七年级数学整式的加减法
- 格式:ppt
- 大小:522.50 KB
- 文档页数:27
人教版七年级数学上册第二章《整式的加减》教案一. 教材分析《整式的加减》是人教版七年级数学上册第二章的内容,主要包括整式的加减运算以及合并同类项的方法。
本节内容是学生学习代数初步知识的重要环节,为后续学习方程和不等式打下基础。
通过本节内容的学习,学生应该能够理解整式的加减运算法则,掌握合并同类项的方法,并能熟练进行整式的加减运算。
二. 学情分析七年级的学生已经掌握了实数的基本运算,具备了一定的逻辑思维能力。
但是,对于整式的加减运算和合并同类项的方法,学生可能还比较陌生,需要通过实例和练习来逐渐理解和掌握。
此外,学生可能对于代数式的运算规则还不够熟悉,需要教师在教学过程中进行引导和培养。
三. 教学目标1.理解整式的加减运算法则;2.掌握合并同类项的方法;3.能够熟练进行整式的加减运算;4.培养学生的逻辑思维能力和代数运算能力。
四. 教学重难点1.整式的加减运算法则;2.合并同类项的方法;3.整式的加减运算的实践应用。
五. 教学方法采用讲解法、示例法、练习法、讨论法等教学方法。
通过教师的讲解和示例,让学生理解整式的加减运算法则和合并同类项的方法,通过练习和讨论,让学生巩固所学知识,提高运算能力。
六. 教学准备教师准备教案、PPT、练习题等教学资源。
七. 教学过程1.导入(5分钟)教师通过一个实际问题引入整式的加减运算,例如:“已知两个数的和是20,差是5,求这两个数分别是多少?”让学生思考和讨论,引导学生认识到整式的加减运算的重要性。
2.呈现(15分钟)教师通过PPT展示整式的加减运算法则和合并同类项的方法,并进行讲解和示例。
例如,对于两个整式的加减运算,先将同类项合并,再进行加减运算。
同时,教师可以通过举例说明合并同类项的方法,如系数相加减,字母和字母的指数不变。
3.操练(15分钟)教师布置一些练习题,让学生独立完成。
例如,计算以下整式的和:(1)2x+ 3y - 4x + 5y;(2)4a^2 - 3a - 2a^2 + 5a。
七年级上册数学整式的加减法整式的加减法(人教版七年级上册数学)一、整式的相关概念。
1. 单项式。
- 定义:由数与字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式。
例如,3x,-5,a都是单项式。
- 系数:单项式中的数字因数叫做这个单项式的系数。
例如在单项式3x中,系数是3;在单项式-5中,系数是-5。
- 次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。
例如,单项式3x^2的次数是2,单项式- 2xy的次数是2(x的次数是1,y的次数是1,1 + 1=2)。
2. 多项式。
- 定义:几个单项式的和叫做多项式。
例如2x+3y,x^2 - 2x+1都是多项式。
- 项:在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。
例如在多项式x^2 - 2x + 1中,x^2、-2x、1都是它的项,1是常数项。
- 次数:多项式里次数最高项的次数,叫做这个多项式的次数。
例如多项式x^2 - 2x+1的次数是2,因为x^2的次数最高为2。
3. 整式:单项式与多项式统称为整式。
二、整式的加减法。
1. 同类项。
- 定义:所含字母相同,并且相同字母的指数也相同的项叫做同类项。
几个常数项也是同类项。
例如3x和5x是同类项,2y^2和-3y^2是同类项,4和-7是同类项。
2. 合并同类项。
- 法则:合并同类项时,把同类项的系数相加,字母和字母的指数不变。
例如,计算3x+5x=(3 + 5)x=8x;2y^2-3y^2=(2 - 3)y^2=-y^2。
3. 去括号法则。
- 如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同。
例如+(2x+3y)=2x + 3y。
- 如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
例如-(2x+3y)=-2x-3y。
4. 整式加减法的步骤。
- 去括号(如果有括号的话)。
- 找出同类项。
- 合并同类项。
