并联电抗器原理
- 格式:docx
- 大小:36.43 KB
- 文档页数:1
电抗器的工作原理
电抗器是一种用于调节电流和电压的电气元件。
它主要由线圈和磁芯组成,通过改变线圈中的电流和磁场来实现对电流和电压的调节。
电抗器在电力系统中起着重要的作用,可以用于电力传输、电力负荷稳定、电力因数校正等方面。
电抗器的工作原理可以通过以下几个方面来解释:
1. 电感效应:电抗器的线圈中包含有导体,当通过该导体的电流发生变化时,会产生磁场。
根据法拉第电磁感应定律,变化的磁场会引起线圈中的电压变化。
因此,电抗器可以通过改变线圈中的电流来调节电压。
2. 电容效应:电抗器中的线圈和磁芯之间存在电容效应。
当电流通过线圈时,电场会在线圈和磁芯之间产生变化。
根据电容器的工作原理,变化的电场会导致电压的变化。
因此,电抗器也可以通过改变线圈中的电流来调节电压。
3. 阻抗匹配:电抗器在电力系统中常用于调节电流和电压的匹配。
通过合理选择电抗器的参数,可以使电流和电压的波形保持一致,从而实现电力传输的高效率和稳定性。
4. 谐振效应:电抗器在某些特定频率下会发生谐振现象。
当电抗器的频率与电力系统中其他元件的频率相匹配时,会出现电流和电压的共振现象。
这种共振现象可以用于电力系统的调节和控制。
总结起来,电抗器的工作原理主要是通过电感效应、电容效应、阻抗匹配和谐振效应来实现对电流和电压的调节。
电抗器在电力系统中具有重要的作用,能够提高电力传输的效率和稳定性,同时也可以用于电力负荷的调节和电力因数的校正。
电抗器
(一)、电抗器是一个大的电感线圈,根据电磁感应原理,感应电流的磁场总是阻碍原来磁通的变化,如果原来磁通减少,感应电流的磁场与原来的磁场方向一致,如果原来的磁通增加,感应电流的磁场与原来的磁场方向相反.
根据这一原理,如果突然发生短路故障,电流突然增大,在这个大的电感线圈中,要产生一个阻碍磁通变化的反向电势E反,在这个反向电势E反的作用下,必然要产生一个反向的电流,达到限制电流突然增大的变化,起到限制短路电流的作用,从而维持了母线电压水平。
II
负+4I故=5I负-3I反=2I负
(二)、装设电抗器带来的优点:
1、选用遮断容量小的主开关(901);
2、选用遮断容量小的线路开关(951——958);
3、小容量的开关体积小、占用空间小、占地面小;
4、降低了工程造价;
5、倒闸操作方便;
(三)、装设电抗器带来的缺点:
电抗器正常工作时要消耗一定的电能,造成一些电压降,一般在5%左右。
(四)、电抗器接线
1、变压器低压开关串联电抗器
2、母线分段电抗器
3、线路串联电抗器
4、变压器低压开关并联电抗
(五)、分裂电抗器的应用:
中间带抽头的分裂电抗器也得到了广泛的应用,如:东
郊变10kV侧分裂电抗器。
由于分裂电抗器的两个支路有电磁的联系,因此,正
常情况下,它所呈现的电抗值比较小,压降也小,当任何
一个支路有短路时,电抗值变大,从而能有效地限制短路
电流.
