平行四边形的判定单元测试卷一
- 格式:doc
- 大小:665.00 KB
- 文档页数:6
新华师大版八年级下册数学平行四边形单元测试卷姓名____________ 时间: 90分钟 满分:120分 总分____________ 一、选择题(每小题3分,共30分)1. 在四边形ABCD 中,CD AB //,再添加下列一个条件,四边形ABCD 不一定是平行四边形的是 【 】 (A )CD AB = (B )BC AD = (C )BC AD // (D )C A ∠=∠2. 如图所示,在□ABCD 中,︒=∠︒=∠115,25A DBC ,则=∠BDC 【 】 (A )︒25 (B )︒30 (C )︒40 (D )︒65第 2 题图ADBC第 3 题图EBACD3. 如图所示,在△ABC 中,BC AB A ⊥︒=∠,40,点D 在AC 边上,以CB 、CD 为边作□BCDE ,则E ∠的度数为 【 】 (A )︒40 (B )︒50 (C )︒60 (D )︒704. 如图所示,EF 过□ABCD 对角线的交点O ,交AD 于点E ,交BC 于点F ,若□ABCD 的周长是30,3=OE ,则四边形ABFE 的周长是 【 】 (A )18 (B )21 (C )24 (D )27第 4 题图F ODBCAE第 5题图5. 如图,在□ABCD 中,AB BE ⊥交对角线AC 于点E ,若︒=∠201,则2∠的度数为 【 】 (A )︒120 (B )︒100 (C )︒110 (D )︒906. 如图所示,□ABCD 的周长周长为24,AC 、BD 相交于点O ,BD OE ⊥交AD 于点E ,则△ABE 的周长为 【 】 (A )8 (B )10 (C )12 (D )16第 6 题图EODBCA第 7 题图FECABD7. 如图所示,在□ABCD 中,E 、F 是对角线BD 上不同的两点,若添加下列条件,不能得出四边形AECF 一定是平行四边形的为 【 】 (A )DF BE = (B )CE AF // (C )DCF BAE ∠=∠ (D )CF AE =8. 如图,平行四边形OABC 的顶点A 、C 的坐标分别为()0,5,()3,2,则顶点B 的坐标为 【 】 (A )()3,7 (B )()7,3 (C )()7,4 (D )()4,7yx第 8 题图BCAO第 9 题图9. 如图所示,已知□AOBC 的顶点()0,0O ,()2,1-A ,点B 在x 轴正半轴上,按以下步骤作图:①以点O 为圆心,适当长为半径作弧,分别交边OA 、OB 于点D 、E ;②分别以点D 、E 为圆心,大于DE 21的长为半径作弧,两弧交于点F ;③作射线OF ,交边AC 于点G .则点G 的坐标为 【 】 (A )()2,5 (B )()2,53- (C )()2,25- (D )()2,15-第 15 题图EF CABDP10. 如图所示,在□ABCD 中,点E 、F 在对角线BD 上,连结AE 、CE 、CF 、AF ,添加下列条件中的一个:①DE BF =;②AF AE =;③CF AE =;④CFD AEB ∠=∠;⑤BD CF BD AE ⊥⊥,.其中,能使四边形AECF 为平行四边形的有 【 】 (A )2个 (B )3个 (C )4个 (D )5个第 10 题图FEDBCA第 11 题图D二、填空题(每小题3分,共15分)11. 如图,在□ABCD 中,AB CE ⊥,若︒=∠65D ,则=∠BCE _________.12. 已知□ABCD 的周长为10,对角线AC 、BD 交于点O ,△AOD 的周长比△AOB 的周长多1,则AB 的长为_________.13. 如图所示,四边形AEDF 是平行四边形,△CED 和△DFB 的周长分别为5和10,则△ABC 的周长为_________.第 13 题图F DABCE第 14 题图ADEBC14. 如图所示,在□ABCD 中,ABC ∠和BCD ∠的平分线交AD 边于同一点E ,且3,4==CE BE ,则AB 的长是_________.15. 如图所示,四边形ABCD 是平行四边形,点E 是CD 上一点,且EC BC =,BE CF ⊥交AB 于点 F ,P 是EB 延长线上的一点,下列结论:①BE 平分CBF ∠; ②CF 平分DCB ∠; ③BC BF =; ④PC PF =. 其中,正确结论的序号是__________.三、解答题(共75分)16.(9分)证明命题“一组对边平行且相等的四边形是平行四边形”,要根据题意,画出图形,并写出已知、求证、证明过程.下面是某同学根据题意画出的图形,并写出了不完整的已知和求证.已知: 如图所示,在四边形ABCD中,CDAB//,__________.求证:___________________________________.请补全已知和求证部分,并写出证明过程.DB CA17.(8分)已知:如图所示,在□ABCD中,点E是BC边的中点,连结DE并延长交AB边的延长线于点F.求证:BFAB .BC EA FD18.(9分)已知:如图所示,在□ABCD 中,点F 在AB 的延长线上,且AB BF =,连结FD ,交BC 于点E .(1)求证:△DCE ≌△FBE ; (2)若3=EC ,求AD 的长.FEDBCA19.(9分)如图所示,点B 、E 、C 、F 在同一条直线上,DE AC DF AB ==,,FC BE =. (1)求证:△ABC ≌△DFE ;(2)连结AF 、BD ,求证:四边形ABDF 是平行四边形.EDBFAC20.(9分)如图所示,AC 、BD 相交于点O ,BC AD CD AB //,//,E 、F 分别是OB 、OD 的中点.求证:四边形AFCE 是平行四边形.FEODBCA21.(10分)如图所示,已知︒=∠=∠90E B ,点B 、C 、F 、E 在一条直线上,EC BF DF AC ==,. 求证:四边形ACDF 是平行四边形.22.(10分)如图所示,在□ABCD 中,E 、F 分别是AB 、CD 的中点,DE 、BF 与对角线AC 分别交于点M 、N ,连结MF 、NE . (1)求证:BF DE //;(2)判断四边形MENF 是何特殊的四边形,并说明理由.NMEFCABD23.(11分)如图所示,在四边形ABCD 中,︒=∠90,//A BC AD ,12=AB ,21=BC ,16=AD .动点P 从点B 出发,沿射线BC 以每秒2个单位长度的速度运动,动点Q 同时从点A 出发,在线段AD 上以每秒1个单位长度的速度向点D 运动,当点Q 到达点D 时另一个动点也随之停止运动.设运动的时间为t 秒.(1)填空:=AQ _________,=BP _________,(用含t 的代数式表示),t 的取值范围是__________;(2)设△DPQ 的面积为S ,用含t 的式子表示S ; (3)当=t _________时,PQ PD =;(4)当t 为何值时,以点P 、C 、D 、Q 为顶点的四边形是平行四边形?DABCQP新华师大版八年级下册数学摸底试卷平行四边形单元测试卷 参考答案一、选择题(每小题3分,共30分)二、填空题(每小题3分,共15分)11. ︒25 12. 2 13. 15 14. 2515. ①②③④ 部分题目答案提示9. 如图所示,已知□AOBC 的顶点()0,0O ,()2,1-A ,点B 在x 轴正半轴上,按以下步骤作图:①以点O 为圆心,适当长为半径作弧,分别交边OA 、OB 于点D 、E ;②分别以点D 、E 为圆心,大于DE 21的长为半径作弧,两弧交于点F ;③作射线OF ,交边AC 于点G .则点G 的坐标为 【 】 (A )()2,5 (B )()2,53- (C )()2,25- (D )()2,15-第 9 题图解析 本题考查平行四边形的性质和尺规作图的原理,注意角平分线+平行线模型的识别.由尺规作图可知:OF 平分AOB ∠根据角平分线+平行线模型可知:AG OA = ∵()2,1-A∴()52122=+-=OA ∴5=AG ∵x AC //轴 ∴2==A G y y∵()51==--=-AG x x x G A G∴51=+G x ∴15-=G x∴点G 的坐标为()2,15-∴选择答案【 D 】.10. 如图所示,在□ABCD 中,点E 、F 在对角线BD 上,连结AE 、CE 、CF 、AF ,添加下列条件中的一个:①DE BF =;②AF AE =;③CF AE =;④CFD AEB ∠=∠;⑤BD CF BD AE ⊥⊥,.其中,能使四边形AECF 为平行四边形的有 【 】 (A )2个 (B )3个 (C )4个 (D )5个第 10 题图FEDBCA解析 本题主要考查平行四边形的性质以及判定.对于①DE BF =,连结AC ,交BD 于点O ,如图1所示.图 1∵四边形ABCD 为平行四边形 ∴OD OB OC OA ==, ∵DE BF =∴OE OD OF OB +=+ ∴OE OF =∵OF OE OC OA ==, ∴四边形AECF 是平行四边形.对于②AF AE =,不能确定四边形AECF 是平行四边形;对于③CF AE =,不能确定四边形AECF 是平行四边形;对于④CFD AEB ∠=∠,如图2所示.图 2∵CFD AEB ∠=∠ ∴21∠=∠∴CF AE //∵四边形ABCD 为平行四边形 ∴CD AB CD AB =,// ∴43∠=∠在△ABE 和△CDF 中∵⎪⎩⎪⎨⎧=∠=∠∠=∠CD AB CFD AEB 43 ∴△ABE ≌△CDF (AAS ) ∴CF AE =∵CF AE //,CF AE = ∴四边形AECF 是平行四边形. 对于⑤BD CF BD AE ⊥⊥,,如图3所示.图 3∵BD CF BD AE ⊥⊥, ∴CF AE //(在同一平面内,垂直于同一条直线的两条直线互相平行) 易证:△ABD ≌△CDB ∴CDB ABD S S ∆∆=∴CF BD AE BD ⋅=⋅2121 ∴CF AE =∵CF AE //,CF AE = ∴四边形AECF 是平行四边形.(或易证:△ABE ≌△CDF ,∴CF AE =) 综上所述,能使四边形AECF 为平行四边形的条件有:①④⑤,共3个. ∴选择答案【 B 】.14. 如图所示,在□ABCD 中,ABC ∠和BCD ∠的平分线交AD 边于同一点E ,且3,4==CE BE ,则AB 的长是_________.第 14 题图ADEBC解析 本题主要考查平行四边形的性质,注意角平分线+平行线模型的识别. 根据角平分线+平行线模型不难确定:△ABE 和△DCE 都是等腰三角形 ∴DC DE AB AE ==, ∵四边形ABCD 为平行四边形 ∴AD BC CD AB CD AB ==,//, ∴︒=∠+∠=180,BCD ABC DE AE ∴AB AE AD BC 22=== ∵BE 平分ABC ∠,CE 平分BCD ∠ ∴22,12∠=∠∠=∠BCD ABC ∴︒=∠+∠1802212 ∴︒=∠+∠9021 ∴︒=∠90BEC在Rt △BCE 中,由勾股定理得:222CE BE BC +=∴53422=+=BC ∴2521==BC AB . 15. 如图所示,四边形ABCD 是平行四边形,点E 是CD 上一点,且EC BC =,BE CF ⊥交AB 于点F ,P 是EB 延长线上的一点,下列结论:①BE 平分CBF ∠; ②CF 平分DCB ∠;③BC BF =; ④PC PF =. 其中,正确结论的序号是__________.第 15 题图EF CABDP解析 本题主要考查平行四边形的性质.图 1对于①,∵四边形ABCD 为平行四边形 ∴CD AB //∴31∠=∠(如图1所示) ∵EC BC = ∴21∠=∠ ∴32∠=∠ ∴BE 平分CBF ∠; 故结论①正确; 对于②,如图1所示. ∵EC BC =,BE CF ⊥ ∴CF 平分DCB ∠(等腰三角形“三线合一”) 故结论②正确; 对于③,如图2所示.图 2由结论②可知: CF 平分DCB ∠ ∴21∠=∠∵四边形ABCD 为平行四边形 ∴CD AB //∴31∠=∠ ∴32∠=∠ ∴BC BF =. 故结论③正确;对于④,∵BC BF =,CF BE ⊥∴直线BE 垂直平分CF ∴PC PF = 故结论④正确.综上所述,正确结论的序号是①②③④. 三、解答题(共75分)16.(9分)证明命题“一组对边平行且相等的四边形是平行四边形”,要根据题意,画出图形,并写出已知、求证、证明过程.下面是某同学根据题意画出的图形,并写出了不完整的已知和求证.已知: 如图所示,在四边形ABCD 中,CD AB //,__________.求证:________________________________. 请补全已知和求证部分,并写出证明过程.CD AB =…………………………………………1分四边形ABCD 为平行四边形…………………………………………2分 证明:连结AC ∵CD AB // ∴21∠=∠在△ABC 和△CDA 中∵⎪⎩⎪⎨⎧=∠=∠=CA AC CD AB 21 ∴△ABC ≌△CDA (SAS ) ∴43∠=∠ ∴BC AD //…………………………………………6分 ∵CD AB //,BC AD // ∴四边形ABCD 为平行四边形…………………………………………9分 点评 要证明平行四边形的判定定理,必须按照平行四边形的定义进行,即证明四边形的两组对边分别平行.17.(8分)已知:如图所示,在□ABCD 中,点E 是BC 边的中点,连结DE 并延长交AB 边的延长线于点F . 求证:BF AB =.BC EAFD证明:∵点E 是BC 边的中点 ∴CE BE =∵四边形ABCD 是平行四边形 ∴CD AB CD AB =,//…………………………………………2分 ∴CD AF // ∴1∠=∠F在△BEF 和△CED 中∵⎪⎩⎪⎨⎧=∠=∠∠=∠CE BE F 321 ∴△BEF ≌△CED (AAS ) ∴CD BF =…………………………………………6分 ∵CD BF CD AB ==, ∴BF AB =…………………………………………8分 18.(9分)已知:如图所示,在□ABCD 中,点F 在AB 的延长线上,且AB BF =,连结FD ,交BC 于点E .(1)求证:△DCE ≌△FBE ; (2)若3=EC ,求AD 的长.FEDBCA(1)证明:∵四边形ABCD 是平行四边形 ∴CD AB CD AB =,//…………………………………………2分 ∴CD AF //∴1∠=∠F∵AB BF = ∴CD BF =在△DCE 和△FBE 中∵⎪⎩⎪⎨⎧=∠=∠∠=∠BF CD FEB DEC F 1 ∴△DCE ≌△FBE (AAS );…………………………………………5分 (2)解:由(1)可知:△DCE ≌△FBE ∴3==BE CE ∴62==CE BC…………………………………………7分 ∵四边形ABCD 是平行四边形 ∴6==BC AD .…………………………………………9分 19.(9分)如图,点B 、E 、C 、F 在同一条直线上,DE AC DF AB ==,,FC BE =. (1)求证:△ABC ≌△DFE ;(2)连结AF 、BD ,求证:四边形ABDF 是平行四边形.证明:(1)∵FC BE = ∴CE FC CE BE +=+ ∴FE BC =…………………………………………1分EDBFAC在△ABC 和△DFE 中∵⎪⎩⎪⎨⎧===FE BC DE AC DFAB ∴△ABC ≌△DFE (SSS );…………………………………………4分(2)由(1)可知:△ABC ≌△DFE ∴21∠=∠ ∴DF AB //…………………………………………6分 ∵DF AB =∴DF AB =// ∴四边形ABDF 是平行四边形.…………………………………………9分 20.(9分)如图所示,AC 、BD 相交于点O ,BC AD CD AB //,//,E 、F 分别是OB 、OD 的中点.求证:四边形AFCE 是平行四边形.FEODBCA证明:∵BC AD CD AB //,// ∴四边形ABCD 是平行四边形…………………………………………3分 ∴OD OB OC OA ==,…………………………………………5分 ∵E 、F 分别是OB 、OD 的中点 ∴OD OF OB OE 21,21==∴OF OE =…………………………………………6分 ∵OF OE OC OA ==, ∴四边形AFCE 是平行四边形.…………………………………………9分 21.(10分)如图,已知︒=∠=∠90E B ,点B 、C 、F 、E 在一条直线上,EC BF DF AC ==,. 求证:四边形ACDF 是平行四边形.证明:∵EC BF = ∴CF EC CF BF -=- ∴EF BC =…………………………………………1分在Rt △ABC 和Rt △DEF 中∵⎩⎨⎧==EF BC DF AC∴Rt △ABC ≌Rt △DEF (HL )…………………………………………5分 ∴DFE ACB ∠=∠ ∴21∠=∠ ∴DF AC //…………………………………………7分 ∵DF AC //,DF AC = ∴四边形ACDF 是平行四边形.…………………………………………10分 22.