项相加,即将x^2的系数相加,x的系数相加,常数项相加。
3x^2 + 2x + 5+ 4x^2 - 3x + 1_______________7x^2 - x + 6因此,3x^2+2x+5和4x^2-3x+1相加的结果为7x^2-x+6。
例二:将多项式2x^3+4x^2-3x+7和-3x^3-2x^2+5x-2相加。
解:按照同类项相加的原则进行计算。
2x^3 + 4x^2 - 3x + 7+ (-3x^3) + (-2x^2) + 5x + (-2)_____________________________-x^3 + 2x^2 + 2x + 5因此,2x^3+4x^2-3x+7和-3x^3-2x^2+5x-2相加的结果为-x^3+2x^2+2x+5。
二、减法运算整式的减法运算是将两个整式的各项按照同类项进行相减,并将得到的同类项合并。
下面通过几个具体的例子来介绍整式的减法运算。
例一:将多项式6x^2+2x-3和2x^2-5x-2相减。
解:将减数的每一项加上相反数再按照同类项相加。
6x^2 + 2x - 3- (2x^2 - 5x - 2)________________4x^2 + 7x - 1因此,6x^2+2x-3和2x^2-5x-2相减的结果为4x^2+7x-1。
例二:将多项式5x^3-4x^2+3x-1和-2x^3+5x^2+4x-2相减。
解:按照同类项相减的原则进行计算。
5x^3 - 4x^2 + 3x - 1- (-2x^3 + 5x^2 + 4x - 2)________________________7x^3 - 9x^2 - x + 1因此,5x^3-4x^2+3x-1和-2x^3+5x^2+4x-2相减的结果为7x^3-9x^2-x+1。
整式的加减概念总汇1、整式加减的有关概念(1)同类项:所含字母相同,并且相同字母的指数也相同的项,叫做同类项。
几个常数项也是同类项。
如: 6x 2y 2和-4x 2y 2就是同类项,-3和5也是同类项;但b a 24与23ab 就不是同类项,因为相同字母的指数不相同。
(2)合并同类项:把多项式中的同类项合并成一项,即把同类项的系数相加,字母和字母的指数不变。
如:6x 2y 2+(-4x 2y 2)=2x 2y 2说明:①只有同类项才可合并,不是同类项的不能合并;②合并同类项,只合并系数,字母与字母的指数不变;③合并同类项后若其系数是带分数,要把它化成假分数;④多项式中,如果两同类项的系数互为相反数,合并后这两项互相抵消,结果为0。
(3)去括号法则:括号前面是正号,把括号和括号前的正号去掉后,括号里的各项不改变符号;括号前是负号,把括号和括号前的负号去掉,括号里的各项都要改变符号。
如:A +(5A +3B )—(A —2B )=A +5A +3B -A +2B =5A +5B 。
说明:去括号法则相当于乘法分配律的应用,如:A +(5A +3B )—(A —2B )=A +1×(5A +3B )+(-1)×(A -2B )=A +5A +3B +(-1)A +(-1)×(-2B )=A +5A +3B -A +2B =5A +5B 。
如果括号前面有数字因数,就按乘法分配律去括号。
如: 21(3a 2-2ab +4b 2)-2(43a 2-ab -3b 2) =23a 2-ab +2b 2-23a 2+2ab +6b 2=ab +8b 2 (4)添括号法则:给括号前添正号,括在括号里的各项都不改变符号;给括号前添负号,括到括号里的各项都要改变符号。
说明:去括号与添括号是互逆的过程,它们的依据是乘法分配律的顺逆运用。
可把+(a -b )看作(+1)(a -b ),把-(a -b )看作(-1)(a -b )则有+(a -b )=a -b , -(a -b )= -a +b ,这样乘法分配律的一个应用便是去括号;添括号可理解为乘法分配律的逆用。
整式的加减法一、整式的有关概念回顾(1)单项式: 表示数与字母的乘积的代数式, 叫做单项式, 单独的一个数或一个字母也是单项式, 如、2πr 、a , 0 ……都是单项式。
1.都是数字与字母的乘积的代数式叫做单项式。
2.单项式的数字因数叫做单项式的系数。
3.单项式中所有字母的指数和叫做单项式的次数。
4.单独一个数或一个字母也是单项式。
5.只含有字母因式的单项式的系数是1或―1。
6、单独的一个数字是单项式, 它的系数是它本身。
7、单独的一个非零常数的次数是0。
8、单项式中只能含有乘法或乘方运算, 而不能含有加、减等其他运算。