例如:计算(3x^2+2x - 1)-(2x^2 - 3x+2)- 去括号得:3x^2+2x - 1 - 2x^2+3x - 2- 找出同类项:3x^2与-2x^2是同类项,2x与3x是同类项,-1与-2是同类项。
初中七年级数学《整式的加减》教案3篇学问与技能:1、在现实情境中理解整式的加减实际就是合并同类项,有意识地培育他们有条理的思索和语言表达力量。
2、了解同类项的定义及合并法则,且会运用此法则进展整式加减运算。
3、知道在求多项式的值时,一般先合并同类项再代入数值进展计算。
过程与方法:通过详细情境的观看、思索、类比、探究、沟通和反思等数学活动培育学生创新意识和分类思想,使学生把握讨论问题的方法,从而学会学习。
情感与态度与价值观:通过学生自主学习探究出合并同类项的定义和法则,培育了学生的自学力量和探究精神,提高学习兴趣。
感受数学的形式美、简洁美,感受学数学是美的享受,爱学、乐学数学。
教学重点:娴熟地进展合并同类项,化简代数式。
教学难点;如何推断同类项,正确合并同类项。
教学用具:多媒体或小黑板、教学过程:一、创设情景问题:在甲、乙两面墙壁上,各挖去一个圆形空洞安装窗花,其余局部刷油漆,请依据图中的尺寸,算出:(1)甲乙油漆面积的和。
(2)甲比乙油漆面积大多少。
(处理方式:①学生思索片刻②找学生代表沟通自己的解答③教师汇总学生的解答)板书:(1)(2ab-πr2)+(ab-πr2)或(2ab+ab)-(πr2+πr2 )(2) (2ab-πr2)-(ab-πr2)(此时提问学生:这3个式子都是什么式子?在学生答复的根底上引出课题—从本节课开头来学习:2.3整式的加减。
并板书)二、探求新知教师自问:如何计算(1)和(2)两个式子呢?接着解答:本节课来学习2.2.1合并同类项(此时板书课题——1.合并同类项)1、同类项的概念观看多项式(2ab+ab)-(πr2+πr2 )中的项:2ab、ab 的特点。
学生沟通、争论。
③师生总结:(这就是我们今日所要介绍的同类项,此时板书:1.同类项的概念)所含字母一样并且一样字母的指数也一样的项叫做同类项。
几个常数项也是同类项。
强调:①所含字母一样②一样字母的指数也一样简称“两同”。
七年级上册数学《整式的加减》教案精选范文五篇教育是石,撞击生命的火花。
教育是灯,照亮夜行者踽踽独行的路。
教育是路,引领人类走向黎明。
因为有教育,一切才都那么美好,因为有教育,人类才有无穷的希望。
下面是小编给大家准备的七年级上册数学《整式的加减》教案精选范文,供大家阅读参考。
七年级上册数学《整式的加减》教案精选范文一教学目标和要求:1.理解同类项的概念,在具体情景中,认识同类项。
2.通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流的能力。
3.初步体会数学与人类生活的密切联系。
教学重点和难点:重点:理解同类项的概念。
难点:根据同类项的概念在多项式中找同类项。
教学方法:分层次教学,讲授、练习相结合。
教学过程:一、复习引入:1、创设问题情境⑴5个人+8个人=⑵5只羊+8只羊=⑶5个人+8只羊=(数学教学要紧密联系学生的生活实际、学习实际,这是新课程标准所赋予的任务。
学生尝试按种类、颜色等多种方法进行分类,一方面可提供学生主动参与的机会,把学生的注意力和思维活动调节到积极状态;另一方面可培养学生思维的灵活性,同时体现分类的思想方法。
)2、观察下列各单项式,把你认为相同类型的式子归为一类。
8x2y,-mn2,5a,-x2y,7mn2,,9a,-,0,0.4mn2,,2xy2。
由学生小组讨论后,按不同标准进行多种分类,教师巡视后把不同的分类方法投影显示。
要求学生观察归为一类的式子,思考它们有什么共同的特征?请学生说出各自的分类标准,并且肯定每一位学生按不同标准进行的分类。
(充分让学生自己观察、自己发现、自己描述,进行自主学习和合作交流,可极大的激发学生学习的积极性和主动性,满足学生的表现欲和探究欲,使学生学得轻松愉快,充分体现课堂教学的开放性。
)二、讲授新课:1.同类项的定义:我们常常把具有相同特征的事物归为一类。
8x2y与-x2y可以归为一类,2xy2与-可以归为一类,-mn2、7mn2与0.4mn2可以归为一类,5a与9a可以归为一类,还有、0与也可以归为一类。