(10分)如图所示,在□ABCD 中,E 、F 分别是AB 、CD 的中点,DE 、BF 与对角线AC 分别交于点M 、N ,连结MF 、NE . (1)求证:BF DE //;(2)判断四边形MENF 是何特殊的四边形,并说明理由.NMEFCABD(1)证明:∵四边形ABCD 是平行四边形∴CD AB CD AB =,//…………………………………………2分 ∴BE DF //∵E 、F 分别是AB 、CD 的中点 ∴AB BE CD DF 21,21==∴BE DF =∵BE DF //,BE DF = ∴四边形BEDF 是平行四边形 ∴BF DE //;…………………………………………5分(2)解:四边形MENF 是平行四边形 …………………………………………6分 理由如下:由(1)可知:BF DE // ∴,//NF ME ABF ∠=∠1 ∵CD AB //∴ABF ∠=∠2,43∠=∠ ∴21∠=∠∵E 、F 分别是AB 、CD 的中点 ∴CD CF AB AE 21,21==∴CF AE =在△AME 和△CNF 中∵⎪⎩⎪⎨⎧∠=∠=∠=∠4321CF AE ∴△AME ≌△CNF (ASA )∴NF ME =∵,//NF ME NF ME = ∴四边形MENF 是平行四边形.…………………………………………10分 23.(11分)如图所示,在四边形ABCD 中,︒=∠90,//A BC AD ,12=AB ,21=BC ,16=AD .动点P 从点B 出发,沿射线BC 以每秒2个单位长度的速度运动,动点Q 同时从点A 出发,在线段AD 上以每秒1个单位长度的速度向点D 运动,当点Q 到达点D 时另一个动点也随之停止运动.设运动的时间为t 秒.(1)填空:=AQ ________,=BP ________,(用含t 的代数式表示),t 的取值范围是__________;(2)设△DPQ 的面积为S ,用含t 的式子表示S ;(3)当=t _________时,PQ PD =; (4)当t 为何值时,以点P 、C 、D 、Q 为顶点的四边形是平行四边形?DABCQP解:(1)t ,t 2,0≤t ≤16;…………………………………………3分 (2)由题意可知:t AQ AD DQ -=-=16∴()966121621+-=⋅-=t t S ; …………………………………………5分(3)316;…………………………………………7分 提示: 当PQ PD =时,作AD PE ⊥,如图1所示.P由等腰三角形“三线合一”的性质可知:DE QE =易知:四边形ABPE 是矩形(即长方形) ∴t BP AE 2==∴t t t AQ AE QE =-=-=2 t AE AD DE 216-=-= ∵DE QE = ∴t t 216-=解之得:316=t∴当316=t 时,PQ PD =.(4)分为两种情况:图 2P QDABC①当点P 在BC 边上时,四边形PCDQ 是平行四边形,则有DQ PC = ∴t t -=-16221解之得:5=t ;(如图2所示)…………………………………………9分 ②当点P 在BC 边的延长线上时,四边形CPDQ 是平行四边形,则有DQ PC = ∴t t -=-16212解之得:337=t .(如图3所示) 图 3PQDABC综上所述,当5=t 或337=t 时,以点P 、C 、D 、Q 为顶点的四边形是平行四边形.…………………………………………11分学生整理用图。
初二数学上第四章平行四边形性质4.1平行四边形的性质练习一下图是两组对边分别平行的四边形:即:AB∥CD,AD∥BC,那么(1)各对边之间有什么样的数量关系?为什么?(2)各对角之间有什么样的数量关系?为什么?(3)如果连结AC、BD,交点为O,如图,那么AC、BD之间又有什么关系?练习二一、填空题1.若一凸多边形的内角和等于它的外角和,则它的边数是________.2.已知:平行四边形一边AB =12 cm,它的长是周长的61,则BC =______ cm,CD =______ cm.3.如图1,在ABCD 中,对角线AC 、BD 相交于点O ,图中全等三角形共有________对. 图14.如图1,如果该平行四边形的一条边长是8,一条对角线长为6,那么它的另一条对角线长m 的取值范围是________.5. ABCD 中,若∠A ∶∠B =1∶3,那么∠A =________,∠B =________,∠C =________,∠D =________.二、选择题1.平行四边形的两邻边分别为3、4,那么其对角线必( ) A.大于1 B.小于7 C.大于1且小于7 D.小于7或大于12.在ABCD 中,M 为CD 的中点,如DC =2AD ,则AM 、BM 夹角度数是( )A.90°B.95°C.85°D.100°3.如图2,四边形ABCD 是平行四边形,∠D =120°,∠CAD =32°.则∠ABC 、∠CAB 的度数分别为( )A.28°,120°B.120°,28° 图2C.32°,120°D.120°,32°三、求解与证明1.如图3,已知ABCD 的对角线交于O ,过O 作直线交AB 、CD 的反向延长线于E 、F ,求证:OE =OF .图3 图42.如图4,四边形ABCD 是平行四边形,BD ⊥AD ,求BC ,CD 及OB 的长.测验评价结果:_____________;对自己想说的一句话是:______________________.练习三班级:___________________________姓名:___________________________作业导航理解平行四边形的意义和性质,会利用平行四边形的性质进行推理和计算. 一、选择题1.在□ABCD 中,∠A ∶∠B ∶∠C ∶∠D 的值可以是( ) A.1∶2∶3∶4 B.1∶2∶2∶1 C.1∶1∶2∶2 D.2∶1∶2∶12.平行四边行的两条对角线把它分成全等三角形的对数是( ) A.2 B.4 C.6 D.83.在□ABCD 中,∠A 、∠B 的度数之比为5∶4,则∠C 等于( ) A.60° B.80° C.100° D.120°4.□ABCD 的周长为36 cm ,AB =75BC ,则较长边的长为( ) A.15 cm B.7.5 cm C.21 cm D.10.5 cm5.如图,□ABCD 中,EF 过对角线的交点O ,AB =4,AD =3,OF =1.3,则四边形BCEF 的周长为( )A.8.3B.9.6C.12.6D.13.6 二、填空题6.已知□ABCD 中,∠B =70°,则∠A =______,∠C =______,∠D =______.7.在□ABCD 中,AB =3,BC =4,则□ABCD 的周长等于_______.8.平行四边形的周长等于56 cm ,两邻边长的比为3∶1,那么这个平行四边形较长的边长为_______.9.在□ABCD 中,∠A +∠C =270°,则∠B =______,∠C =______. 10.和直线l 距离为8 cm 的直线有______条. 三、解答题11.平行四边形的周长为36 cm ,一组邻边之差为4 cm ,求平行四边形各边的长.12.如图,在□ABCD 中,AB =AC ,若□ABCD 的周长为38 cm ,△ABC 的周长比□ABCD 的周长少10 cm ,求□ABCD 的一组邻边的长.13.如图,在□ABCD 中,对角线AC ,BD 相交于点O ,MN 是过O 点的直线,交BC 于M ,交AD 于N ,BM =2,AN =2.8,求BC 和AD 的长.14.如图,在□ABCD中,E、F分别是BC、AD上的点,且AE∥CF,AE与CF相等吗?说明理由.15.如图,在□ABCD中,O是对角线AC、BD的交点,BE⊥AC,DF⊥AC,垂足分别为E、F.那么OE与OF是否相等?为什么?参考答案1(1)两组对边分别相等.理由如下:连结BD,∵AB∥CD,AD∥BC∴∠1=∠2,∠3=∠4又∵BD=DB,∴△ABD≌△CDB,∴AD=BC,AB=CD(2)两组对角分别相等由(1)△ABD≌△CDB,∴∠A=∠C∵AB∥BC,∴∠A+∠ABC=180°,∠C+∠CDA=180°∴∠ABC=∠CDA(3)对角线互相平分由(1)AB=CD,∠3=∠4,∠AOB=∠COD∴△AOB≌△COD,∴AO=OC,OB=OD参考答案2一、1.4 2.24 CD =12 3.4 4.10<x <22 5.45° 135° 45° 135° 二、1.C 2.A 3.B三、1.证明:∵ABCD ,∴OA =OC ,DF ∥EB ∴∠E =∠F又∵∠EOA =∠FOC∴△OAE ≌△OCF ,∴OE =OF 2.解:∵ABCD ,∴BC =AD =12 CD =AB =13,OB =21BD ∵BD ⊥AD∴BD =22AD AB -=221213-=5 ∴OB =25 参考答案3一、1.D 2.B 3.C 4.D 5.B二、6.110° 110° 70° 7.14 8.21 cm 9.45° 135° 10.2三、11.11 cm,7 cm,11 cm,7 cm 12.9 cm,10 cm 13.BC =AD =4.8 14.AE =CF □AECF 15.OE =OF ,△BOE ≌△DOF4.2平行四边形的判别一、参考例题[例1]如图,在ABCD 的各边AB 、BC 、CD 、DA 上,分别取点K 、L 、M 、N ,使AK =CM 、BL =DN ,则四边形KLMN 为平行四边形吗?说明理由.分析:要说明四边形KLMN 为平行四边形,则可从:两组对边分别相等,或一组对边平行且相等中找条件.由已知是两组边相等,所以本题找两组对边分别相等这个条件,然后得证.解:四边形KLMN 是平行四边形. 理由是:∵四边形ABCD 是平行四边形.∴AD =BC ,AB =CD ,∠A =∠C ,∠B =∠D ∵AK =CM ,BL =DN , ∴BK =DM ,CL =AN∴△AKN ≌△CML ,△BKL ≌△DMN∴KN=ML,KL=MN∴四边形KLMN是平行四边形.[例2]已知如图:在ABCD中,延长AB到E,延长CD到F,使BE=DF,则线段AC与EF 是否互相平分?说明理由.分析:要说明线段AC与EF互相平分,可以把这两条线段作为一个四边形的对角线,然后说明这个四边形是平行四边形即可.解:线段AC与EF互相平分理由是:∵四边形ABCD是平行四边形.∴AB∥CD,即AE∥CF,AB=CD∵BE=DF,∴AE=CF∴四边形AECF是平行四边形,∴AC与EF互相平分.二、参考练习1.用任意2个全等的三角形能拼成平行四边形吗?自己画两个全等的三角形试一试,把你拼的图形画出来,说明理由.答案:用任意2个全等的三角形能拼成平行四边形.用“两组对边分别相等的四边形是平行四边形”或“两组对边分别平行的四边形是平行四边形”或“一组对边平行且相等的四边形是平行四边形”来说明理由.2.已知四边形ABCD中,AC与BD交于O点,如果只给出条件“AB∥CD”,那么还不能判定四边形ABCD为平行四边形.给出以下四种说法其中,正确的说法是①如果再加上条件“BC=AD”,那么四边形ABCD一定是平行四边形②如果再加上条件“∠BAD=∠BCD”,那么四边形ABCD一定是平行四边形③如果再加上条件“OA=OC”那么四边形ABCD是平行四边形④如果再加上条件“∠DBA=∠CAB”,那么四边形ABCD一定是平行四边形.A.①和②B.①③和④C.②和③D.②③和④答案:C一、选择题1.A、B、C、D在同一平面内,从①AB∥CD;②AB=CD;③BC=AD;④BC∥AD这四个条件中任选两个,能使四边形ABCD是平行四边形的选法有()A.3种B.4种C.5种D.6种2.在四边形ABCD中,AC与BD相交于点O,如果只给出条件“AB∥CD”,那么还不能判定四边形ABCD为平行四边形,给出以下六个说法中,正确的说法有()(1)如果再加上条件“AD∥BC”,那么四边形ABCD一定是平行四边形;(2)如果再加上条件“AB=CD”,那么四边形ABCD一定是平行四边形;(3)如果再加上条件“∠DAB=∠DCB”那么四边形ABCD一定是平行四边形;(4)如果再加上“BC=AD”,那么四边形ABCD一定是平行四边形;(5)如果再加上条件“AO=CO”,那么四边形ABCD一定是平行四边形;(6)如果再加上条件“∠DBA=∠CAB”,那么四边形ABCD一定是平行四边形.A.3个B.4个C.5个D.6个图1 图23.如图1,AB∥CD∥EF,BC∥AD,AC为∠BAD的平分线,图中与∠AOE相等(不含∠AOE)的角有()A.2个B.3个C.4个D.5个二、如图2,BD是ABCD的对角线,AE⊥BD于E,CF⊥BD于F,求证:四边形AECF为平行四边形.三、如图3,田村有一口呈四边形的池塘,在它的四个角A、B、C、D处均种有一棵大核桃树.田村准备开挖池塘建养鱼池,想使池塘面积扩大一倍,又想保持核桃树不动,并要求扩建后的池塘成平行四边形的形状,请问田村能否实现这一设想?若能,请你设计并画出图形;若不能,请说明理由(画图要保留痕迹,不写画法).图3班级:___________________________姓名:___________________________作业导航理解并掌握平行四边形的判别方法,会利用平行四边形的判别方法进行简单的推理说明. 一、选择题1.能够判别一个四边形是平行四边形的条件是( ) A.一组对角相等B.两条对角线互相垂直且相等C.两组对边分别相等D.一组对边平行2.下列条件中不能确定四边形ABCD 是平行四边形的是( ) A.AB =CD ,AD ∥BC B.AB =CD ,AB ∥CD C.AB ∥CD ,AD ∥BC D.AB =CD ,AD =BC3.一个四边形的三个内角的度数依次如下选项,其中是平行四边形的是( ) A.88°,108°,88° B.88°,104°,108° C.88°,92°,92° D.88°,92°,88°4.四边形ABCD 中,AD ∥BC ,要判别四边形ABCD 是平行四边形,还需满足条件( ) A.∠A +∠C =180° B.∠B +∠D =180° C.∠A +∠B =180° D.∠A +∠D =180°5.以不在一条直线上的三点A 、B 、C 为顶点的平行四边形共有( ) A.1个 B.2个 C.3个 D.4个 二、填空题6.四边形ABCD 中,对角线AC 、BD 相交于点O ,要判别它是平行四边形,从四边形的角的关系看应满足______;从对角线看应满足_______.7.将两个全等的不等边三角形拼成平行四边形,可拼成的不同的平行四边形的个数为______. 8.四边形ABCD 中,AD =BC ,BD 为对角线,∠ADB =∠CBD ,则AB 与CD 的关系是_______. 9.□ABCD 中,对角线AC 、BD 相交于点O ,E 、F 分别是OB 、OD 的中点,四边形AECF 是_______. 10.如图,DE ∥BC ,AE =EC ,延长DE 到F ,使EF =DE ,连结AF 、FC 、CD ,则图中四边形ADCF 是______.三、解答题11.在□ABCD 中,点M 、N 在对角线AC 上,且AM =CN ,四边形BMDN 是平行四边形吗?为什么?12.如图,□ABCD 中,E 、F 分别在BA 、DC 的延长线上,且AE =21AB ,CF =21CD ,AF 和CE 的关系如何?说明理由.13.如图,D、E是△ABC的边AB和AC中点,延长DE到F,使EF=DE,连结CF.四边形BCFD 是平行四边形吗?为什么?14.如图,□ABCD的对角线AC、BD交于O,EF过点O交AD于E,交BC于F,G是OA的中点,H是OC的中点,四边形EGFH是平行四边形,说明理由.15.如图,平行四边形ABCD中,M、N分别为AD、BC的中点,连结AN、DN、BM、CM,且AN、BM交于点P,CM、DN交于点Q.四边形MGNP是平行四边形吗?为什么?参考答案1一、1.B 2.B 3.D二、证明:∵ABCD∴AB=CD,AB∥CD∴∠1=∠2AE⊥BD,CF⊥BD∴∠AEB=∠CFD=90°,AE∥CF∴△AEB≌△CFD,∴AE=CF∴AECF为平行四边形三、能参考答案2一、1.C 2.A 3.D 4.D 5.C二、6.∠A=∠C,∠B=∠D OA=OC,OB=OD 7.3 8.AB=CD且AB∥CD 9.平行四边形10.平行四边形三、11.是平行四边形,△ABM≌△CDN且△AMD≌△BN C.12.AE∥CF且AE=CF AFCE.13.是平行四边形,△AED≌△CEF.14.是平行四边形,△AOE≌△COF.15.是平行四边形,四边形AMCN、BMDN是平行四边形.4.3菱形练习一在人的心灵深处,都有一种根深蒂固的需要,这就是希望自己是个发现者、研究者和探究者,小华就是这样一位有思想的学生,在老师讲了平行四边形的性质和判定后,她想:一组邻边相等的平行四边形(菱形)又有什么特殊的性质呢?如何做一个菱形的折纸呢?(1)请你画一个菱形.(2)用你所学的知识,探求菱形除了具有平行四边形的性质外,还具有什么性质?(3)请你帮小华做一个菱形的折纸.练习二一、选择题1.下列命题中,真命题是( )A.对角线互相垂直且相等的四边形是菱形B.对角线互相垂直的平行四边形是菱形C.对角线互相平分且相等的四边形是菱形D.对角线相等的四边形是菱形2.菱形的周长为12 cm ,相邻两角之比为5∶1,那么菱形对边间的距离是( ) A.6 cm B.1.5 cm C.3 cm D.0.75 cm3.在菱形ABCD 中,AE ⊥BC 于点E ,AF ⊥CD 于点F ,且E 、F 分别为BC 、CD 的中点,(如图1)则∠EAF 等于( )A.75°B.60°C.45°D.30°图1 图24.已知菱形ABCD 中,AE ⊥BC 于E ,若S 菱形ABCD =24,且AE =6,则菱形的边长为( ) A.12 B.8 C.4 D.25.菱形的边长是2 cm ,一条对角线的长是23 cm,则另一条对角线的长是( ) A.4 cmB.3 cmC.2 cmD.23 cm二、判断正误:(对的打“√”错的打“1.两组邻边分别相等的四边形是菱形.