(六)、电抗器铭牌数据代表什么?。
电抗器是⼲什么的,⼀⽂读懂电抗器的作⽤和原理在供电系统中,为了保证电路的平稳运⾏,剔除谐波,增加抗冲击能⼒,减少不必要的谐振,在设计电路时常采⽤电抗器来阻⽌这些危害。
接下来我们就了解⼀下电抗器的作⽤和原理。
电抗器☞通常在电路当中的电容与电感对于交流所产⽣的阻碍作⽤我们可以称这种现象叫做电抗,⽽符号则是⽤X来进⾏表⽰。
☞电抗器也叫电感器,是指⼀个导体在通电时,对其所在的空间内产⽣的磁场。
故载流的带电导体都据有感性。
☞对于称空⼼电抗器或通电长直导体⽽⾔,由于产⽣的磁场不强,故电感较⼩。
☞为了具有更⼤的电感,⼀般的电抗器都在其螺线管内部插⼊铁⼼。
电抗器的原理☞电抗器的作⽤也就是在出线断路器处串联电抗器,从⽽增⼤短路阻抗,达到限制短路电流的⽬的。
☞⼯作原理:就是⼀个导体通电时,就会在其周围⼀定空间范围内产⽣磁场,使该载流的电导体具有感性⽽做成的⼤阻抗器件。
在短路时起到降压作⽤,维持母线电压正常,让故障线路上的电⽓设备正常运⾏。
电抗器的作⽤⼀般电⼒系统常见的电抗器应⽤有串联电抗器和并联电抗器两种⽅式。
串联电抗器的作⽤串联电抗器主要⽤来限制短路电流,也有在滤波器中与电容器串联或并联⽤来限制电⽹中的⾼次谐波。
并联电抗器作⽤并联电抗器:由于其内部内部通过的是交流,所以,并联电抗器的作⽤是补偿系统的容抗。
通常与晶闸管串联,可连续调节电抗电流。
可以根需要对并联电抗器的数量来调整运⾏电压。
超⾼压并联电抗器还能改善电⼒系统⽆功功率有关运⾏状况的多种功能。
直流电抗器的作⽤:可以让整流电流的持续性并且还能降低电流脉冲。
输⼊电抗器的作⽤:减少由于电⽹波动⽽引起的电流冲击现象。
输出电抗器的作⽤:抑制输出谐波电流从⽽提升输出⾼频抗阻电抗的分类电抗⼀般分为感抗和容抗,以前是感抗器和容抗器统称为电抗器,⽽现在所说的电容器就是容抗器,⽽电抗器指电感器。
总结:由于电抗器的特殊保护作⽤,在电路中经常采⽤电抗器、电容器的不同组合电路形式,达到保护系统的正常运⾏。
并联高抗中性点小电抗补偿原理分析及参数选择方法 并联高抗中性点接小电抗四线补偿的思想是通过对导线相间电容的补偿来隔离相间联系,削弱潜供电流与恢复电压的电容性分量,此时小电抗进行的是二次补偿。
在系统不同的运行情况下,小电抗器参数选择的原则和方法也不相同。
2.1 等值电源定理分析小电抗二次补偿高抗中性点加小电抗四线补偿原理示意图见图1-4。
高抗中性点经过小电抗器接地后的电路见图2-1(a)。
L X 为三相电感,n X 为中性点单相电感。
图2-1 四线补偿系统等效电路图图2-1(a )所示的四线补偿系统经星-角变换得到图2-1(b )所示的系统等效电路。
其中以上两种形式的电路参数满足如下关系n L LD X X X 30+=L L L L L L X X X X X X X X -++=0n n 012393式中,0L X 为小电抗接入前系统对地等效阻抗;LD X 和12L X 为小电抗接入后系统等效对地阻抗与相间阻抗。
对于三相单相电抗器(L L X X =0),则可变换为n L LD X X X 3+= L n L L X X X X 3/212+= 通过式(12-)和(22-)可知高抗L X 、对地阻抗LD X 和相间阻抗12L X 的容量存在以下等式关系。
(2-1) (2-2)L N L N LD N X U X U X U 21222)3(=+ (2-3)由式(2-3)可知,高抗的容量等于对地电抗和相间电抗的容量之和,小电抗的投入并未改变实际的补偿容量,其所起的作用只是令高抗的容量合理的分配至相间与相对地两部分。
小电抗器n X 的投入,其作用是等效产生了相间感抗来补偿导线相之间电容,而高抗只是补偿回路的对地电容,故小电抗进行的是二次补偿[1,7]。
单回线路高抗中性点接小电抗器主要是为了限制容性分量潜供电流,其流通回路如图2-2(a )所示,应用等值电源定理,可简化得到图2-2(b )所示的单相等值电路。
附 录 A(资料性附录)可控并联电抗器基本原理A.1 变压器型可控并联电抗器变压器型可控并联电抗器是可控并联电抗器的一种形式,它基于高阻抗变压器原理将变压器和电抗器设计为一体,将变压器的短路阻抗百分比设计为接近100%,在本体的低压侧接入晶闸管、断路器及其他控制回路进行调节,实现输出感性无功功率的分级控制。
变压器型可控并联电抗器典型单相结构图如图A.1所示。
注:X1、X2分别为变压器本体初级线圈和次级线圈。
Xn为中性点电抗器。