人教版数学七年级上册《整式的加减运算》教案一. 教材分析人教版数学七年级上册《整式的加减运算》是学生在掌握了有理数、实数、代数式等基础知识后,进一步学习整式运算的重要内容。
本节课的内容包括整式的加减法则、加减运算的步骤和注意事项等。
通过本节课的学习,学生能够掌握整式加减运算的方法,提高解决实际问题的能力。
二. 学情分析学生在六年级时已经学习了简单的代数运算,对于加减乘除等基本运算有一定的掌握。
但是,对于整式的加减运算,学生可能还存在以下问题:1. 对整式的概念理解不深,容易混淆;2. 运算顺序掌握不牢固,容易出错;3. 对于复杂的整式运算,缺乏解决方法。
三. 教学目标1.知识与技能:学生能够掌握整式的加减法则,正确进行整式加减运算。
2.过程与方法:通过实例分析,让学生学会将实际问题转化为整式加减运算,提高解决问题的能力。
3.情感态度与价值观:培养学生对数学的兴趣,培养学生合作、探究的精神。
四. 教学重难点1.重点:整式的加减法则。
2.难点:复杂整式加减运算的解决方法。
五. 教学方法采用“问题驱动法”和“实例分析法”,以学生为主体,教师为指导,通过提问、讨论、实践等方式,引导学生主动探索、发现和解决问题。
六. 教学准备1.教学素材:教材、多媒体课件、黑板、粉笔。
2.教学工具:投影仪、计算机。
七. 教学过程1.导入(5分钟)通过一个实际问题引出整式加减运算的概念,激发学生的学习兴趣。
2.呈现(10分钟)讲解整式的加减法则,引导学生理解并掌握加减运算的步骤。
3.操练(10分钟)学生分组进行练习,教师巡回指导,及时发现并纠正错误。
4.巩固(5分钟)选取一些典型的题目进行讲解,加深学生对整式加减运算的理解。
5.拓展(5分钟)讲解一些复杂的整式运算,引导学生学会运用合适的方法解决问题。
6.小结(3分钟)对本节课的主要内容进行总结,强调重点知识点。
7.家庭作业(2分钟)布置适量的家庭作业,巩固所学知识。
8.板书(贯穿整个教学过程)在教学过程中,适时地进行板书,总结关键步骤和注意事项。
七年级整式加减知识点在七年级数学课程中,整式加减是重要的基础知识点。
掌握了整式加减,对学习其他数学知识也会产生积极的影响。
下面,本文将介绍七年级整式加减的一些基本知识点。
一、整式的基本概念整式是指由常数和各种字母乘方及它们的积的和构成的代数式。
比如,x + 3、2x² - 5x + 1、y³ + 2y² - y 等都是整式。
二、同类项的概念同类项是指只有字母的指数不同的代数式。
例如,3x²和-2x²是同类项,因为它们都只有x的平方,并且它们的系数不同。
三、整式的加减整式的加减实际上就是把同类项合并起来,得到简化的整式。
比如,对于3x² + 2xy - 5x² + 3xy + 7,我们可以先把同类项3x²和-5x²合并,把同类项2xy和3xy合并,得到-2x² + 5xy + 7。
四、加减的练习方法对于初学者来说,整式的加减并不是一件容易的事情。
因此,我们需要进行一些练习,以提高我们的能力。
1.练习识别同类项。
在练习中,我们需要将不同的整式拆分成同类项,然后再进行合并。
2.练习合并同类项。
在练习中,我们需要手动计算每个同类项的系数,然后再把它们相加或相减。
3.练习整理整式。
在练习中,我们需要把整式溯源到它最简单的形式,也就是没有括号和乘积的形式。
五、常见的错误在学习整式加减过程中,有一些常见的错误需要注意:1.错误识别同类项。
如果我们没有正确地识别同类项,我们就无法正确地计算整式。
2.错误加减系数。
如果我们没有正确地计算系数,我们就会得到错误的结果。
3.错误理解复杂的整式。
在处理复杂的整式时,我们需要仔细分析它们,并考虑清楚每个步骤的细节。
总之,七年级的整式加减是数学的基本知识,它对学习其他数学知识也是至关重要的。
我们需要了解整式的基本概念和概念,练习合并同类项,并避免常见的错误。
只有通过反复练习,我们才能提高自己的技能。
七年级上册数学整式的加减题一、整式的加减练习题。
1. 化简:3a + 2b - 5a - b- 解析:将同类项进行合并。
同类项是指所含字母相同,并且相同字母的指数也相同的项。
在3a+2b - 5a - b中,3a和-5a是同类项,2b和-b是同类项。
- 合并同类项得:(3a - 5a)+(2b - b)=-2a + b。