…………………………………………………( )2.一角为60°的平行四边形是菱形.…………………………………………………( )3.对角线互相垂直的四边形是菱形.……………………………………………………( )4.菱形的对角线互相垂直平分.…………………………………………………………( ) 三、填空题1.如图3,菱形ABCD 中,AC 、BD 相交于O ,若OD =21AD ,则四个内角为________.图3 图42.若一条对角线平分平行四边形的一组对角,且一边长为a 时,如图4,其他三边长为________;周长为________.3.菱形ABCD 中,AC 、BD 相交于O 点,若∠OBC =21∠BAC ,则菱形的四个内角的度数为____________.4.若菱形的两条对角线的比为3∶4,且周长为20 cm,则它的一组对边的距离等于__________ cm,它的面积等于________ cm 2.5.菱形ABCD 中,如图5,∠BAD =120°,AB =10 cm,则AC =________ cm,BD =________ cm.图5 图6四、已知:△ABC 中,CD 平分∠ACB 交AB 于D ,DE ∥AC 交BC 于E ,DF ∥BC 交AC 于F .求证:四边形DECF 是菱形.五、已知ABCD 中,BE 平分∠ABC 交AD 于E ,若CE 平分∠DCB ,且AB =2,求:ABCD 的其余边长.图73.菱形班级:___________________________姓名:___________________________ 作业导航理解并掌握菱形的性质及判别方法,会利用菱形的性质和判别方法进行推理说明和有关计算.一、选择题1.菱形具有而一般平行四边形不具有的性质是()A.对角相等B.对边相等C.对角线互相垂直D.对角线相等2.能够判别一个四边形是菱形的条件是()A.对角线相等且互相平分B.对角线互相垂直且相等C.对角线互相平分D.一组对角相等且一条对角线平分这组对角3.菱形的周长为100 cm,一条对角线长为14 cm,它的面积是()A.168 cm2B.336 cm2C.672 cm2D.84 cm24.菱形的周长为16,两邻角度数的比为1∶2,此菱形的面积为()A.43B.83C.103D.1235.下列语句中,错误的是()A.菱形是轴对称图形,它有两条对称轴B.菱形的两组对边可以通过平移而相互得到C.菱形的两组对边可以通过旋转而相互得到D.菱形的相邻两边可以通过旋转而相互得到二、填空题6.菱形的周长是8 cm,则菱形的一边长是______.7.菱形的一个内角为120°,平分这个内角的对角线长为11厘米,菱形的周长为______.8.菱形的对角线的一半的长分别为8 cm和11 cm,则菱形的面积是_______.9.菱形的面积为24 cm2,一对角线长为6 cm,则另一对角线长为______,边长为______.10.菱形的面积为83平方厘米,两条对角线的比为1∶3,那么菱形的边长为_______.三、解答题11.如图,AD是△ABC的角平分线.DE∥AC交AB于E,DF∥AB交AC于F.四边形AEDF是菱形吗?说明你的理由.12.□ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F,四边形AFCE是否是菱形?为什么?13.菱形ABCD 的周长为20 cm ,两条对角线的比为3∶4,求菱形的面积.14.如图,菱形ABCD 的对角线AC 、BD 交于点O ,且AC =16 cm ,BD =12 cm ,求菱形ABCD 的高DH .参考答案1(1)一组邻边相等的平行四边形,如下图:ABCD 是菱形(2)如右图:ABCD 是一组邻边相等(AB =AD )的平行四边形 ∵ABCD 是平行四边形 ∴AB =CD ,AD =BC 又∵AB =AD∴AB =BC =CD =AD ,即菱形的四条边都相等 连结AC 、BD∵AB ∥CD ,AD ∥BC ∴∠1=∠2,∠3=∠4 又∵AD =CD ,∴∠1=∠4∴∠1=∠3=∠2=∠4,即AC 是∠DAB ,∠DCB 的平分线.同理可证BD 是∠ADC 和∠ABC 的平分线∴菱形的对角线平分每一组对角. ∵平行四边形ABCD 中AB ∥CD ∴∠CDA +∠DAB =180°又由前面证得∠1=∠2,∠CDB =∠ADB ∴∠4+∠ADB =21(∠DAB +∠CDA )=21×180°=90° ∴在△AOD 中∠AOD =180°-(∠4+∠ADB )=90°∴AC ⊥BD ,即菱形的对角线互相垂直在△AOD 和△AOB 中,AB =AD ,∠2=∠4,AO =AO ∴△AOD ≌△AOB ,∴OD =OB 同理可证OA =OC所以菱形的对角线垂直且平分 (3)略参考答案2一、1.B 2.B 3.B 4.C 5.C 二、1.× 2.× 3.× 4.√三、1.60°,120°,60°,120° 2.分别为a 4a 3.90° 4.524cm 24 cm 2 5.10 103四、证明:∵DE ∥AC ,DF ∥BC ∴四边形DECF 为平行四边形 ∠2=∠3 又∵∠1=∠2 ∴∠1=∠3 ∴DE =EC∴DECF 为菱形(有一组邻边相等的平行四边形是菱形) 五、解:过E 作EF ∥AB 交BC 于F∵ABCD ,∴AD ∥BC ∴ABFE 是平行四边形 ∴EF =AB ,∠1=∠3又∵∠2=∠1,∴∠2=∠3 ∴BF =FE ,同理:EF =FC ∴F 为BC 的中点.又BE 、CE 为∠ABC 、∠DCF 的平分线 AB ∥CD ,∴∠EBC +∠ECB =90° ∴∠BEC =90°,∴EF =21BC =AB ∴AB =CD =2,AD =BC =2AB =4参考答案3一、1.C 2.D 3.B 4.B 5.D二、6. 2 cm 7. 44厘米 8. 176 cm 2 9. 8 cm 5 cm 10. 4 cm 三、11.四边形AEDF 是菱形,AE =E D.12.□AFCE 是菱形,△AOE ≌△COF ,四边形AFCE 是平行四边形,EF ⊥AC 13.24 cm 2 14. 9.6 cm4.4矩形、正方形一、参考例题[例1]如图,E为正方形ABCD的BC边上的一点,CG平分∠DCF,连结AE,并在CG上取一点G,使EG=AE.求证:AE⊥EG.分析:由于CG是角平分线,CA是∠BCD的平分线,于是我们可以断定∠ACG=90°,因而只要证明∠AEG=∠ACG即可,从图中可以看出,只要证明∠1=∠G就可以得到所求证的结论.证明:连结AC,并延长AC到M,使CM=CG,连结EM.∵四边形ABCD是正方形∴AC平分∠BCD∴∠ECM=135°又∵CG平分∠DCF,∴∠GCF=45°∴∠ECG=135°,∴∠ECG=∠ECM.而EC=EC,CG=CM.∴△ECM≌△ECG.∴∠M=∠G,EM=EG而EA=EG,∴EA=EM,∴∠1=∠M∴∠1=∠G而∠2=∠3∴∠AEG=∠ACG又∵∠ACD=45°,∠DCG=45°∴∠ACG=90°,∴∠AEG=90°,即AE⊥EC.[例2]已知如下图,正方形ABCD中,E是CD边上的一点,F为BC延长线上一点,CE=CF.(1)求证:△BEC≌△DFC;(2)若∠BEC =60°,求∠EFD 的度数.分析:要证△BEC ≌△DFC ,则需找全等的条件,由正方形的性质可得出. 要求∠EFD 的度数,可由三角形中角的关系求得. 证明:(1)∵四边形ABCD 是正方形. ∴BC =DC ,∠BCD =90°在Rt △BCE 和Rt △DCF 中,BC =DC ,CE =CF ,∴Rt △BCE ≌Rt △DCF (2)∵CE =CF ,∴∠CEF =∠CFE ∴∠CFE =21(180°-90°)=45° ∵Rt △BCE ≌Rt △DCF ∴∠CFD =∠BEC =60°∴∠EFD =∠DFC -∠EFC =15° 二、参考练习1.如图,P 为正方形ABCD 内一点,P A =1,PB =2,PC =3,求∠APB 的度数.解:将△ABP 绕B 点顺时针旋转90°得△CBG ,则: △P AB ≌△GCB△PBG 是等腰直角三角形 得P A =CG =1∠APB =∠CGB ,PB =BG =2,∠PGB =45°. 在Rt △PBG 中, PG 2=PB 2+BG 2=8 在△PGC 中,PC 2=32=8+1=PG 2+GC 2. ∴∠PGC =90°∴∠CGB =∠PGC +∠PGB =135° ∴∠APB =135°2.已知四边形ABCD 是菱形,当满足条件_________时,它成为正方形(填上你认为正确的一个条件即可).答案:填写:∠A =90°或∠B =90°或∠C =90°或∠D =90°中的任一条件即可.练习一相框、信封、明信片、田字格,还有在中国流传了数百年的神奇玩具——华容道、七巧板,都有矩形和正方形的影子,同时正方形也是最完美的图形之一.(1)画一个矩形、正方形.(2)说说矩形和平行四边形在角和边的关系上有哪些异同?(3)说说正方形、菱形、矩形在边和角的关系上有哪些异同?菱形加个什么条件就可以得到正方形?矩形呢?练习二一、填空题1.矩形的面积公式是_________________.2.已知矩形ABCD中,S矩形ABCD=24 cm2,若BC=6 cm,则对角线AC的长是________ cm.13.已知矩形ABCD,若它的宽扩大2倍,则它的面积等于原面积的________;若宽不变长缩小4倍,那么新矩形的面积等于原矩形面积的________;若宽扩大2倍且长缩小41,那么新矩形的面积等于原矩形面积的________.4.已知:如图1,正方形ABCD 中,CM =CD ,MN ⊥AC ,连结CN ,则∠DCN =_____=____∠B ,∠MND =_______=_______∠B.图1 图25.已知矩形ABCD 中,如图2,对角线AC 、BD 相交于O ,AE ⊥BD 于E ,若∠DAE ∶∠BAE =3∶1,则∠EAC =________.6.在四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 上的点,且k HDAHGC DG FC BF EB AE ==== (k >0)阅读下面材料,然后回答下面问题:如图3,连结BD ,∵HD AHEB AE =,∴EH ∥BD ∵GCDG FC BF =,∴FG ∥BD ∴FG ∥EH(1)连结AC ,则EF 与GH 是否一定平行, 图3 答:________________________________________________________. (2)当k =________时,四边形EFGH 为平行四边形.(3)在(2)的情形下,对角线AC 与BD 只须满足________条件时,EFGH 为矩形. (4)在(2)的情形下,对角线AC 与BD 只须满足________条件时,EFGH 为菱形. 二、选择题1.已知E 是矩形ABCD 的边BC 的中点,那么S △AED =________S 矩形ABCD ( ) A.21 B.41 C.51 D.612.如图4矩形ABCD 中,若AB =4,BC =9,E 、F 分别为BC ,DA 上的31点,则S 四边形AECF 等于( ) A.12 B.24C.36 图4D.483.如图5,周长为68的矩形ABCD 被分成7个全等的矩形,则矩形ABCD 的面积为( ) A.98 B.196 C.280 D.284图54.正方形的面积是31,则其对角线长是________. 5.在四边形ABCD 中,给出下列论断:①AB ∥DC ;②AD =BC ;③∠A =∠C ,以其中两个作为题设,另外一个作为结论,用“如果…那么…”的形式,写出一个你认为正确的结论:___________________________________________________________________________ 三、如图6,△ABC 中,点O 是AC 边上一个动点,过点O 作直线MN ∥BC ,设MN 交∠BCA 的平分线于E ,交∠BCA 的外角平分线于点F .(1)求证:EO =FO(2)当点O 运动到何处时,四边形AECF 是矩形?并证明你的结论. 图6练习三班级:___________________________姓名:___________________________作业导航理解并掌握矩形、正方形的性质及判别方法,会利用其性质和判别方法进行简单的推理和计算. 一、选择题1.两条平行线被第三条直线所截,两组内错角的平分线相交所成的四边形是( ) A.一般平行四边形 B.菱形 C.矩形 D.正方形2.四边形ABCD 中,AC 、BD 相交于点O ,能判别这个四边形是正方形的条件是( ) A.OA =OB =OC =OD ,AC ⊥BD B.AB ∥CD ,AC =BD C.AD ∥BC ,∠A =∠CD.OA=OC,OB=OD,AB=BC3.在矩形ABCD的边AB上有一点E,且CE=DE,若AB=2AD,则∠ADE等于()A.45°B.30°C.60°D.75°4.矩形的一内角平分线把矩形的一条边分成3和5两部分,则该矩形的周长是()A.16B.22C.26D.22或265.在正方形ABCD中,AB=12 cm,对角线AC、BD相交于O,则△ABO的周长是()A.12+122B.12+62C.12+2D.24+62二、填空题6.延长等腰△ABC的腰BA到D,CA到E,分别使AD=AB,AE=AC,则四边形BCDE是________,其判别根据是_______.7.矩形的两条对角线的夹角是60°,一条对角线与矩形短边的和为15,那么矩形对角线的长为_______,短边长为_______.8.矩形ABCD的周长是56 cm,它的两条对角线相交于O,△AOB的周长比△BOC的周长少4 cm,则AB=_______,BC=_______.9.正方形的一条边长是3,那么它的对角线长是_______.10.在一正方形的四角各截去全等的等腰直角三角形而得到一个小正方形,若小正方形的边长为1,那么所截的三角形的直角边长是________.三、解答题11.在四边形ABCD中,∠B=∠D=90°,且AB=CD,四边形ABCD是矩形吗?为什么?12.如图,矩形ABCD的对角线AC、BD相交于点O,E、F、G、H分别是OA、OB、OC、OD 的中点,顺次连结E、F、G、H所得的四边形EFGH是矩形吗?说明理由.13.E为正方形ABCD内一点,且△EBC是等边三角形,求∠EAD的度数.14.如图,正方形ABCD,AB=a,M为AB的中点,ED=3AE,(1)求ME的长;(2)△EMC是直角三角形吗?为什么?15.以锐角△ABC的边AC、AB为边向外作正方形ACDE和正方形ABGF,连结BE、CF,(1)试探索BE和CF的关系?并说明理由.(2)你能找到哪两个图形可以通过旋转而相互得到,并指出旋转中心和旋转角.参考答案1(1)略(2)相同点:矩形和平行四边形对边平行且相等,对角相等 不同点:矩形四个角均为直角.(3)相同点:正方形、菱形、矩形均为特殊的平行四边形,它们都有平行四边形的一切性质. 不同点:矩形四个角为直角,菱形四条边相等,正方形具有菱形和矩形的所有特点;有一个角为直角的菱形是正方形,一组邻边相等的矩形是正方形.参考答案2一、1.长×宽 2.213 3.2倍 41 21 4.22.5 41 67.5° 435.45°6.(1)不一定 (2)1 (3)AC ⊥BD (4)AC =BD二、1.A 2.B 3.C 4.365.如果AB ∥DC ,∠A =∠C ,那么AD =BC 三、(1)证明:∵MN ∥BC ,∴∠BCE =∠CEO 又∵∠BCE =∠ECO ∴∠OEC =∠OCE∴OE =OC ,同理OC =OF ∴OE =OF(2)当O 为AC 中点时,AECF 为矩形 ∵EO =OF (已证),OA =OC ∴AECF 为平行四边形又∵CE 、CF 为△ABC 内外角的平分线 ∴∠EOF =90°,∴AECF 为矩形参考答案3一、1.C 2.A 3.A 4.D 5.A二、6.矩形 对角线互相平分且相等的四边形是矩形 7. 10 5 8. 12 cm 16 cm 9. 3210.22 三、11.是矩形,连接AO ,△ABC ≌△CD A. 12.是矩形,OE =OF =OG =OH . 13. 15° 14.(1)45a (2)△EMC 是直角三角形 理由略 15.(1)BE =CF ,BE ⊥CF(2)△ABE 和△AFC 可以通过旋转而相互得到,旋转中心是A ,旋转角为90°.4.5梯形一、参考例题如图,在梯形ABCD 中,AB ∥CD ,M 、N 分别为CD 和AB 的中点,且MN ⊥AB . 求证:四边形ABCD 是等腰梯形.分析:判定四边形ABCD 是一个等腰梯形,要在已知梯形的前提下证明它的两腰相等或同一底上的两个角相等.本例中已知ABCD 是梯形,只要证明第二步骤即可.证明:过点C 作CE ⊥AB 于E ,过D 点作DF ⊥AB 于F . ∵AB ∥DC ,MN ⊥AB∴四边形DFNM 和CENM 是矩形. ∴DM =FN ,CM =EN 且DF =CE 又DM =CM ,∴FN =EN而N 是AB 的中点,∴AF =BE 又∠DF A =∠CEB ,DF =CE ∴△DF A ≌△CEB ,∴AD =BC 即:四边形ABCD 是等腰梯形 二、参考练习1.等腰梯形对角线的长为17,底边的长为10和20,则该梯形的面积是_________. 答案:1202.已知:梯形ABCD 中,AD ∥BC ,E 为CD 的中点,则S ABCD 是S △ABE 的2倍吗?为什么?解:S 梯形ABCD =2S △ABE .