9、单项式的系数包括它前面的符号。
10、单项式的系数是带分数时, 应化成假分数。
11、单项式的系数是1或―1时, 通常省略数字“1”。
12.单项式的次数仅与字母有关, 与单项式的系数无关。
(2)多项式: 几个单项式的和叫做多项式1.几个单项式的和叫做多项式。
2.多项式中的每一个单项式叫做多项式的项。
3.多项式中不含字母的项叫做常数项。
4.一个多项式有几项, 就叫做几项式。
5.多项式的每一项都包括项前面的符号。
6、多项式没有系数的概念, 但有次数的概念。
7、多项式中次数最高的项的次数, 叫做这个多项式的次数。
(3)整式:单项式和多项式统称为整式, 如:-, ……是整式1.单项式和多项式统称为整式。
2.单项式或多项式都是整式。
3.整式不一定是单项式。
4.整式不一定是多项式。
5.分母中含有字母的代数式不是整式;而是今后将要学习的分式。
(4)升幂排列与降幂排列:例如:把多项式5x2+3x-2x3-1按x的指数从大到小的顺序排列, 可以写成-2x3+5x2+3x-1, 这叫做这个多项式按字母x的降幂排列。
若按x的指数从小到大的顺序排列, 则写成-1+3x+5x2-2x3, 这叫做这个多项式按字母x的升幂排列。
这两种排列有一个共同点, 那就是x的指数是逐渐变小(或变大)的。
我们把这种排列叫做升幂排列与降幂排列。
整式的加减整式加减的三种形式:直接的整式加减问题,间接的整式加减问题,正式的化简求值问题。
1、直接的整式加减问题:这类问题是最简单的整式加减问题,可以按照去括号法则去掉括号,然后再合并同类项。
当算式中没有同类项时,这个算式就是运算的最后结果。
例:计算2x 2y-5x 2y+32x 2y+5xy 2练一练:计算:(21+2x-x 2)-2(3x 2+7x-2)2、间接的整式加减问题:这类问题可根据题意列出代数式。
即用加减符号将各个多项式连接成整式加减的算式,每一个多项式都要用括号括起来,然后去括号、合并同类项。
例:求多项式-8ab 2+3a 2b 与-2ab 2+5a 2b 的差。
练一练:若多项式(2ax 2-x 2+3x+2)-(5x 2-4x 2+3x )的值与x 无关,求啊的值。
3、整式的化简求值问题:求多项式的时候,一般思路是先化简,再把字母的取值代入到化简后的算式中求值。
例:当a=31时,求5a 2-5a+4-3a 2+6a-5的值。
练一练:化简并求值,5a 2b-{2a 2b-【3ab 2-(4ab 2-12a 2b)】}其中a=2、b=-1同步练习1一、填空题:1.单项式2xy,6x 2y 2,-3xy,-4x 2y 2的和为__________.2.单项式-3x 2依次减去单项式-4x 2y ,-5x 2,2x 2y 的差为_________.3.283m n x y +与2342m n x y+-是同类项,则m+n=_________. 4.计算(3a 2+2a+1)-(2a 2+3a-5)的结果是_________.5.个位上数字是a,十位上数字是b,百位上的数字是c 的三位数与把该三位数的个位数字、百位数字对调位置后所得的三位数的差为________.6.已知A=3x 2y-4y 3,B=-x 2y 2+2y 3,则2A-3B=___________.7.(3)23ππ--- =_________。
《整式的加减》教学设计《整式的加减》教学设计什么是教学设计教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。
一般包括教学目标、教学重难点、教学方法、教学步骤与时间分配等环节。
《整式的加减》教学设计(精选22篇)作为一位杰出的老师,编写教学设计是必不可少的,教学设计把教学各要素看成一个系统,分析教学问题和需求,确立解决的程序纲要,使教学效果最优化。
我们该怎么去写教学设计呢?下面是小编精心整理的《整式的加减》教学设计(精选22篇),欢迎阅读,希望大家能够喜欢。
《整式的加减》教学设计1教学目标:教学内容分析:本节课的教学内容是《整式的加减》(第1课时),是在学习了整式的有关概念之后的一节课。
整式的加减是整式的运算、因式分解、解一元二次方程及函数的基础,是“数”向“式”的正式过渡,它具有十分重要的地位,而整式加减的知识基础则是同类项的概念及同类项的合并,整式的加减主要是通过合并同类项从而把整式化简,所以本节课在中学数学中的地位不言而喻。
教学重点和难点:同类项的概念及合并同类项的方法教学设计思路:长期以来,学生主动学习的意识淡薄,对教师的依赖性很大,学生长期处于被动接受的学习状态,使学生变得内向、被动、缺少自信、恭顺……窒息了学生的创造性。