2. 计算:(2x^2-3x + 1)-( - 3x^2+5x - 7)- 解析:去括号时,如果括号前面是“-”号,把括号和它前面的“-”号去掉,括号里各项都改变符号。
- 原式=2x^2-3x + 1+3x^2-5x + 7,然后合并同类项,(2x^2+3x^2)+(-3x-5x)+(1 + 7)=5x^2-8x+8。
3. 化简:4(a^2b - 2ab^2)-(a^2b+2ab^2)- 解析:先使用乘法分配律去括号,4(a^2b-2ab^2) = 4a^2b-8ab^2,-(a^2b +2ab^2)=-a^2b-2ab^2。
- 然后合并同类项得:(4a^2b-a^2b)+(-8ab^2-2ab^2) = 3a^2b-10ab^2。
4. 求整式2a^2-3a - 1与-3a^2+5a - 2的差。
- 解析:求差就是用第一个整式减去第二个整式,即(2a^2-3a - 1)-(-3a^2+5a - 2)。
- 去括号得2a^2-3a - 1 + 3a^2-5a + 2,合并同类项(2a^2+3a^2)+(-3a-5a)+(-1 + 2)=5a^2-8a+1。
5. 化简:3x^2y - [2xy^2-2(xy-(3)/(2)x^2y)+xy]+3xy^2- 解析:先去小括号,3x^2y-[2xy^2-2xy + 3x^2y+xy]+3xy^2,再去中括号3x^2y - 2xy^2+2xy - 3x^2y-xy + 3xy^2。
- 最后合并同类项(3x^2y-3x^2y)+(-2xy^2+3xy^2)+(2xy-xy)=xy^2+xy。
教案:整式的加减一、教学目标1.理解整式的概念,能够识别和区分整式。
2.掌握整式的加减法则及运算方法。
3.能够应用所学知识,解决实际问题。
二、教学重难点1.整式的概念和特点。
2.整式的加减法的运算法则及应用。
三、教学准备教材:初中数学教材、教学课件。
教具:黑板、彩色粉笔。
四、教学过程Step1:导入新知 (5分钟)1.引入整式的概念:请学生回顾并总结什么是代数式。
2.引导学生思考:代数式中,有些表达式只含有字母和数字,并且字母在计算中的作用相同,这样的代数式叫做什么?3. 引入新概念:这样的代数式叫做整式。
例如:3x+4y、5a²-2ab,都是整式。
Step2:整式的特点 (10分钟)1.整式的特点:由字母和常数因子相乘,并经过加减得到的代数式叫做整式。
2.通过课堂展示和板书,深入理解整式的特点,并讨论例子。
Step3:整式的加法 (15分钟)1.整式的加法法则:整式加法就是把同类项相加。
2.通过例题和计算过程,让学生理解整式的加法法则。
3.给予学生一些简单的计算题目,进行实际操作。
Step4:整式的减法 (15分钟)1.整式的减法法则:整式减法就是把同类项相减。
2.通过例题和计算过程,让学生理解整式的减法法则。
3.给予学生一些简单的计算题目,进行实际操作。
Step5:综合练习和拓展 (20分钟)1.综合练习:给学生一些混合运算的题目,让学生综合运用整式的加减法。
2.拓展:引导学生思考,整式的加减法在日常生活中的应用,如何运用整式解决实际问题。
Step6:归纳总结 (10分钟)1.回顾整个教学内容,让学生从整理课堂笔记、回答问题等方式,对整式的加减法进行巩固和总结。
2.对学生常犯的错误进行纠正和提示,让学生形成扎实的基础。
五、课堂小结通过本节课的学习,我们掌握了整式的概念和特点,能够准确识别和区分整式。
同时,我们也学会了整式的加法和减法的运算法则,能够熟练应用于实际问题中。
六、作业布置1.完成课堂上未完成的练习题。
七年级上册数学教案《整式的加减运算》教学目标1、能根据题意列出式子,会用整式加减的运算法则进行整式加减运算。
2、用字母表示实际问题的数量关系,发展符号感,提高运算能力及综合运用知识分析解决问题的能力。
教学重点列式表示实际问题中的数量关系,会用整式加减的运算法则进行整式加减运算。
教学难点列式表示实际问题的数量关系,整式加减运算法则的运用。
教学过程一、直接导入我们研究了合并同类项、去括号等内容,它们是进行整式加减运算的基础。
二、学习新知1、计算(1)计算多项式的和(2x - 3y)+(5x + 4y)= 2x - 3y + 5x +4y= 7x + y(2)计算多项式的差(8a-7b)-(4a-5b)= 8a-7b-4a+5b= 4a-2b2、笔记本的单价是x元,圆珠笔的单价是y元。