理由是: 延长AE 交BC 的延长线于F ∵AD ∥BC ,∴∠ADE =∠ECF 又∵E 是CD 的中点,∴DE =CE 又∠DEA =∠CEF∵△ADE ≌△FCE ,∴AE =EF S △ABE =21S △ABF 而S △ABF =S 梯形ABCD 所以:S △ABE =21S 梯形ABCD ,即S 梯形ABCD =2S △ABE . 一、参考例题如图,四边形ABCD 是等腰梯形,其中AD =BC ,若AD =5,CD =2,AB =8,求梯形ABCD 的面积.分析:梯形的面积公式: S =21(a +b )h . 本题的上底、下底是已知的,要求面积,关键是求高.如何求高呢?由于梯形是一个轴对称图形.因此我们可知两线段AE 、BF 相等,应用勾股定理,即可求出.解:过点D 、C 作DE ⊥AB 于E ,CF ⊥AB 于F ,根据等腰梯形的轴对称性知:AE =BF .AE =21(AB -EF )=21(AB -CD )=3 在Rt △ADE 中,DE 2=AD 2-AE 2=52-32=42 ∴DE =4 ∴S 梯形ABCD =21×(8+2)×4=20二、参考练习1.已知如图,梯形ABCD 中,AD ∥BC ,AB =CD ,∠B =60°,AD =10,BC =18,求梯形ABCD 的周长.解:过A 、D 点分别作AE ⊥BC 于E ,DF ⊥BC 于F ,根据梯形的轴对称性知:BE =CFBE =21(BC -AD )=4 ⎭⎬⎫︒=∠︒=∠∆90 60,Rt AEB B ABE 中在 ⇒∠BAE =30°BE =21AB ,即AB =2BE =8 ∴AB =CD =8L 梯形ABCD =10+8+18+8=442.已知直角梯形的一腰长10 cm ,这条腰与一个底所成的角是30°,求另一条腰的长. 解:如图所示,过D 点作DE ⊥BC 于E ,∠C =30°,DC =10 cm.∴DE =21DC =5, ∴AB =DE =5(cm)所以,此直角梯形的另一条腰长为5 cm.练习一一、小学我们已经学过梯形的初步知识,请思考: (1)梯形和平行四边形的最根本区别是什么?(2)你能利用辅助线从梯形中分割出平行四边形、三角形、矩形来吗?请试一试,并想一想有几种分割方法.二、某村在两条平行道路之间有一块梯形土地,如图,现打算种植两种蔬菜,为了灌溉和管理的方便,需要在两条道路之间垂直地开挖一条水渠,并把土地分成等面积的两块,问这条水渠应该怎样开挖?练习二一、填空题1.梯形的定义是:____________________________________________________________________________________________________________________________.2.等腰梯形的定义是:________________________________________________________________________________________________________________________.3.等腰梯形的性质是:_________________________________________________________________________________________________________.4.在梯形中,不是同一底上的两组角的比值分别为1∶3和3∶7,则四个角的度数为.5.如图1,梯形ABCD中,AD∥BC,AC为对角线,AE⊥BC于E,AB⊥AC,若∠ACB=30°,BE=2.则BC=___________. 图16.直角梯形的定义是:____________________________________________________________________________________________________________________________________________________________________________________.7.直角梯形一腰长16 cm,和一个底所成的角为30°,那么另一腰长________ cm.8.等腰梯形的两底差等于腰长,腰与下底边的夹角为________,与上底的夹角为________. 9.满足条件的梯形是等腰梯形. 10.等腰梯形有下列性质:①从角看:在同一底上的两个角________________________________________________; ②从边看:两腰_____________________________________________________________; ③从对角线看:两条对角线___________________________________________________; ④从图形的对称性看:是________对称图形.二、选择题1.如图2,梯形ABCD 中,AD ∥BC ,设AC ,BD 交于O 点,则图中共有对面积相等的三角形.( )A.2B.3C.4D.5图2 图32.如图3,在直角梯形ABCD 中,AB =4 cm,AD =4.5 cm,∠C =30°,则DC = cm ,BC = cm ( ) A.8,43B.8 cm,(4.5+43) cmC.4(3+1)+21,8D.8 cm,(43+4) cm3.等腰直角三角形各边中点连线围成的多边形是( ) A.平行四边形 B.等腰三角形 C.等腰直角三角形 D.等边三角形三、请你来完成1.用下面的方法来证明:在同一底上的两个角相等的梯形是等腰梯形.(1)如图4,分别延长梯形ABCD 的腰BA ,CD ,设它们相交于点E .通过证明△EAD 和△EBC 都是________三角形来证明.图4 图5(2)如图5,作梯形ABCD的高AE,DF,通过证明Rt△ABE≌Rt△DCF来证明定理.证明过程:(1)_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________(2)_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________2.已知等腰梯形的锐角等于60°,它的两底分别为15 cm,49 cm,求它的腰长.在研究等腰梯形时,常常通过辅助线,使等腰梯形与等腰三角形联系起来.想一想,用怎样的辅助线可以在等腰梯形中划出等腰三角形.参考答案1一、(1)一组对边平行,另一组对边不平行(2)二、见题图,先分别取上、下底的中点M、N,连MN,再取MN中点O,过O作上下底的垂线段EF,E、F为垂足,则EF就是要开挖的水渠线(如下图)参考答案2一、1.略 2.略 3.略 4.45°,135°,54°,126° 5.86.有一个角是直角的梯形叫直角梯形7.88.60°120°9.同一底上两底角相等(或对角线相等)10.①相等②相等③相等④轴对称图形二、1.B 2.B 3.C三、1.(1)等腰(1)证明:延长BA、CD交于E∵∠B=∠C,∴BE=CE又∵AD∥BC∴∠EAD=∠B,∠EDA=∠C∴∠EAD=∠EDA,∴AE=DE∴△EAD和△EBC为等腰三角形(2)证明:作AE⊥BC于E,DF⊥BC于F.∵AD∥BC,∴AE=DF在Rt△ABE和Rt△DCF中,∠B=∠C,AE=DF,∴△ABE≌△DCF,∴AB=DC2.解:如图,作DE∥AB交BC于E∵AD∥BC∴ABED为平行四边形∴DE=AB,AD=BE,EC=BC-AD=49-15=34又∵DE=AB,∴DE=DC,又∵∠C=60°∴△DCE为等边三角形,∴DC=EC=34 cm想一想:4.6探索多边形的内角和与外角和参考练习1.过四边形一个顶点的对角线把四边形分成两个三角形;过五边形或六边形一个顶点的对角线分别把它们分成_________个或_________个三角形;过n边形一个顶点的对角线把n边形分成_________个三角形(用含n的代数式表示).答案:三四n-22.一个多边形的每个内角都等于140°,那么这个多边形是_________边形.答案:九3.如果一个多边形的边数增加1,那么这个多边形的内角和增加_________度.答案:1804.在四边形ABCD中,∠A、∠B、∠C、∠D的度数之比为2∶3∶4∶3,则∠D等于A.60°B.75°C.90°D.120°答案:C5.下列角中能成为一个多边形的内角和的是A.270°B.560°C.1800°D.1900°答案:C6.一个多边形共有27条对角线,则这个多边形的边数为A.8B.10C.9D.11答案:C一、参考例题[例1]如图,∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H=_________.解:∵∠1=∠A+∠B,∠2=∠C+∠D∠3=∠E+∠F,∠4=∠G+∠H又∵∠1+∠2+∠3+∠4=360°.。
八年级数学下册《平行四边形》单元测试卷(附答案)一.选择题(共10小题,满分40分)1.如图,在▱ABCD中,DE平分∠ADC,AD=8,BE=3,则CD=()A.4B.5C.6D.72.如图,在平行四边形ABCD中,AC、BD相交于点O,∠ODA=90°,AC=10cm,BD=6cm,则BC的长为()A.4cm B.5cm C.6cm D.8cm3.下面关于平行四边形的说法中,不正确的是()A.对角线互相平分的四边形是平行四边形B.有一组对边平行,一组对角相等的四边形是平行四边形C.有一组对边相等,一组对角相等的四边形是平行四边形D.有两组对角相等的四边形是平行四边形4.如图,在▱ABCD中,EF∥AD,HN∥AB,则图中的平行四边形(不包括四边形ABCD)的个数共有()A.9个B.8个C.6个D.4个5.如图,▱ABCD中,CE平分∠BCD,交AB于点E,AE=3,BE=5,DE=4,则CE的长为()A.B.C.D.6.如图,在▱ABCD中,对角线AC,BD相交于点O,OE⊥BD交AD于点E,连接BE,若▱ABCD的周长为30,则△ABE的周长为()A.30B.26C.20D.157.如图,平行四边形ABCD的周长为16,AC、BD相交于点O,OE⊥AC交AD于E,则△DCE的周长为()A.4B.6C.8D.108.如图,将▱DEBF的对角线EF向两端延长,分别至点A和点C,且使AE=CF,连接AB,BC,AD,CD.求证:四边形ABCD为平行四边形.以下是证明过程,其顺序已被打乱,①∴四边形ABCD为平行四边形;②∵四边形DEBF为平行四边形,∴OD=OB,OE=OF;③连接BD,交AC于点O;④又∵AE=CF,∴AE+OE=CF+OF,即OA=OC.正确的证明步骤是()A.①②③④B.③④②①C.③②④①D.④③②①9.如图,在▱ABCD中,点M,N分别是AD、BC的中点,点O是CM,DN的交点,直线AB分别与CM,DN的延长线交于点P、Q.若▱ABCD的面积为192,则△POQ的面积为()A.72B.144C.208D.21610.如图,平行四边形ABCD的对角线AC、BD相交于点O,AE平分∠BAD,分别交BC、BD于点E、P,连接OE,∠ADC=60°,,则下列结论:①∠CAD=30°②③S平行四边形ABCD=AB•AC④,正确的个数是()A.1B.2C.3D.4二.填空题(共8小题,满分32分)11.如图,已知▱ABCD中,AD⊥BD,AC=10,AD=4,则BD的长是.12.下列条件能判定四边形ABCD是平行四边形的是.A.AB∥CD,AD∥BC B.AD=BC,AB=CDC.AB∥CD,AD=BC D.∠A=∠C,∠B=∠D13.如图,平行四边形ABCD中,对角线AC、BD相交于点O,若AB=2,BC=3,∠ABC=60°,则图中阴影部分的面积是.14.如图,平行四边形ABCD的顶点A,B,C的位置用数对分别表示为(4,6),(1,3),(5,3),则顶点D的位置用数对表示为.15.如图,▱ABCD的对角线相交于点O,且AB=5,△OCD的周长为23,则▱ABCD的两条对角线长的和.16.如图,在▱ABCD中,AB=5,BC=8,∠ABC和∠BCD的角平分线分别交AD于点E、F,若BE=6,则CF=.17.如图,在平行四边形ABCD中,BD是对角线,E,F分别是边AD,BC上不与端点重合的两点,连接EF,下列条件中使得四边形BFDE是平行四边形的是.(多选)A.AE=CFB.EF经过BD的中点C.BE∥DFD.EF⊥AD18.在如图的网格中,以格点A、B、C、D、E、F中的4个点为顶点,你能画出平行四边形的个数为个.三.解答题(共6小题,满分48分)19.如图,在▱ABCD中,AE平分∠BAD交BD于点E,交BC于点M,CF平分∠BCD交BD于点F.(1)求证:AE=CF;(2)若∠ABC=70°,求∠AMB的度数.20.在▱ABCD中,对角线AC⊥AB,BE平分∠ABC交AD于点E,交AC于点F.(1)求证:AE=AB;(2)若AB=3,BC=5,求AF的长.21.如图,在平行四边形ABCD中,点F是AD中点,连接CF并延长交BA的延长线于点E.(1)求证:AB=AE.(2)若BC=2AE,∠E=31°,求∠DAB的度数.22.如图,点B、C、E、F在同一直线上,BE=CF,AC⊥BC于点C,DF⊥EF于点F,AC=DF.求证:(1)△ABC≌△DEF;(2)四边形ABED是平行四边形.23.如图,在等边△ABC中,D是BC的中点,以AD为边向左侧作等边△ADE,边ED与AB交于点G.(1)求∠CAE的度数;(2)取AB的中点F,连接CF,EF,求证:四边形CDEF是平行四边形.24.在▱ABCD中,点O是对角线BD的中点,点E在边BC上,EO的延长线与边AD交于点F,连接BF、DE如图1.(1)求证:四边形BEDF是平行四边形;(2)若DE=DC,∠CBD=45°,过点C作DE的垂线,与DE、BD、BF分别交于点G、H、P如图2.①当CD=6.CE=4时,求BE的长;②求证:CD=CH.参考答案与解析一.选择题(共10小题,满分40分)1.解:在▱ABCD中,AD=8;∴BC=AD=8,AD∥BC;∴CE=BC﹣BE=8﹣3=5,∠ADE=∠CED;∵DE平分∠ADC;∴∠ADE=∠CDE;∴∠CDE=∠CED;∴CD=CE=5;故选:B.2.解:∵四边形ABCD是平行四边形,AC=10cm,BD=6cm;∴OA=OC=AC=5(cm),OB=OD=BD=3(cm);∵∠ODA=90°;∴AD===4(cm);∴BC=AD=4(cm);故选:A.3.解:A、∵对角线互相平分的四边形是平行四边形;∴选项A不符合题意;B、∵有一组对边平行,一组对角相等的四边形是平行四边形;∴选项B不符合题意;C、∵有一组对边相等,一组对角相等的四边形不一定是平行四边形;∴选项C符合题意;D、∵有两组对角相等的四边形是平行四边形;∴选项D不符合题意;故选:C.4.解:设EF与NH交于点O;∵在▱ABCD中,EF∥AD,HN∥AB;∴AD∥EF∥BC,AB∥NH∥CD;则图中的四边BEON、DFOH、DHNC、BEFC、BAHN、AEOH、AEFD、ONCF都是平行四边形,共8个.故选:B.5.解:∵AE=3,BE=5;∴AB=8;∵四边形ABCD是平行四边形;∴CD=AB=8,AB∥CD,AD=BC;∴∠DCE=∠CEB;∵CE平分∠BCD;∴∠DCE=∠BCE;∴∠BCE=∠BEC;∴BC=BE=5=AD;∵AE2+DE2=9+16=25,AD2=25;∴AE2+DE2=AD2;∴∠AED=90°;∵DC∥CD;∴∠CDE=90°;在△DCE中,由勾股定理可得:CE===4;故选:A.6.解:∵四边形ABCD是平行四边形;∴AB=CD,AD=BC,OB=OD;又∵OE⊥BD;∴OE是线段BD的中垂线;∴BE=DE;∴AE+ED=AE+BE;∵▱ABCD的周长为30;∴AB+AD=15;∴△ABE的周长=AB+AE+BE=AB+AD=15;故选:D.7.解:∵平行四边形ABCD;∴AD=BC,AB=CD,OA=OC;∵EO⊥AC;∴AE=EC;∵AB+BC+CD+AD=16;∴AD+DC=8;∴△DCE的周长是:CD+DE+CE=AE+DE+CD=AD+CD=8;故选:C.8.解:连接BD,交AC于点O,如图所示:∵四边形DEBF为平行四边形;∴OD=OB,OE=OF;又∵AE=CF;∴AE+OE=CF+OF;即OA=OC;∴四边形ABCD为平行四边形;即正确的证明步骤是③②④①;故选:C.9.解:连接MN,如图所示:∵四边形ABCD是平行四边形;∴CD∥AB,AD∥BC,AD=BC;∴∠CDQ=∠Q,∠DCB=∠CBQ;∵点M,N分别是AD、BC的中点;∴DM=CN,CN=BN;∴四边形CDMN是平行四边形;在△CDN和△BQN中;;∴△CDN≌△BQN(AAS);同理可得:△CDM≌△P AM;∴△POQ的面积=四边形ABCD的面积+△COD的面积,O是CM的中点;∵▱ABCD的面积为192;∴四边形CDMN的面积是96;∴△CDM的面积为四边形CDMN的面积的一半,即48;∴△COD的面积为24;∴△POQ的面积=四边形ABCD的面积+△COD的面积=192+24=216.故选:D.10.解:①∵AE平分∠BAD;∴∠BAE=∠DAE;∵四边形ABCD是平行四边形;∴AD∥BC,∠ABC=∠ADC=60°;∴∠DAE=∠BEA;∴∠BAE=∠BEA;∴AB=BE=1;∴△ABE是等边三角形;∴AE=BE=1;∵BC=2;∴EC=1;∴AE=EC;∴∠EAC=∠ACE;∵∠AEB=∠EAC+∠ACE=60°;∴∠ACE=30°;∵AD∥BC;∴∠CAD=∠ACE=30°;故①正确;②∵BE=EC,OA=OC;∴OE=AB=,OE∥AB;∴∠EOC=∠BAC=60°+30°=90°;Rt△EOC中,OC=;∵四边形ABCD是平行四边形;∴∠BCD=∠BAD=120°;∴∠ACB=30°;∴∠ACD=90°;Rt△OCD中,OD=;∴BD=2OD=;故②正确;③由②知:∠BAC=90°;∴S平行四边形ABCD=AB•AC;故③正确;④由②知:OE是△ABC的中位线;∴OE=AB;∵AB=BC;∴OE=BC=AD;故④正确;故选:D.