新课程要求“改变课程实施过于强调接受学习、死记硬背、机械训练的现状,倡导学生主动参与、乐于探究、勤于动手,培养学生搜集和处理信息的能力、获取新知识的能力、分析和解决问题的能力,以及交流合作的能力”。
为此要求我们教师努力变“知识给予”为“教育交往”,变“教程”为“学程”,在课堂上向学生提供从事数学活动的机会,帮助学生改变旧的学习模式,引导学生在学习活动中自主探究问题和解决问题,使每一个学生在数学课堂中各有所得。
为了突出教学的重点、突破教学的难点,本节课拟采用探究式教学法:通过观察生活实例,从学生已有的生活经验出发,采取合作探究的学习方式,通过小组合作讨论等方式开展学习活动,让学生独立自主地发现问题、分析问题并独立地解决问题,在探究的过程中,获得成功的体验,增强学习数学的信心,发展学生学习数学的积极性,并通过探究活动,使学生体验探究的过程,培养思维的变通性和严密性,培养学生的探索精神和创新能力。
整式的加减运算整式是由数字与字母的乘积及其相加、相减而得到的式子。
整式的加减运算是指将两个或多个整式进行相加或相减的过程。
本文将详细介绍整式的加减运算及其相关性质。
一、整式的加法运算整式的加法运算是指将两个或多个整式相加的过程。
在进行整式的加法运算时,我们需要注意以下几点:1. 同类项相加:整式中具有相同字母的指数和变量的系数相加。
例如:3a + 2a = 5a。
2. 合并同类项:将整式中的同类项合并到一起,即将具有相同字母的指数和变量的系数相加,而不改变其他项的位置。
例如:2a + 3b + 4a = 6a + 3b。
3. 不同字母的项直接相加:不同字母的项不能合并,直接写在一起即可。
例如:2a + 3b + 4c。
二、整式的减法运算整式的减法运算是指将一个整式减去另一个整式的过程。
在进行整式的减法运算时,我们需要注意以下几点:1. 减去一个整式,等价于加上这个整式的相反数。
例如:5a - 3a 等价于 5a + (-3a)。
2. 合并同类项:减法运算也需要按照加法运算的规则合并同类项。
例如:5a - 3a = 2a。
3. 注意符号:减法运算中,当减数为正时,减法可视为加上相反数;当减数为负时,则减法可视为加上一个正数。
例如:5a - (-3a) 可视为5a + (3a)。
三、整式的加减混合运算整式的加减混合运算是指在一个式子中同时存在加法运算和减法运算的过程。
在进行整式的加减混合运算时,我们需要按照以下规则进行操作:1. 先进行括号内的运算:如果整式中存在括号,首先进行括号内的加减运算。
2. 合并同类项:将整式中同类项合并到一起。
3. 按照运算顺序进行计算:按照从左到右的顺序依次进行加法和减法运算。
四、整式的加减运算的性质整式的加减运算具有以下性质:1. 交换律:a + b = b + a,a和b为整式。
即整式的加法运算满足交换律。
2. 结合律:(a + b) + c = a + (b + c),a、b、c为整式。
整式的加减概念总汇1、整式加减的有关概念(1)同类项:所含字母相同,并且相同字母的指数也相同的项,叫做同类项。
几个常数项也是同类项。
如: 6x 2y 2和-4x 2y 2就是同类项,-3和5也是同类项;但b a 24与23ab 就不是同类项,因为相同字母的指数不相同。
(2)合并同类项:把多项式中的同类项合并成一项,即把同类项的系数相加,字母和字母的指数不变。
如:6x 2y 2+(-4x 2y 2)=2x 2y 2说明:①只有同类项才可合并,不是同类项的不能合并;②合并同类项,只合并系数,字母与字母的指数不变;③合并同类项后若其系数是带分数,要把它化成假分数;④多项式中,如果两同类项的系数互为相反数,合并后这两项互相抵消,结果为0。
(3)去括号法则:括号前面是正号,把括号和括号前的正号去掉后,括号里的各项不改变符号;括号前是负号,把括号和括号前的负号去掉,括号里的各项都要改变符号。
如:A +(5A +3B )—(A —2B )=A +5A +3B -A +2B =5A +5B 。
说明:去括号法则相当于乘法分配律的应用,如:A +(5A +3B )—(A —2B )=A +1×(5A +3B )+(-1)×(A -2B )=A +5A +3B +(-1)A +(-1)×(-2B )=A +5A +3B -A +2B =5A +5B 。
如果括号前面有数字因数,就按乘法分配律去括号。