小红买3本笔记本,2支圆珠笔;小明买4本笔记本,3支圆珠笔。
买这些笔记本和圆珠笔,小红和小明一共花费多少钱?解法1:小红买笔记本和圆珠笔共花费(3x+2y)元,小明买笔记本和圆珠笔共花费(4x+3y)元。
小红和小明一共花费(单位:元)(3x+2y)+(4x+3y)= 3x+2y+4x+3y= 7x+5y解法2:小红和小明买笔记本共花费(3x+4x)元,买圆珠笔共花费(2y+3y)元。
小红和小明一共花费(单位:元)(3x+4x)+(2y+3y)= 7x + 5y3、做大小两个长方体纸盒,尺寸如下(单位:cm)小纸盒:长a,宽b,高c大纸盒:1.5a,2b,2c(1)做这两个纸盒共用料多少平方厘米?解:小纸盒的表面积是(2ab+2bc+2ac)cm²大纸盒的表面积是(6ab+8bc+6ac)cm²。
(1)做这两个纸盒共用料(单位:cm²)(2ab+2bc+2ac)+(6ab+8bc+6ac)= 2ab+2bc+2ac+6ab+8bc+6ac= 8ab+10bc+8ac(2)做大纸盒比做小纸盒多用料(单位:cm²)(6ab+8bc+6ac)-(2ab+2bc+2ac)= 6ab+8bc+6ac-2ab-2bc-2ac= 4ab+6bc+4ac通过上面的学习,我们可以得到整式加减的运算法则:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。
数学七年级上册整式的加减知识点数学七年级上册整式的加减知识点主要包括以下内容:1. 整式的加法和减法:整式是由常数和字母按照乘法运算符号连接起来的表达式。
整式的加法和减法是指将同类项相加或相减,并保留结果中的同类项。
例如,对于整式3x^2 + 2xy + 5和2x^2 - 3xy + 6,进行加法运算时,将同类项相加得到:(3x^2 + 2xy + 5) + (2x^2 - 3xy + 6) = 5x^2 - xy + 11。
2. 合并同类项:在整式中,有时会出现相同的字母的幂次相同的项,这些项叫做同类项。
进行整式的加减运算时,需要将同类项合并,即将同类项的系数相加或相减,并保留相同的字母和幂次。
例如,对于整式2x^2 + 3x^2 + 4x^2,将同类项合并得到:2x^2 + 3x^2 + 4x^2 = 9x^2。
3. 去括号:在整式的加减运算中,如果遇到括号,需要先去括号。
可以使用分配律进行括号的去除。
例如,对于整式2(x + y) - 3x(x - y),可以先去括号得到:2(x + y) = 2x + 2y,-3x(x - y) = -3x^2 + 3xy,然后再进行合并同类项或简化运算。
4. 提取公因式:在整式的加减运算中,如果遇到相同的公因式,可以将公因式提取出来。
公因式是指能够整除所有同类项的因式。
例如,对于整式4x^2 + 6xy,可以提取公因式2得到:4x^2 + 6xy = 2(2x^2 + 3xy)。
5. 消去同类项:在整式的加减运算中,如果遇到相反数的同类项,可以互相消去。
相反数是指具有相同绝对值但符号相反的数。
例如,对于整式5x + 2y - 3x - 2y,可以将同类项5x和-3x互相消去,将2y和-2y互相消去,最终得到:5x + 2y - 3x - 2y = 2x。
七年级数学整式的加减(原创实用版)目录1.整式的概念和分类2.整式的加减运算法则3.整式的加减运算实例4.整式的加减运算技巧和方法5.整式加减运算的常见错误及避免方法正文一、整式的概念和分类在初中数学中,我们学习了有理数、整数等基本数学概念。
整式是由若干个单项式(数字与字母的乘积)通过加减运算组合而成的代数式,其中单项式的系数可以是任意实数。
整式分为一次整式、二次整式等,根据所含未知数的次数不同进行分类。
二、整式的加减运算法则整式的加减运算分为以下几个步骤:1.找出同类项:所含未知数相同,并且相同未知数的次数也相同。
2.合并同类项:将同类项的系数相加,字母和字母的指数不变。
3.去括号:根据括号的正负号进行运算,正号可以直接去掉,负号需要将括号内各项变号。
4.简化计算:将结果化简为最简整式。
三、整式的加减运算实例例如,计算以下整式的和:3x + 2xy - xy + 5x - 2x。
步骤 1:找出同类项,可以发现 2xy 和-xy 是同类项,5x 和 -2x 也是同类项。