二.填空题(共8小题,满分32分)11.解:∵四边形ABCD是平行四边形;∴AO=CO=AC,DO=BO;∵AC=10;∴AO=5;∵AD⊥DB;∴∠ADB=90°,AD=4;∴DO==3;∴BD=6;故答案为:6.12.解:A.根据AB∥CD,AD∥BC能推出四边形ABCD是平行四边形;B.根据AD=BC,AB=CD能推出四边形ABCD是平行四边形;C.根据AB∥CD,AD=BC能得出四边形是等腰梯形,不能推出四边形ABCD是平行四边形D.根据∠A=∠C,∠B=∠D能推出四边形ABCD是平行四边形;故答案为:ABD.13.解:作AM⊥BC于M,如图所示:则∠AMB=90°;∵∠ABC=60°;∴∠BAM=30°;∴BM=AB=×2=1;在Rt△ABM中,AB2=AM2+BM2;∴AM===;∴S平行四边形ABCD=BC•AM=3;∵四边形ABCD是平行四边形;∴AD∥BC,BO=DO;∴∠OBE=∠ODF;在△BOE和△DOF中;;∴△BOE≌△DOF(ASA);∴S△BOE=S△DOF;∴图中阴影部分的面积=▱ABCD的面积=;故答案为:.14.解:∵平行四边形ABCD的顶点A,B,C的位置用数对分别表示为(4,6),(1,3),(5,3);∴点D坐标为(8,6);故答案为:(8,6).15.解:∵四边形ABCD是平行四边形;∴AB=CD=5;∵△OCD的周长为23;∴OD+OC=23﹣5=18;∵BD=2DO,AC=2OC;∴平行四边形ABCD的两条对角线的和=BD+AC=2(DO+OC)=36;故答案为:36.16.解:如图,设BE与FC的交点为H,过点A作AM∥FC,交BE与点O;∵四边形ABCD是平行四边形;∴AD∥BC,AB∥CD;∴∠ABC+∠DCB+180°;∵BE平分∠ABC,CF平分∠BCD;∴∠ABE=∠EBC,∠BCF=∠DCF;∴∠CBE+∠BCF=90°;∴∠BHC=90°;∵AM∥CF;∴∠AOE=∠BHC=90°;∵AD∥BC;∴∠AEB=∠EBC=∠ABE;∴AB=AE=5;又∵∠AOE=90°;∴BO=OE=3;∴AO===4;在△ABO和△MBO中;;∴△ABO≌△MBO(ASA);∴AO=OM=4;∴AM=8;∵AD∥BC,AM∥CF;∴四边形AMCF是平行四边形;∴CF=AM=8;故答案为:8.17.解:∵四边形ABCD是平行四边形;∴AD∥BC;∵AE=CF,AD=BC;∴DE=BF;∴四边形BFDE是平行四边形;故A选项符合题意;若EF经过BD的中点O;∵AD∥BC;∴∠EDO=∠FBO;在△BOF和△DOE中;;∴△BOF≌△DOE(ASA);∴BF=DE;∴四边形BFDE是平行四边形;故B选项符合题意;∵DE∥BF,BE∥DF;∴四边形BFDE是平行四边形;故C选项符合题意;由EF⊥AD不能判定四边形BFDE是平行四边形;故D选项不符合题意;故答案为:A,B,C.18.解:如图所示:图中平行四边形有▱ABEC,▱BDEC,▱BEFC共3个.故答案为:3.三.解答题(共6小题,满分48分)19.(1)证明:∵四边形ABCD是平行四边形;∴AB∥CD,AB=CD,∠BAD=∠BCD∴∠ABE=∠CDF;∵AE平分∠BAD,CF平分∠BCD;∴∠BAE=∠DCF;∴△ABE≌△CDF(ASA);∴AE=CF;(2)∵四边形ABCD是平行四边形;∴AD∥BC,∠BAD+∠ABC=180°;∵∠ABC=70°;∴∠BAD=110°;∵AM平分∠BAD,AD∥BC;∴∠AMB=∠DAM=55°.20.(1)证明:∵四边形ABCD为平行四边形;∴∠AEB=∠EBC;∵BE平分∠ABC;∴∠ABE=∠EBC;∴∠ABE=∠AEB;∴AE=AB;(2)解:AC⊥AB,AB=3,BC=5;∴AC=;过F点作FH⊥BC,垂足为H;∵BE平分∠ABC,AC⊥AB;∴AF=FH;∵S△ABC=S△ABF+S△BFC;∴AB•AC=AB•AF+BC•FH;即;∴AF=.21.(1)证明:∵四边形ABCD是平行四边形;∴AB=CD,AB∥CD,BC=AD;∴∠E=∠DCF;∵点F是AD中点;∴AF=DF;∵∠EF A=∠CFD;∴△AFE≌△DFC(AAS);∴CD=AE;∴AB=AE;(2)解:由(1)可得AF=DF,BC=AD;∵BC=2AE;∵∠E=31°;∴∠AFE=∠E=31°;∴∠DAB=2∠E=62°.22.证明:(1)∵BE=CF;∴BE﹣CE=CF﹣CE;即BC=EF;又∵AC⊥BC于点C,DF⊥EF于点F;∴∠ACB=∠DFE=90°;在△ABC和△DEF中;;∴△ABC≌△DEF(SAS);(2)由(1)知△ABC≌△DEF;∴AB=DE,∠ABC=∠DEF;∴AB∥DE;∴四边形ABED是平行四边形.23.(1)解:∵△ABC是等边三角形,D是BC的中点;∴AD⊥BC,∠BAC=60°;∴∠DAC=∠BAC=30°;∵△AED是等边三角形;∴∠EAD=60°;∴∠CAE=∠EAD+∠DAC=90°;(2)证明:∵F是等边△ABC边AB的中点,D是边BC的中点;∴CF=AD,CF⊥AB;∵△AED是等边三角形;∴AD=ED;∴CF=ED;∵∠BAD=∠BAC=30°,∠EAG=∠EAD=30°;∴ED⊥AB;∴CF∥ED;∵CF=ED;∴四边形CDEF是平行四边形.24.(1)证明:∵在平行四边形ABCD中,点O是对角线BD的中点;∴AD∥BC,BO=DO;∴∠ADB=∠CBD;在△BOE与△DOF中;;∴△BOE≌△DOF(ASA);∴DF=BE且DF∥BE;∴四边形BEDF是平行四边形;(2)①解:如图,过点D作DN⊥EC于点N;∵DE=DC=6,DN⊥EC,CE=4;∴EN=CN=2;∴DN===4;∵∠DBC=45°,DN⊥BC;∴∠DBC=∠BDN=45°;∴DN=BN=4;∴BE=BN﹣EN=4;②证明:∵DN⊥EC,CG⊥DE;∴∠CEG+∠ECG=90°,∠DEN+∠EDN=90°;∴∠EDN=∠ECG;∵DE=DC,DN⊥EC;∴∠EDN=∠CDN;∵∠DHC=∠DBC+∠BCH=45°+∠BCH,∠CDB=∠BDN+∠CDN=45°+∠CDN;∴∠CDB=∠DHC;∴CD=CH.。
初中数学试卷新人教版八年级下册《第18章平行四边形》单元测试(A卷)一、填空题(共14小题,每题2分,共28分)1.四边形的内角和等于度,外角和等于度.2.正方形的面积为4,则它的边长为,一条对角线长为.3.一个多边形的内角和等于它的外角和的3倍,它是边形.4.如果四边形ABCD满足条件,那么这个四边形的对角线AC和BD互相垂直(只需填写一组你认为适当的条件).5.如果边长分别为4cm和5cm的矩形与一个正方形的面积相等,那么这个正方形的边长为cm.6.已知菱形两条对角线的长分别为5cm和8cm,则这个菱形的面积是cm2.7.平行四边形ABCD,加一个条件,它就是菱形.8.等腰梯形的上底是10cm,下底是14cm,高是2cm,则等腰梯形的周长为cm.9.已知菱形的一条对角线长为12cm,面积为30cm2,则这个菱形的另一条对角线长为cm.10.如图,▱ABCD中,AE⊥BC于E,AF⊥DC于F,BC=5,AB=4,AE=3,则AF的长为.11.如图,梯形ABCD中,AD∥BC,已知AD=4,BC=8,E、F分别为AB、DC的中点,则EF=,EF分梯形所得的两个梯形的面积比S1:S2为.12.下列矩形中,按虚线剪开后,既能拼出平行四边形和梯形,又能拼出三角形的是图形(请填图形下面的代号,答案格式如:“①,②,③,④,⑤”).13.如图,小亮从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样走下去,他第一次回到出发地A点时,一共走了米.14.如图,依次连接第一个正方形各边的中点得到第二个正方形,再依次连接第二个正方形各边的中点得到第三个正方形,按此方法继续下去.若第一个正方形边长为1,则第n个正方形的面积是.二、填空题(共4小题,每题3分,共12分)15.如图,平行四边形ABCD中,AE平分∠DAB,∠B=100°,则∠DEA等于()A.100°B.80°C.60°D.40°16.某校计划修建一座既是中心对称图形又是轴对称图形的花坛,从学生中征集到的设计方案有等腰三角形,正三角形,等腰梯形,菱形等四种方案,你认为符合条件的是()A.等腰三角形B.正三角形C.等腰梯形D.菱形17.一个多边形的每一个内角都等于140°,那么从这个多边形的一个顶点出发的对角线的条数是()A.6条 B.7条 C.8条 D.9条18.如图,图中的△BDC′是将矩形ABCD沿对角线BD折叠得到的,图中(包括实线,虚线在内)共有全等三角形()对.A.1 B.2 C.3 D.4三、解答题(共60分)19.如图,平行四边形ABCD中,DB=CD,∠C=70°,AE⊥BD于E.试求∠DAE的度数.20.已知:如图,在△ABC中,中线BE,CD交于点O,F,G分别是OB,OC的中点.求证:四边形DFGE是平行四边形.21.在一个平行四边形中,若一个角的平分线把一条边分成长是2cm和3cm的两条线段,求该平行四边形的周长是多少?22.已知:如图,▱ABCD中,延长AB到E,延长CD到F,使BE=DF.求证:AC与EF互相平分.23.如图,一块正方形地板由全等的正方形瓷砖铺成,这地板的两条对角线上的瓷砖全是黑色,其余的瓷砖是白色的,如果有101块黑色瓷砖,那么瓷砖的总数是多少.24.顺次连接等腰梯形四边中点所得的四边形是什么特殊的四边形?画出图形,写出已知,求证并证明.25.如图所示,在△ABC中,点O是AC上的一个动点,过点O作直线MN∥BC,设MN 交∠BCA的平分线于E,交∠BCA的外角平分线于F.(1)请猜测OE与OF的大小关系,并说明你的理由;(2)点O运动到何处时,四边形AECF是矩形?写出推理过程;(3)在什么条件下,四边形AECF是正方形?26.如图,若已知△ABC中,D、E分别为AB、AC的中点,则可得DE∥BC,且DE=BC.根据上面的结论:(1)你能否说出顺次连接任意四边形各边中点,可得到一个什么特殊四边形并说明理由;(2)如果将(1)中的“任意四边形”改为条件是“平行四边形”或“菱形”或“矩形”或“等腰梯形”,那么它们的结论又分别怎样呢?请说明理由.27.如图,△ABD、△BCE、△ACF均为等边三角形,请回答下列问题(不要求证明)(1)四边形ADEF是什么四边形?(2)当△ABC满足什么条件时,四边形ADEF是矩形?(3)当△ABC满足什么条件时,以A、D、E、F为顶点的四边形不存在?新人教版八年级下册《第18章平行四边形》单元测试(A卷)参考答案与试题解析一、填空题(共14小题,每题2分,共28分)1.四边形的内角和等于360度,外角和等于360度.【考点】多边形内角与外角.【专题】计算题.【分析】n边形的内角和是(n﹣2)•180度,因而代入公式就可以求出四边形的内角和;任何凸多边形的外角和都是360度.【解答】解:四边形的内角和=(4﹣2)•180=360度,四边形的外角和等于360度.【点评】本题主要考查了多边形的内角和公式与外角和定理,是需要熟记的内容.2.正方形的面积为4,则它的边长为2,一条对角线长为2.【考点】正方形的性质.【分析】根据正方形的面积公式可得到正方形的边长,根据正方形的对角线的求法可得对角线的长.【解答】解:设正方形的边长为x,则对角线长为=x;由正方形的面积为4,即x2=4;解可得x=2,故对角线长为2;故正方形的边长为2,对角线长为2.故答案为2,2.【点评】本题考查正方形的面积公式以及正方形的性质,此题是基础题,比较简单.3.一个多边形的内角和等于它的外角和的3倍,它是八边形.【考点】多边形内角与外角.【分析】根据多边形的内角和公式及外角的特征计算.【解答】解:多边形的外角和是360°,根据题意得:180°•(n﹣2)=3×360°解得n=8.故答案为:8.【点评】本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决.4.如果四边形ABCD满足四边形ABCD是菱形或正方形条件,那么这个四边形的对角线AC和BD互相垂直(只需填写一组你认为适当的条件).【考点】正方形的性质;菱形的性质.【专题】开放型.【分析】符合对角线互相垂直的四边形有:菱形、正方形,选择一个即可.【解答】解:根据四边形的性质可得到对角线互相垂直的有菱形和正方形,从而答案为:四边形ABCD是菱形或正方形.【点评】此题主要考查菱形和正方形的对角线的性质.5.如果边长分别为4cm和5cm的矩形与一个正方形的面积相等,那么这个正方形的边长为2cm.【考点】正方形的性质.【专题】计算题.【分析】先求出长方形的面积,因为长方形的面积和正方形的面积相等,再根据正方形的面积公式即可求得其边长.【解答】解:边长分别为4cm和5cm的矩形的面积是20cm2,所以正方形的面积是20cm2,则这个正方形的边长为=2(cm).故答案为2.【点评】本题主要考查了正方形的面积计算公式,即边长乘边长.6.已知菱形两条对角线的长分别为5cm和8cm,则这个菱形的面积是20cm2.【考点】菱形的性质.【专题】计算题.【分析】根据菱形的面积等于两对角线乘积的一半即可求得其面积.【解答】解:由已知得,菱形面积=×5×8=20cm2.故答案为20.【点评】本题主要考查了菱形的面积的计算公式.7.平行四边形ABCD,加一个条件一组邻边相等或对角线互相垂直,它就是菱形.【考点】菱形的判定.【专题】开放型.【分析】菱形的判定方法有三种:①定义:一组邻边相等的平行四边形是菱形;②四边相等;③对角线互相垂直平分的四边形是菱形.所以,可添加:一组邻边相等或对角线互相垂直.【解答】解:因为一组邻边相等的平行四边形是菱形;对角线互相垂直平分的四边形是菱形.可补充条件:一组邻边相等或对角线互相垂直.【点评】本题考查菱形的判定.8.等腰梯形的上底是10cm,下底是14cm,高是2cm,则等腰梯形的周长为24+4 cm.【考点】等腰梯形的性质;勾股定理.【分析】过A,D作下底BC的垂线,从而可求得BE的长,根据勾股定理求得AB的长,这样就可以求得等腰梯形的周长了.【解答】解:过A,D作下底BC的垂线,则BE=CF=(14﹣10)=2cm,在直角△ABE中根据勾股定理得到:AB=CD==2,所以等腰梯形的周长=10+14+2×2=24+4cm.故答案为:24+4cm.【点评】等腰梯形的问题可以通过作高线转化为直角三角形的问题来解决.9.已知菱形的一条对角线长为12cm,面积为30cm2,则这个菱形的另一条对角线长为5cm.【考点】菱形的性质.【专题】计算题.【分析】设另一条对角线长为x,然后根据菱形的面积计算公式列方程求解即可.【解答】解:设另一条对角线长为xcm,则×12x=30,解之得x=5.故答案为5.【点评】主要考查菱形的面积公式:两条对角线的积的一半.10.如图,▱ABCD中,AE⊥BC于E,AF⊥DC于F,BC=5,AB=4,AE=3,则AF的长为.【考点】平行四边形的性质.【专题】几何图形问题.【分析】平行四边形的面积=底×高,根据已知,代入数据计算即可.【解答】解:连接AC,∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,在△ABC和△CDA中,,∴△ABC≌△CDA(SSS),=S△CDA,∴S△ABC即BC•AE=CD•AF,∵CD=AB=4,∴AF=.故答案为:.【点评】“等面积法”是数学中的重要解题方法.在三角形和四边形中,以不同的边为底其高也不相同,但面积是定值,从而可以得到不同底的高的关系.11.如图,梯形ABCD中,AD∥BC,已知AD=4,BC=8,E、F分别为AB、DC的中点,则EF=6,EF分梯形所得的两个梯形的面积比S1:S2为5:7.【考点】梯形中位线定理;梯形.【分析】要求EF的长,只需根据梯形的中位线定理求解;根据平行线等分线段定理,知两个梯形的高相等,只需根据梯形的面积公式,即可求得两个梯形的面积比.【解答】解:∵AD=4,BC=8,E、F分别为AB、DC的中点,∴EF=(4+8)=6,则S1=(4+6)=h,S2=(6+8)=.则S1:S2=5:7.【点评】此题主要考查梯形的中位线定理和梯形的面积公式.12.下列矩形中,按虚线剪开后,既能拼出平行四边形和梯形,又能拼出三角形的是图形②(请填图形下面的代号,答案格式如:“①,②,③,④,⑤”).【考点】翻折变换(折叠问题).【专题】压轴题;操作型.【分析】通过动手操作易得出答案.【解答】解:对于①剪开后能拼出平行四边形和梯形两种,对于②剪开后能拼出三种图形,对于③剪开后能拼出三角形和平行四边形两种,对于④剪开后能拼出平行四边形,对于⑤剪开后能拼出平行四边形和梯形两种,故符合条件的图形为②.【点评】本题考查图形的折叠与拼接,同时考查了三角形、四边形等几何基本知识,解题时应分别对每一个图形进行仔细分析,难度不大.13.如图,小亮从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样走下去,他第一次回到出发地A点时,一共走了120米.【考点】多边形内角与外角.【专题】应用题.【分析】由题意可知小亮所走的路线为一个正多边形,根据多边形的外角和即可求出答案.【解答】解:∵360÷30=12,∴他需要走12次才会回到原来的起点,即一共走了12×10=120米.故答案为:120.【点评】本题主要考查了多边形的外角和定理.