如: 21(3a 2-2ab +4b 2)-2(43a 2-ab -3b 2) =23a 2-ab +2b 2-23a 2+2ab +6b 2=ab +8b 2 (4)添括号法则:给括号前添正号,括在括号里的各项都不改变符号;给括号前添负号,括到括号里的各项都要改变符号。
说明:去括号与添括号是互逆的过程,它们的依据是乘法分配律的顺逆运用。
可把+(a -b )看作(+1)(a -b ),把-(a -b )看作(-1)(a -b )则有+(a -b )=a -b , -(a -b )= -a +b ,这样乘法分配律的一个应用便是去括号;添括号可理解为乘法分配律的逆用。
2、整式加减法法则几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接.整式加减的一般步骤是:①如果遇到括号,按去括号法则去括号;②合并同类项.。
说明:整式的加减实际上就是去括号和合并同类项。
合并同类项时,只能把同类项合为一项。
如果同类项的系数互为相反数,合并同类项后为0,不是同类项的不合并,但每步运算中不能漏掉,在运算中,如果遇到括号,应先运用去括号法则去掉括号。
当遇到多重括号时,每去掉一个括号后要及时合并同类项,以减少项数避免错误及简化计算。
整式加减运算的结果书写形式的要求:①结果按照某个字母的降幂或升幂排列;②每一项的数字系数写前面;③结果不出现带分数;带分数要化成假分数;④结果不出现“÷”号,“÷”改写成分数的形式;⑤结果中不再有括号(一般情况)。
方法引导1、同类项的概念及合并同类项的注意点例1 已知代数式b a b a y x y x +---231321与是同类项,那么a 、b 的值是( ) A . B . C . D .难度等级:A解:依题意得故选A .【知识体验】要使含字母的单项式是同类项,则必须满足两个条件:一是所含的字母相同,二是相同字母的指数也相同.这里两个单项式都含有字母x ,y ,因此还需满足x 的指数和y 的指数分别相等。
【搭配练习】1、若单项式m y x 22和331y x n -是同类项,求m 、n 的值 2、已知324y xm --与n y x 272-是同类项,求m -n 的值例2 三角形的周长为48,第一边长为3a +2b ,第二边的2倍比第一边少a -2b +2,求第三边长是多少?难度等级:A解:48-(3a +2b )-21[(3a +2b )-(a -2b +2)] =48-3a -2b -21(2a +4b -2) =48-3a -2b -a -2b +1=49-4a -4b .答:第三边长为49-4a -4b .【知识体验】本题已知三角形的周长和一边,又已知第二边的2倍比第一边少a -2b +2,,所以可以用代数式表示第二边,用周长减去第一边的长,再减去第二边的长就得到第三边的长。
运算过程用到去括号、合并同类项,其中去括号就是乘法分配律的应用。
【解题技巧】在运算中,遇到括号,应先运用去括号法则去掉括号。
当遇到多重括号时,每去掉一个括号后要及时合并同类项,以减少项数避免错误及简化计算。
要注意是同类项才能合并成一项,不是同类项不能合并,就照抄下来即可。
【搭配练习】已知一个三角形的周长为235-+b a ,第一条边长为2+-b a ,第二条边比第一条的2倍还少2,试求第三条边2、求代数式值要注意的问题(1)化简求值法例3.若61-=x ,求代数式 )5423(10)753(7)6543(223223--+-+----+-x x x x x x x x 的值?难度等级:B解:)5423(10)753(7)6543(223.223--+-+----+-x x x x x x x x 5040203049352112108623223--+-++--+-=x x x x x x x x13592423-+--=x x x 当61-=x 时,原式36251313)61(5)61(9)61(2423-=--⨯+-⨯--⨯-= 【知识体验】求代数式的值的常用方法是先化简再把字母的值代入化简式求值。
本题61-=x 是个分数,代数式又比较繁琐,如果直接代入计算,运算量很大而且易错,所以要先化简再代入求值。
这种求代数值值的方法叫“化简求值法”。
【解题技巧】先化简再代值是求代数式值的一般方法。
化简时用乘法分配律去括号,要注意括号外面的因数要与括号内的每一项相乘,不要只与首项相乘,忘了与其它项相乘。
【搭配练习】先化简,再求值。