步骤 2:合并同类项,2xy - xy = xy,5x - 2x = 3x。
步骤 3:去括号,原式中没有括号。
步骤 4:简化计算,得到结果为 3x + xy + 3x。
四、整式的加减运算技巧和方法1.熟练掌握整式的概念和分类,了解整式的加减运算法则。
2.在计算过程中,注意找出同类项,合并同类项,简化计算。
3.注意运算顺序,先乘除后加减。
4.运用交换律、结合律等运算定律简化计算。
五、整式加减运算的常见错误及避免方法1.忘记去括号:在计算过程中要注意正负号的变化,不要忘记去括号。
2.合并同类项出错:在找出同类项时,注意字母和字母的指数要保持一致。
3.简化计算出错:在计算过程中,注意化简结果,避免出现不必要的复杂计算。
通过以上方法,我们可以轻松地掌握七年级数学整式的加减运算。
3.6整式的加减分层练习考察题型一整式的加减运算1.下列各式计算正确的是()A .336x y xy +=B .22451xy xy -=-C .2(3)26x x --=-+D .223a a a +=【详解】解:A .3x ,3y 不是同类项,不能合并,选项错误,不合题意;B .22245xy xy xy -=-,选项错误,不合题意;C .2(3)26x x --=-+,选项正确,符合题意;D .23a a a +=,选项错误,不合题意.故本题选:C .2.一个多项式与2210x x --+的和是32x -,则这个多项式为.【详解】解:由题意得:232(210)x x x ----+232210x x x =-++-2512x x =+-.故本题答案为:2512x x +-.3.已知多项式222A x y =+,2243B x y =-+且0A B C ++=,则C 为.【详解】解:222A x y =+ ,2243B x y =-+,0A B C ++=,C A B ∴=--,2222(2)(43)x y x y =-+--+2222243x y x y =--+-2235x y =-.故本题答案为:2235x y -.4.已知22x xy +=,23xy y -=,则代数式2232x xy y +-=.【详解】解:当22x xy +=,23xy y -=时,222232()2()268x xy y x xy xy y +-=++-=+=.故本题答案为:8.5.已知22x xy +=-,239xy y +=-,则式子222104x xy y --的值是.【详解】解:当22x xy +=-,239xy y +=-时,222221042(52)x xy y x xy y --=--222[()2(3)]x xy xy y =+-+2[22(9)]=⨯--⨯-2(218)=⨯-+216=⨯32=.故本题答案为:32.6.化简:(1)22224823x y xy x y xy --+-;(2)223(32)2(4)a ab a ab ---.【详解】解:(1)原式2222(42)(83)x y x y xy xy =-++--22211x y xy =--;(2)原式229682a ab a ab=--+22(98)(62)a a ab ab =-+-+24a ab =-.7.佳佳做一道题“已知两个多项式A ,B ,计算A B -”.佳佳误将A B -看作A B +,求得结果是2927x x -+.若232B x x =+-,请解决下列问题:(1)求出A ;(2)求A B -的正确答案.【详解】解:(1)2927A B x x +=-+ ,232B x x =+-,22927(32)A x x x x ∴=-+-+-2292732x x x x =-+--+2859x x =-+;(2)22859(32)A B x x x x -=-+-+-2285932x x x x =-+--+27811x x =-+.8.(1)在数轴上有理数a ,b ,c 所对应的点位置如图,化简:|||2|2||a b a c b c +--++;(2)已知多项式22A x xy =-,26B x xy =+-.化简:43A B -.【详解】解:(1)由数轴可得:0a b c <<<,||||||b c a <<,0a b ∴+<,20a c -<,0b c +>,故原式222a b a c b c a b c =--+-++=++;(2)22A x xy =- ,26B x xy =+-,22434(2)3(6)A B x xy x xy ∴-=--+-22843318x xy x xy =---+25718x xy =-+.