任何一个多边形的外角和都是360°.14.如图,依次连接第一个正方形各边的中点得到第二个正方形,再依次连接第二个正方形各边的中点得到第三个正方形,按此方法继续下去.若第一个正方形边长为1,则第n个正方形的面积是)n﹣1.【考点】正方形的性质;三角形中位线定理.【专题】压轴题;规律型.【分析】根据正方形的性质及三角形中位线的定理可分别求得第二个,第三个正方形的面积从而不难发现规律,根据规律即可求得第n个正方形的面积.【解答】解:根据三角形中位线定理得,第二个正方形的边长为=,面积为,第三个正方形的面积为=()2,以此类推,第n个正方形的面积为.【点评】根据中位线定理和正方形的性质计算出正方形的面积,找出规律,即可解答.二、填空题(共4小题,每题3分,共12分)15.如图,平行四边形ABCD中,AE平分∠DAB,∠B=100°,则∠DEA等于()A.100°B.80°C.60°D.40°【考点】平行四边形的性质.【专题】常规题型.【分析】根据平行四边形的性质和角平分线的性质求解.【解答】解:在▱ABCD中,∵AD∥BC,∴∠DAB=180°﹣∠B=180°﹣100°=80°.∵AE平分∠DAB,∴∠AED=∠DAB=40°.故选D.【点评】本题考查了平行四边形的性质,并利用了两直线平行,同旁内角互补和角的平分线的性质.16.某校计划修建一座既是中心对称图形又是轴对称图形的花坛,从学生中征集到的设计方案有等腰三角形,正三角形,等腰梯形,菱形等四种方案,你认为符合条件的是()A.等腰三角形B.正三角形C.等腰梯形D.菱形【考点】中心对称图形;轴对称图形.【专题】方案型.【分析】根据轴对称图形与中心对称图形的概念和等腰三角形、正三角形、等腰梯形、菱形的性质求解.【解答】解:等腰三角形、正三角形、等腰梯形都只是轴对称图形;菱形既是轴对称图形,也是中心对称图形.故选:D.【点评】解题时要注意中心对称图形与轴对称图形的概念:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.17.一个多边形的每一个内角都等于140°,那么从这个多边形的一个顶点出发的对角线的条数是()A.6条 B.7条 C.8条 D.9条【考点】多边形内角与外角;多边形的对角线.【分析】先求出多边形的边数,再求从这个多边形的一个顶点出发的对角线的条数即可.【解答】解:∵多边形的每一个内角都等于140°,∴每个外角是180°﹣140°=40°,∴这个多边形的边数是360°÷40°=9,∴从这个多边形的一个顶点出发的对角线的条数是6条.故选:A.【点评】本题考查多边形的外角和及对角线的知识点,找出它们之间的关系是本题解题关键.18.如图,图中的△BDC′是将矩形ABCD沿对角线BD折叠得到的,图中(包括实线,虚线在内)共有全等三角形()对.A.1 B.2 C.3 D.4【考点】矩形的性质;全等三角形的判定.【分析】共有四对,分别为△ABO≌△C′DO,△ABD≌△CDB,△ABD≌△C′DB,△CDB ≌△C′DB.【解答】解:∵△BDC′是将矩形ABCD沿对角线BD折叠得到的∴C′D=CD,∠C=∠C′,BD=BD∴△CDB≌△C′DB同理可证其它三对三角形全等.故选D.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.三、解答题(共60分)19.如图,平行四边形ABCD中,DB=CD,∠C=70°,AE⊥BD于E.试求∠DAE的度数.【考点】平行四边形的性质.【分析】因为BD=CD,所以∠DBC=∠C=70°,又因为四边形ABCD是平行四边形,所以AD∥BC,所以∠ADB=∠DBC=70°,因为AE⊥BD,所以在直角△AED中,∠DAE即可求出.【解答】解:在△DBC中,∵DB=CD,∠C=70°,∴∠DBC=∠C=70°,又∵在▱ABCD中,AD∥BC,∴∠ADB=∠DBC=70°,又∵AE⊥BD,∴∠DAE=90°﹣∠ADB=90°﹣70°=20°.【点评】此题主要考查了平行四边形的基本性质,以及等腰三角形的性质,难易程度适中.20.已知:如图,在△ABC中,中线BE,CD交于点O,F,G分别是OB,OC的中点.求证:四边形DFGE是平行四边形.【考点】平行四边形的判定;三角形中位线定理.【专题】证明题.【分析】平行四边形的判定方法有多种,选择哪一种解答应先分析题目中给的哪一方面的条件多些,本题中给了两条中位线,利用中位线的性质,可利用一组对边平行且相等来证明.【解答】解:在△ABC中,∵BE、CD为中线∴AD=BD,AE=CE,∴DE∥BC且DE=BC.在△OBC中,∵OF=FB,OG=GC,∴FG∥BC且FG=BC.∴DE∥FG,DE=FG.∴四边形DFGE为平行四边形.【点评】平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.21.在一个平行四边形中,若一个角的平分线把一条边分成长是2cm和3cm的两条线段,求该平行四边形的周长是多少?【考点】平行四边形的性质.【专题】分类讨论.【分析】此题注意要分情况讨论:根据角平分线的定义以及平行线的性质,可以发现一个等腰三角形,即较短的边是2cm或3cm,又较长的边是2+3=5cm,所以平行四边形的周长是2(2+5)=14或2(3+5)=16cm.【解答】解:如图所示:∵在平行四边形ABCD中,AB=CD,AD=BC,AD∥BC,∴∠AEB=∠CBE.又∠ABE=∠CBE∴∠ABE=∠AEB∴AB=AE.(1)当AE=2时,则平行四边形的周长=2(2+5)=14.(2)当AE=3时,则平行四边形的周长=2(3+5)=16.【点评】本题主要考查了平行四边形的性质,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.22.已知:如图,▱ABCD中,延长AB到E,延长CD到F,使BE=DF.求证:AC与EF互相平分.【考点】平行四边形的判定与性质.【专题】证明题.【分析】此题要证明AC与EF互相平分,只需证明以AC,EF为对角线的四边形是平行四边形就可.根据已知的平行四边形,只需证明AE=CF.根据已知平行四边形的对边相等,即AB=CD,再加上已知BE=DF,就可证明AE=CF.根据一组对边平行且相等的四边形是平行四边形就可.【解答】解:连接AF,CE.∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.又∵BE=DF∴AB+BE=CD+DF即AE=CF∴四边形AECF是平行四边形.∴AC与EF互相平分.【点评】本题考查了平行四边形的判定与性质,熟练掌握性质定理和判定定理是解题的关键.平行四边形的五种判定方法与平行四边形的性质相呼应,每种方法都对应着一种性质,在应用时应注意它们的区别与联系.23.如图,一块正方形地板由全等的正方形瓷砖铺成,这地板的两条对角线上的瓷砖全是黑色,其余的瓷砖是白色的,如果有101块黑色瓷砖,那么瓷砖的总数是多少.【考点】正方形的性质.【分析】一块正方形地板由全等的正方形瓷砖铺成,这地板的两条对角线上的瓷砖全是黑色,有101块黑色瓷砖,由正方形的特殊性质知正方形知每边有(101+1)÷2=51块瓷砖,那么可求出瓷砖的总数.【解答】解:根据题意得正方形每边有(101+1)÷2=51块瓷砖,所以总数为:51×51=2601(块).【点评】解答本题要充分利用正方形的特殊性质.对角线上的瓷砖数等于每边的瓷砖数.24.顺次连接等腰梯形四边中点所得的四边形是什么特殊的四边形?画出图形,写出已知,求证并证明.【考点】等腰梯形的性质;三角形中位线定理;菱形的判定.【专题】综合题.【分析】由题意写出已知,画出图形,写出求证.由等腰梯形可得AC=BD,再由三角形中位线定理可得出小四边形四边的关系,即可知它是什么四边形.【解答】解:是菱形理由是:连接AC、BD∵E、F、G、H分别是AB、BC、CD、DA的中点∴EF=AC,GH=AC,EH=BD,GF=BD∵等腰梯形ABCD中AD∥BC,AB=CD,∴AC=BD∴EF=GH=EH=GF∴四边形EFGH菱形.【点评】本题考查了等腰梯形的性质和三角形中位线的性质.25.如图所示,在△ABC中,点O是AC上的一个动点,过点O作直线MN∥BC,设MN 交∠BCA的平分线于E,交∠BCA的外角平分线于F.(1)请猜测OE与OF的大小关系,并说明你的理由;(2)点O运动到何处时,四边形AECF是矩形?写出推理过程;(3)在什么条件下,四边形AECF是正方形?【考点】正方形的判定;等腰三角形的判定与性质;矩形的判定.【专题】探究型.【分析】(1)猜想:OE=OF,由已知MN∥BC,CE、CF分别平分∠BCO和∠GCO,可推出∠OEC=∠OCE,∠OFC=∠OCF,所以得EO=CO=FO.(2)由(1)得出的EO=CO=FO,点O运动到AC的中点时,则由EO=CO=FO=AO,所以这时四边形AECF是矩形.(3)由已知和(2)得到的结论,点O运动到AC的中点时,且△ABC满足∠ACB为直角的直角三角形时,则推出四边形AECF是矩形且对角线垂直,所以四边形AECF是正方形.【解答】解:(1)猜想:OE=OF,理由如下:∵MN∥BC,∴∠OEC=∠BCE,∠OFC=∠GCF,又∵CE平分∠BCO,CF平分∠GCO,∴∠OCE=∠BCE,∠OCF=∠GCF,∴∠OCE=∠OEC,∠OCF=∠OFC,∴EO=CO,FO=CO,∴EO=FO.(2)当点O运动到AC的中点时,四边形AECF是矩形.∵当点O运动到AC的中点时,AO=CO,又∵EO=FO,∴四边形AECF是平行四边形,∵FO=CO,∴AO=CO=EO=FO,∴AO+CO=EO+FO,即AC=EF,∴四边形AECF是矩形.(3)当点O运动到AC的中点时,且△ABC满足∠ACB为直角的直角三角形时,四边形AECF是正方形.∵由(2)知,当点O运动到AC的中点时,四边形AECF是矩形,已知MN∥BC,当∠ACB=90°,则∠AOF=∠COE=∠COF=∠AOE=90°,∴AC⊥EF,∴四边形AECF是正方形.【点评】此题考查的知识点是正方形和矩形的判定及角平分线的定义,解题的关键是由已知得出EO=FO,然后根据(1)的结论确定(2)(3)的条件.26.如图,若已知△ABC中,D、E分别为AB、AC的中点,则可得DE∥BC,且DE=BC.根据上面的结论:(1)你能否说出顺次连接任意四边形各边中点,可得到一个什么特殊四边形并说明理由;(2)如果将(1)中的“任意四边形”改为条件是“平行四边形”或“菱形”或“矩形”或“等腰梯形”,那么它们的结论又分别怎样呢?请说明理由.【考点】等腰梯形的性质;菱形的判定与性质;矩形的判定与性质;等腰梯形的判定.【专题】开放型.【分析】设四边形DBCE的中点分别为OPMN,根据已知条件及平行四边形的性质可得到是一个平行四边形;根据各四边的性质进行分析即可.【解答】解:(1)设四边形DBCE的中点分别为OPMN,则PM=ON,且PM∥ON⇒顺次连接任意四边形各边中点得到平行四边形;(2)平行四边形,矩形,菱形,根据各个四边形的性质:当四边形为菱形时,连接菱形各边中点所得出的为矩形;当四边形为矩形时,连接各边中点所得出的为菱形;当四边形为等腰梯形时,连接各边中点所得为菱形.【点评】本题考查的是各个四边形的性质以及等腰梯形的性质的运用.27.如图,△ABD、△BCE、△ACF均为等边三角形,请回答下列问题(不要求证明)(1)四边形ADEF是什么四边形?(2)当△ABC满足什么条件时,四边形ADEF是矩形?(3)当△ABC满足什么条件时,以A、D、E、F为顶点的四边形不存在?【考点】矩形的判定;全等三角形的判定与性质;等边三角形的性质;平行四边形的判定.【分析】(1)四边形ADEF是平行四边形,可先证明△ABC≌△DBE,可得DE=AC,又有AC=AF,可得DE=AF,同理可得AD=EF,根据两组对边分别相等的四边形是平行四边形,可证四边形ADEF是平行四边形;(2)如四边形ADEF是矩形,则∠DAF=90°,又有∠BAD=∠FAC=60°,可得∠BAC=150°,故∠BAC=150°时,四边形ADEF是矩形;(3)当∠BAC=60°时,∠DAF=180°,此时D、A、F三点在同一条直线上,以A,D,E,F为顶点的四边形就不存在.【解答】解:(1)四边形ADEF是平行四边形,理由如下:∵△ABD,△BCE都是等边三角形,∴∠DBE=∠ABC=60°﹣∠ABE,AB=BD,BC=BE.在△ABC与△DBE中,,∴△ABC≌△DBE(SAS).∴DE=AC.又∵AC=AF,∴DE=AF.同理可得EF=AD.∴四边形ADEF是平行四边形.(2)∵四边形ADEF是平行四边形,∴当∠DAF=90°时,四边形ADEF是矩形,∴∠FAD=90°.∴∠BAC=360°﹣∠DAF﹣∠DAB﹣∠FAC=360°﹣90°﹣60°﹣60°=150°.则当∠BAC=150°时,四边形ADEF是矩形;(3)当△ABC满足角A=60°时,四边形ADEF不存在.【点评】此题主要考查了用等边三角形的性质,全等三角形的性质与判定来解决平行四边形的判定问题,也探讨了矩形,平行四边形之间的关系.。
人教版八年级下册数学第18章平行四边形单元测试卷一.选择题(本大题共8小题,共24分。
在每小题列出的选项中,选出符合题目的一项)1. 下列条件中,能判定四边形是平行四边形的条件是( )A. 一组对边平行,一组邻角互补B. 一组对边平行,另一组对边相等C. 一组对边平行,一组对角相等D. 一组对边相等,一组邻角相等2. 下列命题,其中是真命题的为( )A. 对角线相等的四边形是矩形B. 对角线互相垂直的四边形是菱形C. 一组邻边相等的矩形是正方形D. 一组对边平行,另一组对边相等的四边形是平行四边形3. 如下图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开.若测得AB的长为1.6km,则M,C 两点间的距离为( )A. 0.5kmB. 0.6kmC. 0.8kmD. 1.2km4. 下列命题是假命题的是( )A. 对角线相等的菱形是正方形B. 对角线互相垂直且平分的四边形是正方形C. 对角线互相垂直的矩形是正方形D. 对角线互相垂直且相等的平行四边形是正方形5. 如图,点E、F、G、H分别是四边形ABCD边AB、BC、CD、DA的中点.则下列说法:①若AC=BD,则四边形EFGH为矩形;②若AC⊥BD,则四边形EFGH为菱形;③若四边形EFGH是平行四边形,则AC与BD互相平分;④若四边形EFGH是正方形,则AC与BD互相垂直且相等.其中正确的个数是( )A. 1B. 2C. 3D. 46. 如图四边ABCD中∠BAD=∠C=90°,AB=AD,AE⊥BC,垂足为E.若线段AE=5,则S=( )四边形ABCDA. 20B. 25C. 18D. 247. 如图,菱形ABCD的两条对角线长分别为AC=6,BD=8,点P是BC边上的一动点,则AP的最小值为( )A. 4B. 4.8C. 5D. 5.58. 如图,在菱形ABCD中,AB=6,∠ABD=30°,则菱形ABCD的面积是( )A. 18B. 18√3C. 36D. 36√3二、填空题(本大题共8小题,共24分)9. 如图,两条射线AM//BN,点C,D分别在射线BN,AM上,只需添加一个条件,即可证明四边形ABCD 是平行四边形,这个条件可以是(写出一个即可).10. 如图,已知菱形ABCD的对角线AC,BD交于点O,E为BC的中点,若OE=3,则菱形的周长为______.11. 如图,在正方形ABCD中,AB=8,AC与BD交于点O,N是AO的中点,点M在BC边上,且BM=6.P 为对角线BD上一点,则PM−PN的最大值为______.12.如图,在▱ABCD中,E、F是对角线AC上两点,AE=EF=CD,∠ADF=90°,∠BCD=63°,则∠ADE 的大小为______.13. 已知正方形ABCD的边长为6,如果P是正方形内一点,且PB=PD=2√5,那么AP的长为.14. 已知两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是.15如图,▱ABCD的顶点C在等边△BEF的边BF上,点E在AB的延长线上,G为DE的中点,连接CG.若AD=3,AB=CF=2,则CG的长为..16. 如图,在△ABC中,∠B=45°,AB的垂直平分线交AB于点D,交BC于点E(BE>CE),点F是AC的中点,连接AE、EF,若BC=7,AC=5,则△CEF的周长为______ .三、解答题(本大题共9小题,共72分。