1、1312833232+--+-x x x x x ,其中x =22、222232924y xy x y xy x +--++,其中x =2,y =1.(2)整体代入法例4 若4=+-ba b a ,求代数式)(2)(5b a b a b a b a -+-+-的值? 难度等级:B 解:当4=+-b a b a 时,41=-+b a b a ,所以8719412145)(2)(5=⨯-⨯=-+-+-b a b a b a b a 【知识体验】本例题中并没直接给出a ,b 的值,观察到ba b a b a b a -++-与互为倒数,可把ba b a b a b a -++-,分别看作一个“整体”,将“整体”的值直接代入求值式,这样就可以避免求其中字母的值,简化了求值过程。
这种求代数式值的方法叫整体代入法。
【解题技巧】求代数式的值,一般用化简求值法,只有当所给的题目有一定的特殊性,我们观察到含未知数的部分可以看成一个整体时,我们用整体代入法,这样会使运算简便,问题得解。
【搭配练习】1、当21,43=-=b a 时,求)23(2)2(3)23(3)2(522b a b a b a b a +++-+-+的值。
2、已知5,3,2=--=-=-d c c b b a ,求)())((d a d b c a -÷--的值例题讲解(一)题型分类全析1、整式加减类型题整式包括单项式和多项式,因此,整式的加减就包括单项式与单项式、单项式与多项式及多项式与多项式的加减.。
求两个多项式的和或差时,要把每个多项式应作为一个整体,用括号括起来,再进行加或减,然后去掉括号,合并同类项,化简。
整式的加减实际上就是合并同类项,在运算中,有括号要先去括号.去括号时一定要注意括号前的符号,如(x 2+x )-(1-3x +2x 2)=x 2+x -1+3x -2x 2=-x 2+4x -1,要特别注意括号前是负号的时候,不要只对括号中的首项变号,其他项也要变号。
例1:求5632+-x x 与6742-+x x 的和与差。
难度等级:A【思维直现】本题有两问,一问是求两个多项式的和,一问是求两个多项式的差,就和时将两个多项式相加即可,求差时要把每个多项式看成一个整体,加括号相减,然后去括号合并同类项。
解:(1)5632+-x x 与6742-+x x 的和: )674()563(22-+++-x x x x67456322-+++-=x x x x)65()76()43(2-++-++=x x172--=x x(2)5632+-x x 与6742-+x x 的差: )674()563(22-+-+-x x x x67456322+--+-=x x x x)65()76()43(2++--+-=x x11132+--=x x【阅读笔记】审题要清晰,本题有两问,不要漏掉一问。
求差将两个多项式相减时要给多项式加括号,然后再去括号,括号前是负号,去括号时,每一项都要变号,不要只变首项,其余项不变。
【题评解说】本题是多项式的加减法的常规题,解题时要注意把每个多项式看成一个整体加括号,然后再相加减。
后面去括号、合并同类项要要一步一步的算,不要着急不写步骤出错。
【建议】去括号时一定要看清括号前是正号还是负号,按去括号法则运算,遇到括号前是负号,一定要注意去掉括号后,括号中的每一项都要变号。
【搭配练习】1、求多项式2x -3y 与5x +4y 的和.2、求多项式8a -7b 与4a -5b 的差例2:.已知A =a 2+b 2-c 2,B =-4a 2+2b 2+3c 2, 并且A +B +C =0,问C 是什么样的多项式.难度等级:B【思维直现】已知A +B +C =0,还知道A 和B 的多项式,求C 表示什么多项式,这里C 就是(A +B )的相反数,所以求A +B ,再取相反数就可以了。
解: ∵A +B +C =0 ∴ C =-(A +B )又∵A =a 2+b 2-c 2,B =-4a 2+2b 2+3c 2∴ C =-[(a 2+b 2-c 2)+(-4a 2+2b 2+3c 2)]=-[a 2+b 2-c 2-4a 2+2b 2+3c 2]=-[-3a 2+3b 2+2c 2]=3a 2-3b 2-2c 2∴ C 是3a 2-3b 2-2c 2【阅读笔记】已知多项式的和及其中几个加数,求另一个加数的问题,用减法解决,即用和减去每一个加数。
实质就是多项式的减法,要分清被减数和减数,去括号时要注意去括号法则。
【题评解说】本题虽然考的也是多项式的加减法,但问法不同,要学生自己思考出多项式之间的运算关系,然后计算。
在进行运算时要注意把每个多项式当作一个整体,这是整体思想;要把A 用a 2+b 2-c 2代替,这是换元的思想,本题用到的数学思想要仔细体会。