Xb1、Xb2、Xb3为辅助电抗器,和本体配合满足各级容量要求。
Xb11、Xb12、Xb13为取能电抗器,为对应容量级晶闸管阀提供取能和晶闸管开通电压。
D11、D12、D13为旁路断路器,和各容量级阀并联,承担长期工作电流。
TK1、TK2、TK3为自冷晶闸管阀组,分别对应各容量级。
G11、G12、G13为隔离开关,用于各级阀的检修。
Y1、Y2、Y3为避雷器,用于在过电压故障下保护晶闸管阀和电抗器。
图A.1 变压器型可控并联电抗器单相结构原理图在旁路断路器上可串联取能电抗器,保证旁路断路器在旁路状态下晶闸管阀满足取能工作条件。
线路侧可控并联电抗器中性点经电抗器接地,在非对称故障或线路断路器开断期间,限制潜供电流,并抑制恢复过电压,同时抑制谐振过电压,通常按照全补偿原则设计中性点电抗器电抗值,即补偿线路相间电容和相对地电容,特别是相间接近全补偿,使相间阻抗接近无穷大。
母线用可控并联电抗器中性点直接接地。
变压器型可控并联电抗器中的晶闸管阀采用电流过零投切的工作方式,工作在全开通或全关断状态,基本不产生谐波及直流分量,不需加装滤波器,提高了产品性能和可靠性。
正常工作不发生容量切换时,旁路断路器闭合承担长期工作电流。
晶闸管阀仅在容量切换过程中,在旁路断路器动作之前短时导通,实现快速动作,可采用空气自然冷却方式。
在发生故障时,采用晶闸管快速调节至100%容量,达到限制工频过电压、抑制潜供电流的目的。
串联电抗器基本介绍电抗器在高压配电系统的作用:电力系统中所采取的电抗器,常见的有串联电抗器和并联电抗器。
串联电抗器主要用来限制短路电流,也有在滤波器中与电容器串联或并联用来限制电网中的高次谐波。
220kV、110kV、35kV、10kV电网中的电抗器是用来吸收电缆线路的充电容性无功的。
可以通过调整串联电抗器的数量来调整运行电压。
基本作用1、降低电容器组的涌流倍数和涌流频率,便于选择配套设备和保护电容器。
根据GB50227标准要求应将涌流限制在电容器额定电流的10倍以下,为了不发生谐波放大(谐波牵引),要求串联电抗器的伏安特性尽量为线性。
网络谐波较小时,采用限制涌流的电抗器;电抗率在0.1%-1%左右即:可将涌流限制在额定电流的10倍以下,以减少电抗器的有功损耗,而且电抗器的体积小、占地面积小、便于安装在电容器柜内。
采用这种电抗器是即经济,又节能。
2、串联滤波电抗器,电抗器阻抗与电容器容抗全调谐后,组成某次谐波的交流滤波器。
滤去某次高次谐波,而降低母线上该次谐波的电压值,使线路上不存在高次谐波电流,提高电网的电压质量。
滤波电抗器的调谐度:XL=ωL=1/n2XC=AXC式中A-调谐度(%)XL-电抗值(Ω)XC-容抗值(Ω)n-谐波次数L-电感值(μH)ω----314按上述调谐度配置电抗器,可满足滤除各次谐波。
3、抑制谐波的电抗器,先决条件是需要清楚电网的谐波情况,查清周围用电户有无大型整流设备、电弧、炼钢等能产生谐波的设备,有无性能不良好的高压变压器及高压电机,尽可能实测一下电网谐波的实际量值,再根据实际谐波量来配置适当的电抗器。
铁芯电抗器电抗线性度不好,有噪声,空芯电抗器运行无噪声,线性度好,损耗小。
标准规定空芯电抗器容量在100KVAR以下时,每伏安损耗不大于0.03W。
例如:单台12000VA电抗率6%的电抗器损耗为360W,三相有功损耗为1080W,这是一个不小的数字。
电网上谐波较小时,采用限流电抗器可节省电能。
并联电抗器原理
并联电抗器是一种电力电子装置,用于改变电路中的功率因数或电感。
它由电感线圈和电容器组成,这些元件通过并联连接。
并联电抗器的工作原理是通过改变电路中的电感或电容来实现对电路的调节。
当并联电抗器连接到电路中时,它会提供额外的电感或电容来改变电路中的等效电感或电容。
通过调节并联电抗器的参数,可以改变电路中的功率因数或电感。
当电路中需要增加电感时,可以连接一个并联电感器。
并联电感器通过提供额外的电感量,有效地增加了电路的总电感。
这在某些情况下是必要的,例如在交流电路中,增加电感可以改善功率因数,减少失真并提高电路的效率。
另一方面,当电路中需要增加电容时,可以连接一个并联电容器。
并联电容器通过提供额外的电容来增加电路的总电容。
这对于需要存储额外电荷或改变电路的频率响应的电路非常有用。
总的来说,通过连接并联电抗器,可以灵活地调整电路中的电感和电容,从而改变电路的功率因数或电感。
这对于各种电力和电子应用非常重要,例如电力系统中的功率因数校正、电子设备中的滤波和频率响应校正等。