2020-2021学年苏科新版八年级下册数学《第9章中心对称图形——平行四边形》单元测试卷一.选择题1.经过矩形对称中心的任意一条直线,把这个矩形分成两部分,设这两部分的面积分别为S1和S2,则S1与S2的大小关系是()A.S1>S2B.S1<S2C.S1=S2D.不能确定2.下列判断四边形是平行四边形的是()A.两组角相等的四边形B.对角线平分的四边形C.一组对边相等,一组对角相等的四边形D.两组对边分别相等的四边形3.四边相等的四边形一定是()A.矩形B.菱形C.正方形D.无法判定4.等腰三角形中有一条边长为4,其三条中位线的长度总和为8,则底边长是()A.4B.8C.4或6D.4或85.如图,8×8方格纸上的两条对称轴EF,MN相交于中心点O,对三角形ABC分别作下列变换:①先以点A为中心顺时针方向旋转90°,再向右平移4格、向上平移4格.②先以点O为中心作其中心对称图形,再以点A的对应点为中心逆时针方向旋转90°.③先以直线MN为轴作其轴对称图形,再向上平移4格,再以点A的对应点为中心顺时针方向旋转90°.其中变换后的图形为三角形PQR的是()A.①②B.①③C.②③D.①②③6.按图中所示的排列规律,在空格中应填()A.B.C.D.7.下列这些美丽的图案都是在“几何画板”软件中利用旋转的知识在一个图案的基础上加工而成的,每一个图案都可以看作是它的“基本图案”绕着它的旋转中心旋转得来的,旋转的角度为()A.30°B.60°C.120°D.180°8.观察下列图形,其中是旋转对称图形的有()A.1个B.2个C.3个D.4个9.如图所示的图案中,能够绕自身的某一点旋转180°后还能与自身重合的图形的个数是()A.1B.2C.3D.410.有两个内角分别为90°,60°,30°的完全一样的三角形拼成四边形,其形状不同的有()A.2个B.3个C.4个D.6个二.填空题11.如图,在△ABC中,AB=4,AC=2.4,BC=3.6,AD⊥BC于点D,E,F分别是AB,AC的中点,则EF=,DE=,DF=.12.根据两条对角线的关系判断一个四边形是矩形或菱形或正方形的必不可少的条件是.13.矩形的两邻边分别为8cm和6cm,则其对角线为cm,矩形面积为cm2.14.(1)若直角三角形斜边上的高和中线分别为10cm、12cm,则它的面积为cm2.(2)已知等腰三角形的一个外角为100°,则这个等腰三角形的顶角为.15.如图,在▱ABC D中,E是AB上一点,F是AB延长线上一点,则S△CDE S△CDF(在横线上填“<”或“>”或“=”).16.一般来说,反证法有如下三个步骤:(1),(2)(3).17.国旗上的五角星是旋转对称图形,它的最小旋转角是.18.如图,已知四边形ABCD是一个平行四边形,则只须补充条件,就可以判定它是一个菱形.19.如果▱ABCD和▱ABE F有公共边AB,那么四边形DCEF是.20.等边三角形、平行四边形、矩形、圆四个图形中,既是轴对称图形又是中心对称图形的是.三.解答题21.如图所示,已知DE,EF是△ABC的两条中位线.求证:四边形BFED是平行四边形.22.怎样将图中的甲图案变成乙图案.23.如图,说出这个图形的旋转中心,它绕旋转中心至少旋转多大角度才能与原来图形重合?24.如图,四边形ABCD为平行四边形,E为BC的中点,DF⊥AE于点F,H为DF的中点,证明:CH⊥DF.25.如图,在平面直角坐标系中,有一个平行四边形ABCD,其中点A,B在x轴上,点D 在y轴上,点C在第一象限.已知AD⊥BD,AD=4,∠ABD=30°,求A,B,C,D 各点的坐标.26.如图所示,已知正方形ABCD的边长是7,AE=BF=CG=DH=2(1)四边形EFGH的形状是;(2)求出四边形EFGH的面积;(3)求出四边形EFGH的周长(结果精确到十分位,参考数值:≈1.703,)27.有一组数排成方阵,如图所示,试计算这组数的和.小明想了想,方阵象正方形,正方形是轴对称图形,又是中心对称图形,能否利用轴对称和中心对称的思想来解决方阵的计算问题呢?小明试了试,竟得到了非常巧妙的方法,你能试试看吗?1234523456345674567856789参考答案与试题解析一.选择题1.解:矩形ABCD中,AD=BC,AO=BO=CO=DO,∴△AOD≌△BOC(SSS),∵∠ECO=∠FAO,OA=OC,∠EOC=∠FOA,∴△OEC≌△OFA,同理可证,△DEO≌△BFO,∴S1=S2.故选:C.2.解;根据平行四边形的判定可知,A、B、C不能判定为平行四边形.故选:D.3.解:根据菱形的判定:四边相等的四边形是菱形.故选:B.4.解:由题意得,周长=2×8=16,①当底边=4时,此时腰长=6,符合题意;②当腰长=4时,此时底边=8,4+4=8,不能构成三角形,不符合题意.综上可得,底边长为4.故选:A.5.解:①通过认真的画图可知,此方法可以将△ABC变换成△PQR,故此方法正确,②通过认真的画图可知,此方法可以将△ABC变换成△PQR,故此方法正确,③通过认真的画图可知,此方法可以将△ABC变换成△PQR,故此方法正确,故选:D.6.解:观察图形,发现:图形绕三角形的中心按顺时针方向转动90°.故选:A.7.解:第一个图案可以看作是它的“基本图案”绕着它的旋转中心旋转90°得到;第二个图案可以看作是它的“基本图案”绕着它的旋转中心旋转90°得到;第三个图案可以看作是它的“基本图案”绕着它的旋转中心旋转90°得到;第四个图案可以看作是它的“基本图案”绕着它的旋转中心旋转90°得到.上述选项中只有180°是90°的整数倍.故选:D.8.解:旋转对称图形是(1),(3),(4);不是旋转对称图形的是(2).故选:C.9.解:4个图形都符合条件.故选D.10.解:根据平行四边形的基本性质:平行四边形的两组对角分别相等,可知角分别为,(1)90°,90°,90°90°;(2)120°,60°,120°,60°;(3)150°,30°,150°,30°;不是平行四边形的四边形为(4)60°,90°,120°,90°.共4种,故选:C.二.填空题11.解:如图∵E,F分别是AB,AC的中点,∴EF为△ABC的中位线,∴EF=BC=1.8;∵AD⊥BC,E是AB的中点,∴DE=AB=2;同理可得DF=AC=1.2.12.解:∵矩形、菱形、正方形的对角线都具有平分的性质,则根据两条对角线的关系判断一个四边形是矩形或菱形或正方形的必不可少的条件是平分.故答案为平分.13.解:矩形的对角线为=10cm,面积S=6×8=48cm2故答案为10,48.14.解:(1)∵直角三角形斜边上的中线为12cm,∴斜边=2×2=24cm,∴它的面积=×24×10=120cm2;(2)∵等腰三角形的一个外角为100°,∴与这个外角相邻的内角是180°﹣100°=80°,若80°角是顶角,则顶角为80°,若80°角是底角,则顶角为180°﹣80°×2=20°,所以,这个等腰三角形的顶角为80°或20°.故答案为:(1)120;(2)80°或20°.15.解:∵四边形ABCD是平行四边形,∴AB∥DC,∴AB和CD之间的距离处处相等,即S△CDE =S△CDF,故答案为:=.16.解:反证法有如下三个步骤:(1)提出反证,(2)推出矛盾,(3)肯定结论.17.解:∵360°÷5=72°,∴该图形绕中心至少旋转72度后能和原来的图案互相重合.故答案为:72°.18.解:补充的条件是AB=BC,理由是:∵AB=BC,四边形ABCD是平行四边形,∴平行四边形ABCD是菱形,故答案为:AB=BC.19.解:由题意可得:AB平行且等于CD,AB平行且等于EF∴CD平行且等于EF,又∵两个平行四边形在同一平面∴四边形DCEF是平行四边形.故答案为:平行四边形.20.解:矩形、圆即是轴对称图形,又是中心对称图形.故答案为:矩形、圆.三.解答题21.证明:∵DE,EF是△ABC的两条中位线.∴DE∥BC,EF∥AB,∴四边形BFED是平行四边形.22.解:步骤:(1)将图甲绕O点逆时针旋转一定角度,使树干与地面垂直.(2)接着将图(1)向右平移至与图乙重合即可.23.解:这个图形的旋转中心为圆心;∵360°÷6=60°,∴该图形绕中心至少旋转60度后能和原来的图案互相重合.24.证明:延长AE、DC交于点P,如图所示:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ABE=∠PCE,∵BE=CE,∠AEB=∠PEC,∴△ABE≌△PCE(ASA),∴PC=AB=CD,∵H为DF的中点,∴CH是△PDF的中位线,∴CH∥AE,∵DF⊥AE,∴CH⊥DF.25.解:∵在直角△ABD中,∠ABD=30°,∴AB=2AD=8,又∵直角△ABD中,OD⊥AB,∴∠ADO=∠ABD=30°,在直角△AOD中,AO=AD=2,OD=AD•cos30°=4×=2,则OB=AB﹣0A=8﹣2=6,则A的坐标是(﹣2,0),B的坐标是(6,0),C的坐标是(8,2),D的坐标是(0,2).26.解:(1)四边形EFGH是正方形,理由是:∵四边形ABCD是正方形,∴∠A=∠B=∠C=∠D=90°,AB=BC=CD=AD=7,∵AE=BF=CG=DH=2,∴AH=DG=CF=BE=5,∴△AEH≌△DHG≌△CGF≌△BFE(SAS),∴EH=EF=FG=HG,∠AHE=∠DGH,∵∠A=∠D=90°,∴∠DGH+∠DHG=90°,∴∠AHE+∠DHG=90°,∴∠EHG=180°﹣90°=90°,∴四边形EFGH是正方形,故答案为:正方形.(2)在Rt△AEH中,AE=2,AH=5,由勾股定理得:EH==,∵四边形EFGH是正方形,∴EF=FG=GH=EH=,∴四边形EFGH的面积是()2=29.(3)四边形EFGH的周长是×4=4≈4×5.39≈21.6.27.解:∵(1+9)+(2+8)+(3+7)+(4+6)+…+(8+2)+(3+7)+(4+6)+(5+5)+(6+4)+5=10×12+5=120+5=125∴这组数和为125.。
八年级数学下册《第十八章-平行四边形》单元测试卷及答案(人教版) 班级:___________姓名:___________考号:_____________A.5B.10C.D.25则ABC的周长是()55A.AB∥CD,AB=CD B.AB∥CD,AD∥BCA.①②B.①③C.②③D.①②③A .B .C .D .①BE⊥AC二、填空题13.已知四边形ABCD ,点O 是对角线AC 与BD 的交点,且OA OC =,请再添加一个条件,使得四边形ABCD 成为平行四边形,那么添加的条件可以是_____________.(用数学符号语言表达)14.如图,线段AB ⊥BC ,以C 为圆心,BA 为半径画弧,然后再以A 为圆心,BC 为半径画弧,两弧交于点D ,则四边形ABCD 是矩形,其依据是 _____.15.如图,在ABC ∆中,点D ,E 分别是AB ,AC 的中点,连结BE ,若6AE =,DE=5,∠BEC=90°,则BE =______.16.如图,在正方形ABCD中,E是BC边上一点,连接AE,AB=4CE,F是AE上一点,射线BF与正方形的边⊥交BC于点17.如图,在矩形ABCD中,AB=4,45BD=对角线AC、BD相交于点O,过点O作OE AC18.如图,点E在正方形ABCD的边CD上,若△ABE的面积为18,CE=4,则线段BE的长为_____.三、解答题19.如图,在▱ABCD 中,对角线AC 、BD 相交于点O ,过点O 的直线分别交BC 、AD 于点E 、F ,G 、H 分别是OB 、OD 的中点.求证:(1)OE =OF ;(2)四边形GEHF 是平行四边形.20.如图,E ,F 是▱ABCD 的对角线AC 上的两点,且AF =CE .求证:(1)△ADE ≌△CBF ;(2)DE ∥BF .21.如图,在平行四边形ABCD 中(1)若点E 、F 是AD 、BC 的中点,连接BE 、DF ,求证BE DF =;(2)若DF 平分ADC ∠且交边BC 于点F ,如果5AB =,BC=8,试求线段BF 的长.(1)求证:OE CB =;(1)求证:180ABO ACO ∠+∠=︒;1.C2.D3.D4.D5.A6.C7.C360 BAC ∠=ABO ∴∠+(2)线段之间的数量关系是过点O 作AOC ∴∠+∠+ABO ∠∠ABO ∴∠=BOC ∠=90AOC ∠∴AOB ∠∴∴四边形是正方形OB OC ∴=在ABO 和FCO 中ABO FCO∴≅∴AO FO=,AB=CFAOF∴是等腰直角三角形∴=AF AO2CF AC AO∴+=2∴+=AB AC AO2。
《第18章平行四边形》单元测试卷(1)一.选择题(共10小题,满分30分,每小题3分)1.(3分)如图,在平行四边形ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,若AB=4,EF=1,则BC长为()A.7B.8C.9D.102.(3分)如图,在菱形ABCD中,AC、BD相交于点O,F为AB的中点,且DF⊥AB,若AC=6,则DF的长为()A.2B.3C.3D.43.(3分)如图,在正方形ABCD中,点A的坐标是(﹣3,2),点D的坐标是(﹣1,0),则C点的坐标是()A.(1,2)B.(2,2)C.(3,2)D.(2,1)4.(3分)如图,四边形ABED是平行四边形,点C在BE的延长线上,DE=DC,∠C=75°,则∠B等于()A.80°B.75°C.70°D.60°5.(3分)要从一张长40cm,宽20cm的矩形纸片中剪出长为18cm,宽为12cm的矩形纸片则最多能剪出()A.1张B.2张C.3张D.4张6.(3分)下列说法不正确的是()A.两组对角分别相等的四边形是平行四边形B.一组邻边都相等的四边形是菱形C.有三个角是直角的四边形是矩形D.对角线相等的菱形是正方形7.(3分)如图,点A、D、G、M在半圆上,四边形ABOC、DEOF、HMNO均为矩形,设BC=a,EF=b,HN=c,则a、b、c三者间的大小关系为()A.a>b>c B.a<b<c C.a=b=c D.a>c>b8.(3分)如图,在▱ABCD中,对角线AC与BD相交于点O,添加下列条件中能判定▱ABCD 为矩形的是()A.AB=BC B.AC⊥BD C.∠ABC=90°D.∠1=∠29.(3分)已知长方形ABCD,AB=3,AD=4,过对角线BD的中点O作BD的垂直平分线EF,分别交AD,BC于点E,F,则AE的长为()A.1B.2C.D.10.(3分)如图,将边长为4个单位的等边△ABC沿边BC向右平移2个单位得到△DEF,则四边形ABFD的周长为()A.12B.16C.20D.24二.填空题(共6小题,满分18分,每小题3分)11.(3分)如图,AD∥BC,要使四边形ABCD成为平行四边形还需要添加的条件是(只需写出一个即可)12.(3分)如图,在▱ABCD中,AC=BC,∠CAD=30°,则∠D的度数为.13.(3分)如图,在四边形ABCD中,AD与BC不平行,AB=CD.AC,BD是四边形ABCD 的对角线,E,F,G,H分别是BD,BC,AC,AD的中点.下列结论:①EG⊥FH;②四边形EFGH是矩形;③EG=(BC﹣AD);④HF平分∠EHG.其中正确的是.14.(3分)已知Rt△ABC,∠ABC=90°,小明按如下步骤作图,①以A为圆心,BC长为半径作弧,以C为圆心,AB长为半径作弧,两弧相交于点D;②连接DA,DC,则四边形ABCD为.15.(3分)如图,将长方形纸片ABCD沿BD折叠,得到△BDC1,C1D与AB交于点E,若∠1=35°,则∠2的度数是.16.(3分)如图,∠MON=90°,矩形ABCD的顶点A、B分别在OM、ON上,当点B在ON上移动时,点A随之移动,AB=2,BC=1,运动过程中,点D到点O的最大距离为.三.解答题(共5小题)17.如图,在正方形ABCD中,BE平分∠DBC交CD于点E,延长BC到F,使CF=CE,连接DF交BE的延长线于点G.(1)求∠BGF的度数;(2)求证:DE=CE.18.如图,四边形ABCD是平行四边形,BE∥DF,BE、DF分别交AC于点E,F.(1)求证:△ABE≌△CDF;(2)当四边形ABCD是菱形时,请判断四边形BEDF的形状,并证明你的结论.19.如图,将平行四边形ABCD的边AB延长到点E,使BE=AB,DE交边BC于点F.(1)求证:四边形BECD为平行四边形;(2)连接BD、CE,若∠BFD=2∠A,求证:四边形BECD是矩形.20.已知:如图,在平行四边形ABCD中,E、F分别为AB、CD的中点,G、H分别为DE、BF的中点.(1)试判断四边形EHFG的形状,并证明;(2)若∠ABC=90°,试判断四边形EHFG的形状并加以证明.21.如图,▱ABCD中,E是AD的中点,△BCE是等边三角形.求证:四边形ABCD是矩形.。