考察题型二借助整式的加减求参或求代数式的值1.将多项式2222(3)2(2)x xy y x mxy y ---++化简后不含xy 的项,则m 的值是.【详解】解:原式22223224x xy y x mxy y =-----22(32)5x m xy y =--+-,令320m +=,1.5m ∴=-.故本题答案为: 1.5-.2.已知226A x kx x =+-,21B x kx =-+-.若2A B +的值与x 的取值无关,则k =.【详解】解:226A x kx x =+- ,21B x kx =-+-,222262(1)A B x kx x x kx ∴+=+-+-+-2226222x kx x x kx =+--+-(36)2k x =--,2A B + 的值与x 的取值无关,360k ∴-=,解得:2k =.故本题答案为:2.3.如果整式A 与整式B 的和为一个常数a ,我们称A ,B 为常数a 的“和谐整式”,例如:6x -和7x -+为数1的“和谐整式”.若关于x 的整式296x mx -+与23(3)x x m --+为常数k 的“和谐整式”(其中m 为常数),则k 的值为()A .3B .3-C .5D .15【详解】解: 整式296x mx -+与23(3)x x m --+为常数k 的“和谐整式”,223(3)933x x m x x m --+=-+-,3m ∴-=-,解得:3m =,39m ∴-=-,6(9)3∴+-=-,即k 的值为3-.故本题选:B .考察题型三借助整式的加减解决几何问题1.现有1张大长方形和3张相同的小长方形卡片,按如图所示两种方式摆放,则小长方形的长与宽的差是()A .a b -B .2a b -C .3a b -D .3a b +【详解】解:设小长方形的长为x 、宽为y ,大长方形的长为m ,则2a y x m +=+,2x b y m +=+,2x a y m ∴=+-,2y x b m =+-,(2)(2)x y a y m x b m ∴-=+--+-,即33x y a b -=-,3a bx y -∴-=,即小长方形的长与宽的差是3a b-.故本题选:C .2.如图,把两个边长不等的正方形放置在周长为m 的长方形ABCD 内,两个正方形的周长和为n ,则这两个正方形的重叠部分(图中阴影部分所示)的周长可用代数式表示为()A .2n m -B .n m -C .2m n -D .42n m-【详解】解:设较小的正方形边长为x ,较大的正方形边长为y ,阴影部分的长和宽分别为a 、b , 两个正方形的周长和为n ,44x y n ∴+=,14x y n ∴+=,BC x y b ∴=+-14n b =-,AB x y a =+-14n a =-,长方形ABCD 的周长为m ,12BC AB m ∴+=,11114422n b n a n a b m ∴-+-=--=,1()2a b n m ∴+=-,2()a b n m ∴+=-,∴阴影部分的周长为()n m -.故本题选:B .3.图1是长为a ,宽为()b a b >的小长方形纸片将6张如图1的纸片按图2的方式不重叠地放在长方形ABCD 内,已知CD 的长度固定不变,BC 的长度可以变化,图中阴影部分(即两个长方形)的面积分别表示为1S ,2S ,若12S S S =-,且S 为定值,则a ,b 满足的关系是()A .2a b =B .3a b =C .4a b =D .5a b=【详解】解:设BC n =,则1(4)S a n b =-,22()S b n a =-,12(4)2()(2)2S S S a n b b n a a b n ab ∴=-=---=--, 当BC 的长度变化时,S 的值不变,S ∴的取值与n 无关,20a b ∴-=,即2a b =.故本题选:A .考察题型四整式的加减——化简求值1.化简求值:2233[22()]2x y xy xy x y xy ---+,其中3x =,13y =-.【详解】解:2233[22()]2x y xy xy x y xy ---+223(223)x y xy xy x y xy =--++2.已知多项231A x x =-+,22(22)B kx x x =-+-.(1)当1x =-时,求A 的值;(2)小华认为无论k 取何值,A B -的值都无法确定.小明认为k 可以找到适当的数,使代数式A B -的值是常数.你认为谁的说法正确?请说明理由.【详解】解:(1)231A x x =-+ ,当1x =-时,∴原式23(1)(1)1=⨯---+3111=⨯++5=;(2)小明说法对;22231(22)A B x x kx x x -=-+-++-2223122x x kx x x =-+-++-2(5)1k x =--,当50k -=,即5k =时,1A B -=-.3.已知含字母x ,y 的多项式是:22223[2(2)]3(2)4(1)x y xy x y xy x ++--+---.(1)化简此多项式;(2)若x ,y 互为倒数,且恰好计算得多项式的值等于0,求x 的值.【详解】解:(1)原式222236(2)36444x y xy x y xy x =++----++22223661236444x y xy x y xy x =++----++248xy x =+-;(2)x ,y 互为倒数,1xy ∴=,则24824846xy x x x +-=+-=-,4.已知单项式123a x y -与312b xy ---是同类项.(1)填空:a =,b =;(2)在(1)的条件下,先化简,再求值:225()2(2)2a b b a b +-++.【详解】解:(1)由题意可得:11a -=,231b =--,解得:2a =,1b =-,故本题答案为:2,1-;(2)原式2255242a b b a b =+--+25a b =+,将2a =,1b =-代入,原式225(1)=+⨯-1=-.5.已知多项式222A x xy x =+++,2233B x xy y =-+-.(1)若2(2)|5|0x y -++=,求2A B -的值.(2)若2A B -的值与y 的值无关,求x 的值.6.已知关于x 的代数式221262x bx y --+和1751ax x y +--的值都与字母x 的取值无关.(1)求a ,b 的值.(2)若2244A a ab b =-+,2233B a ab b =-+,求4[(2)3()]A A B A B +--+的值.7.阅读材料:对于任何数,我们规定符号a b cd的意义是a b ad bc c d=-.例如:121423234=⨯-⨯=-.(1)按照这个规定,请你计算5628-的值;(2)按照这个规定,请你计算当2|3|(1)0m n ++-=时,223212m nm n+--的值.∴原式18927=--=.1.一个四位数100010010m a b c d =+++(其中1a ,b ,c ,9d ,且均为整数),若()a b k c d +=-,且k 为整数,则称m 为“k 型数”.例如:7241m =,因为()72341+=⨯-,则7241为“3型数”;4635m =,因为465(35)+=-⨯-,则4635为“5-型数”.若四位数m 是“3型数”,3m -是“1-型数”,将m 的百位数字与十位数字交换位置,得到一个新的四位数n ,n 也是“3型数”,则满足条件的最小四位数m 的值为.6a b ∴+=,又b c = ,666(2)4a b c d d ∴=-=-=-+=-,3d < ,∴当d 最大2=时,a 最小2=,此时24c d =+=,4b c ==,∴最小2442m =.故本题答案为:2442.2.材料:对于一个四位正整数m ,如果满足百位上数字的2倍等于千位与十位的数字之和,十位上数字的2倍等于百位与个位的数字之和,那么称这个数为“相邻数”.例如:3579 中,253710⨯=+=,725914⨯=+=,3579∴是“相邻数”.(1)判断7653,3210是否为“相邻数”,并说明理由;(2)若四位正整数100010010n a b c d =+++为“相邻数”,其中a ,b ,c ,d 为整数,且19a ,09b ,09c ,09d ,设()2F n c =,()2G n d a =-,若3()()2317F nG n -+为整数,求所有满足条件的n 值.综上,所有满足条件的n的值为1234,8642,9999.。