平行四边形的判定单元测试卷一、选择题1.在等腰梯形、菱形、等腰三角形、圆、正六边形这五个图形中,既是轴对称图形又是中心对称图形的有( )A .1个B .2个C .3个 D.4个 2.下列说法中错误的是( )A .两条对角线互相平分的四边形是平行四边形;B .两条对角线相等的四边形是矩形C .两条对角线互相垂直的矩形是正方形;D .两条对角线相等的菱形是正方形 3.已知平行四边形一边长为10,一条对角线长为6,则它的另一条对角线α的取值范围为( )A .4<α<16 B.14<α<26 C.12<α<20 D.以上答案都不正确 4.正方形具有而菱形不具有的性质是( )A.对角线互相平分B.对角线互相垂直C.对角线相等D.对角线平分一组对角 5.如图, ABCD 中,∠BAD 的平分线交BC 于E ,且A E﹦BE,则∠BCD 的度数为( )A.30° B .60°或120° C.60° D.120°6.在四边形ABCD 中,AB ∥CD,若ABCD 不是梯形,则∠A ﹕∠B ﹕∠C ﹕∠D 为( )A.2﹕3﹕6﹕7B.3﹕4﹕5﹕6C.3﹕5﹕7﹕9D.4﹕5﹕4﹕57.已知ABCD 是平行四边形,下列结论中,不一定正确的是( )A.AB ﹦CDB.AC ﹦BDC.当AC ⊥BD 时,它是菱形D.当∠ABC ﹦90°时,它是矩形 8.E 是正方形ABCD 内一点,且△EAB 是等边三角形,则∠ADE 的度数是( ) A.70° B.72.5° C.75° D.77.5°9.菱形的周长等于高的8倍,则此菱形较大内角是( ) A.60° B.90° C.120° D.150°10.矩形一个内角的平分线把矩形的一边分成3㎝和5㎝,则矩形的周长为( ) A.16㎝ B.22㎝或16㎝ C.26㎝ D.以上都不对二、填空题11.在平行四边形ABCD 中,∠A ﹦100°,则∠B________.12.在菱形ABCD 中,对角线AC 、BD 交于O 点,AC=12㎝,BD=9㎝,则菱形的面积是___________. 13.梯形ABCD 中,两底分别是3,5,一腰为3,另一腰χ的取值范围是___________. 14.已知梯形ABCD 中,AD ∥BC,AC ⊥BD,AC 与BD 交于点O,AC ﹦4,BD ﹦6,则梯形ABCD 的面D C B AE D CB A积是__________.15.如图,AB ﹦AC,BD ﹦BC,AD ﹦DE ﹦BE,则∠A ﹦______________.E DCBA I O DCBADCBA(第15题) (第16题) (第18题) 16.顺次连结矩形各边中点所得四边形是____________.17.如图,直线是四边形ABCD 的对称轴,若AB ﹦CD,有下面的结论:①AB ∥CD;②AC ⊥BD;③AO ﹦OC;④AB ⊥BC,其中正确的结论有___________.18.如图4,若将四根木条钉成的矩形木框变形为平行四边形ABCD 的形状,并使其面积为矩形的面积的一半,则这个平行四边形的一个最小内角的值等于__________.三、解答题19.如图,□ABCD 中,AE ⊥BD,CF ⊥BD,垂足分别为E 、F,⑴写出图中每一对你认为全等的三角形;⑵选择⑴中任意一对全等三角形进行证明.F EDCBA20.如图,铁路路基横断面为等腰梯形ABCD,斜坡BC 的坡度ⅰ﹦3﹕4(ⅰ﹦BF CF),路基高BF ﹦3米,底CD 宽为18米,求路基顶AB 的宽.FDCB A21.如图,在矩形ABCD 中,AB ﹦16㎝,AD ﹦6㎝,动点P 、Q 分别从A 、C 同时出发,点P 以每秒3㎝的速度向B 移动,一直达到B 止,点Q 以每秒2㎝的速度向D 移动.⑴P 、Q 两点出发后多少秒时,为四边形PBCQ 的面积为36㎝2?⑵是否存在某一时刻,使PBCQ 为正方形,若存在,求出该时刻,若不存在说明理由.QDCPBA22.(1)如图,等腰梯形ABCD 中,A D ∥ BC ,E 是底BC 的中点,EF ∥CD 交BD 于F ,EG ∥AB 交AC 于G ,求证:EF+EG=AB .(2)如图,若E 为BC 上任一点(中点除外)其他条件不变,上述结论还成立吗?若成立,请给出证明;若不成立,请说明理由.GFEDCBA。
一、选择题1.如图,ABCD 的对角线AC 、BD 交于点O ,AE 平分BAD 交BC 于点E ,且ADC 60∠=,12AB BC =,连接OE .下列结论:①AE CE >;②ABC S AB AC =⋅;③ABE AOE S S =;④14OE BC =;成立的个数有( )A .1个B .2个C .3个D .4个2.已知如图:为估计池塘的宽度BC ,在池塘的一侧取一点A ,再分别取AB 、AC 的中点D 、E ,测得DE 的长度为20米,则池塘的宽BC 的长为( )A .30米B .60米C .40米D .25米 3.如图,在□ABCD 中,AB=5,BC=6,点O 是AC 的中点,OE ⊥AC 交边AD 于点E ,则△CDE 的周长为等于( )A .5.5B .8C .11D .224.把边长相等的正五边形ABCDE 和正方形ABFG ,按照如图所示的方式叠合在一起,连结AD ,则∠DAG =( )A .18°B .20°C .28°D .30°5.如图,下面不能判定四边形ABCD 是平行四边形的是( )A .AB //CD,AB CD =B .,AB CD AD BC ==C .B DAB 180,AB CD ︒∠+∠==D .B D,BCA DAC ∠=∠∠=∠6.如图,下列哪组条件不能判定四边形ABCD 是平行四边形( )A .AB ∥CD ,AB =CDB .AB ∥CD ,AD ∥BC C .OA =OC ,OB =OD D .AB ∥CD ,AD =BC7.如图,在平行四边形ABCD 中,EF 过两条对角线的交点O ,若1,7,3AB BC OE ===则四边形EFCD 的周长是( )A .17B .14C .11D .108.如图,在△ABC 中,∠ACB=90°,分别以点A 和点C 为圆心,以相同的长(大于12AC )为半径作弧,两弧相交于点M 和点N ,作直线MN 交AB 于点D ,交AC 于点E ,连接CD ,下列结论错误的是( )A .AD=CDB .∠A=∠DCEC .∠ADE=∠DCBD .∠A=2∠DCB 9.已知长方形的长和宽分别为a 和b ,其周长为4,则222a ab b ++的值为( ) A .2 B .4 C .8 D .16 10.如图,在四边形ABCD 中,90,32,7A AB AD ︒∠===,M N 分别为线段,DM MN的中点,则BC AB上的动点(含端点,但点M不与点B重合),点,E F分别为,EF长度的最大值为( )A.7B.2.5C.5D.3.511.如图,在平行四边形ABCD中,下列结论错误的是()A.∠BDC=∠ABD B.∠DAB=∠DCBC.AD=BC D.AC⊥BD12.正多边形的一个外角的度数为72°,则这个正多边形的边数为()A.4 B.5 C.6 D.7二、填空题13.如图,已知正五边形ABCDE,过点A作CD的平行线,交CB的延长线于点F,点→→→.当AFP为等腰三角形时,则P在正五边形的边上运动,运动路径为A B C DAFP的顶角为______度.14.如果一个多边形所有内角和与外角和共为2520°,那么从这个多边形的一个顶点出发共有_________条对角线15.已知直角坐标系内有四个点A(-1,2),B(3,0),C(1,4),D(x,y),若以A,B,C,D 为顶点的四边形是平行四边形,则D点的坐标为___________________.16.如图,平行四边形ABCD的对角线AC与BD相交于点O,AB⊥AC.若AB=12,AC=10,则BD的长为_____.17.如图,在ABCD 中,E 为边BC 延长线上一点,且2CE BC =,连结AE 、DE .若ADE 的面积为1,则ABE △的面积为____.18.如图,顺次连结△ABC 三边的中点D ,E ,F 得到的三角形面积为S 1,顺次连结CEF △三边的中点M ,G ,H 得到的三角形面积为S 2,顺次连结CGH 三边的中点得到的三角形面积为S 3,设ABC 的面积为64,则S 1+S 2+S 3=_____.19.如图,已知矩形ABCD 中,6cm AB =,8cm BC =,E ,F ,G ,H 分别是AB ,BC ,CD ,DA 的中点,则四边形EFGH 的周长等于_____cm .20.若正多边形的内角和等于720︒,那么它的每一个外角是 __________︒三、解答题21.如图,点E 和点F 是平行四边形ABCD 对角线AC 上的两点,连接DE 、DF 、BE 和BF ,ADE CBF ∠=∠.求证:四边形BEDF 是平行四边形.22.如图,△ABC 和△DEF 关于某点对称(1)在图中画出对称中心O ;(2)连结AF 、CD ,判断四边形ACDF 的形状,并说明理由.23.在ABCD 中,BD 是对角线,AE BD ⊥于点E ,CF BD ⊥于点F .(1)求证:ABE CDF △≌△;(2)试判断四边形AECF 是不是平行四边形,并说明理由.24.如图,ABC 和BDE 都是等腰直角三角形,90ACB DBE ∠=∠=︒,连接CD ,以CA ,CD 为邻边作CAFD ,连接CE ,BF .(1)如图1,当D 在BC 边上时,请直接写出CE 与BF 的关系;(2)如图2,将图1中的BDE 绕点B 顺时针旋转到图2的位置,其他条件不变,(1)中的结论是否成立?若成立,请给予证明;若不存在,请说明理由;(3)若3AC =,2BD =,将图1中的BDE 绕点B 顺时针旋转一周,当BD 与直线BC 夹角为30°时,请直接写出CE 的值.25.在ABC 中,AB AC =,36BAC ∠=︒,将ABC 绕点A 顺时针旋转一个角度α得到ADE ,点B 、C 的对应点分别是D 、E .(1)如图1,若点E 恰好与点B 重合,DF AB ⊥,垂足为F ,求BDF ∠的大小; (2)如图2,若108α=︒,连接EC 交AB 于点G ,求证:四边形ADEG 是平行四边形.26.如图1,在Rt ABC 中,906060B AC cm A ∠=︒=∠=︒,,,点D 从点C 出发沿CA 方向以4/cm s 的速度向点A 匀速运动,同时点E 从点A 出发沿AB 方向以2/cm s 的速度向点B 匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D E 、运动的时间是t 秒()015t <<.过点D 作DF BC ⊥于点F ,连接DE ,EF . (1)用含t 的代数式表示下列线段:AE = ,DF = ,AD = ;(2)判断线段EF 与AC 的位置关系,并说明理由;(3)如图2,连接AF ,交DE 于点O ,设y 为ADO △与DFO 的周长差,求y 与t 的函数关系式,并求当t 为何值时,ADO △与DFO 的周长相等.(4)是否存在某一时刻t ,使得DEF 为直角三角形?若存在,请直接写出t 值;不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】利用平行四边形的性质可得60ABC ADC ∠=∠=︒,120BAD ∠=︒,利用角平分线的性质证明ABE ∆是等边三角形,然后推出12AE BE BC ==,再结合等腰三角形的性质:等边对等角、三线合一进行推理即可.【详解】 解:四边形ABCD 是平行四边形, 60ABC ADC ∴∠=∠=︒,120BAD ∠=︒,AE ∵平分BAD ∠,60BAE EAD ∴∠=∠=︒ABE ∴∆是等边三角形,AE AB BE ∴==,60AEB ∠=︒, 12AB BC =, 12AE BE BC ∴==, AE CE ∴=,故①错误;可得30EAC ACE ∠=∠=︒90BAC ∴∠=︒,ABCD S AB AC ∴=⋅,故②正确;BE EC =,E ∴为BC 中点,ABE ACE S S ∆∆∴=,AO CO =,1122AOE EOC AEC ABE S S S S ∆∆∆∆∴===, 2ABE AOE S S ∆∆∴=;故③不正确;四边形ABCD 是平行四边形,AC CO ∴=,AE CE =,EO AC ∴⊥,30∠=︒ACE ,12EO EC ∴=, 12EC AB =, 1144OE BC AD ∴==,故④正确;故正确的个数为2个,故选:B.【点睛】此题主要考查了平行四边形的性质,以及等边三角形的判定与性质.注意证得ABE是等边三角形是关键.2.C解析:C【分析】根据三角形中位线定理可得DE=12BC,代入数据可得答案.【详解】解:∵线段AB,AC的中点为D,E,∴DE=12BC,∵DE=20米,∴BC=40米,故选:C.【点睛】此题主要考查了三角形中位线定理,关键是掌握三角形的中位线平行于第三边,并且等于第三边的一半.3.C解析:C【分析】由平行四边形ABCD的对角线相交于点O,OE⊥AC,根据线段垂直平分线的性质,可得AE=CE,继而可得△CDE的周长等于AD+CD,又由平行四边形ABCD的AB+BC=AD+CD=11.【详解】∵四边形ABCD是平行四边形,∴OA=OC,AB=CD,AD=BC,∵AB=5,BC=6,∴AD+CD=11,∵OE⊥AC,OA=OC,∴AE=CE,∴△CDE的周长为:CD+CE+DE=CD+CE+AE=AD+CD=11.故选:C.【点睛】此题考查了平行四边形的性质,关键是根据线段垂直平分线的性质进行分析.此题难度不大,注意掌握数形结合思想的应用.4.A解析:A【分析】利用多边形内角和公式求得∠E的度数,在等腰三角形AED中可求得∠EAD的度数,进而求得∠BAD的度数,再利用正方形的内角得出∠BAG=90°,进而得出∠DAG的度数.【详解】解:∵正五边形ABCDE的内角和为(5﹣2)×180°=540°,∴∠E=∠BAE=1×540°=108°,5又∵EA=ED,∴∠EAD=1×(180°﹣108°)=36°,2∴∠BAD=∠BAE﹣∠EAD=72°,∵正方形GABF的内角∠BAG=90°,∴∠DAG=90°﹣72°=18°,故选:A.【点睛】本题考查正多边形的内角和,掌握多边形内角和公式是解题的关键.5.C解析:C【分析】根据平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形判断即可.【详解】根据平行四边形的判定,A、B、D均符合是平行四边形的条件,C则不能判定是平行四边形.故选C.【点睛】此题主要考查了学生对平行四边形的判定的掌握情况.对于判定定理:“一组对边平行且相等的四边形是平行四边形.”应用时要注意必须是“一组”,而“一组对边平行且另一组对边相等”的四边形不一定是平行四边形.6.D解析:D【分析】平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.【详解】根据平行四边形的判定,A 、B 、C 均符合是平行四边形的条件,D 则不能判定是平行四边形.故选D .【点睛】此题主要考查了学生对平行四边形的判定的掌握情况.对于判定定理:“一组对边平行且相等的四边形是平行四边形.”应用时要注意必须是“一组”,而“一组对边平行且另一组对边相等”的四边形不一定是平行四边形.7.B解析:B【分析】由在平行四边形ABCD 中,EF 过两条对角线的交点O ,易证得AOE COF ∆≅∆,则可得DE CF AD ,26EF OE ,继而求得四边形EFCD 的周长.【详解】 解:四边形ABCD 是平行四边形, //AD BC ∴,OA OC =,1CD AB ==,7AD BC ==EAO FCO ∴∠=∠,在AOE ∆和COF ∆中,EAO FCO OA OCAOE COF ∠=∠=∠=∠⎧⎪⎨⎪⎩, ()AOE COF ASA ∴∆≅∆,AE CF ∴=,3OE OF ==,6EF ∴=,∴四边形EFCD 的周长是:17614CD DE EF CF CD DE AE EF CD AD EF ,故选:B .【点睛】题考查了平行四边形的性质以及全等三角形的判定与性质,熟悉相关性质是解题的关键. 8.D解析:D【分析】根据题意可知DE 是AC 的垂直平分线,由此即可一一判断.【详解】∵DE 是AC 的垂直平分线,∴DA=DC ,AE=EC ,故A 正确,∴DE ∥BC ,∠A=∠DCE ,故B 正确,∴∠ADE=∠CDE=∠DCB ,故C 正确,故选D .【点睛】本题考查作图-基本作图、线段的垂直平分线的性质、等腰三角形的性质,三角形中位线定理等知识,解题的关键是熟练运用这些知识解决问题.9.B解析:B【分析】由题意可以得到a+b 的值,再利用完全平方公式可以得到答案.【详解】解:由题意可得:2(a+b)=4,∴a+b=2,∴()2222224a ab b a b ++=+==, 故选B .【点睛】本题考查长方形周长与完全平方公式的综合应用,灵活应用有关知识求解是解题关键 . 10.B解析:B【分析】连接BD 、ND ,由勾股定理得可得BD=5,由三角形中位线定理可得EF=12DN ,当DN 最长时,EF 长度的最大,即当点N 与点B 重合时,DN 最长,由此即可求得答案.【详解】连接BD 、ND ,由勾股定理得,BD=()()2222732AD AB +=+=5∵点E 、F 分别为DM 、MN 的中点,∴EF=12DN , 当DN 最长时,EF 长度的最大,∴当点N 与点B 重合时,DN 最长,∴EF 长度的最大值为12BD=2.5, 故选B .【点睛】本题考查了勾股定理,三角形中位线定理,正确分析、熟练掌握和灵活运用相关知识是解题的关键.11.D解析:D【分析】根据平行四边形的性质进行判断即可.【详解】∵四边形ABCD是平行四边形,∴AB∥CD,∴∠BDC=∠ABD,故选项A正确;∵四边形ABCD是平行四边形,∴∠DAB=∠DCB,故选项B正确;∵四边形ABCD是平行四边形,∴AD=BC,故选项C正确;由四边形ABCD是平行四边形,不一定得出AC⊥BD,故选D.【点睛】本题主要考查平行四边形的性质,掌握平行四边形的相关知识点是解答本题的关键.12.B解析:B【分析】正多边形的外角和是360°,且正多边形的每个外角相等,因而用360°除以外角的度数,就得到外角和中外角的个数,外角的个数就是多边形的边数.【详解】∵正多边形的外角和是360°,∴360÷72=5,那么它的边数是5.故选B.【点睛】本题考查了多边形的内角与外角.根据正多边形的外角和求多边形的边数是常用的一种方法,需要熟练掌握.二、填空题13.36或72或108【分析】根据题意可以分情况谈论:①当AP=AF;②当PF=FA;③当FA=PF;分别求其顶角的度数;【详解】解:易知正五边形的内角为:;∴∠CBA=108°=∠BAE∴∠ABF=1解析:36或72或108【分析】根据题意可以分情况谈论:①当AP=AF;②当PF=FA;③当FA=PF;分别求其顶角的度数;【详解】 解:易知正五边形的内角为:540=1085︒︒ ; ∴∠CBA=108°=∠BAE ,∴∠ABF=180°-108°=72°, ∠BAF=180108362︒-︒=︒ , ∴∠BFA=180°-72°-36°=72°;∴AB=AF , 若P 在AB 边上,不可能有PF=FA ,①若PA=PF ,则∠PAF=∠PFA=36°,∴顶角为∠APF=180°-36°×2=108°;②若PA=AF ,则P 与B 重合,此时顶角为∠PAF=36°;若P 在BC 边上,连接AC ,易知AC=CF ,不存在PA=AF ;①若PF=FA ,此时顶角为∠ PFA=72°,②若PA=PF ,则P 与C 重合,顶角为36°;若P 在CD 上,不存在等腰三角形;综上:顶角为108°或36°或72°;故答案为:36或72或108;【点睛】本题考查了正多边形的内角和公式和三角形的内角和问题,要注意分类讨论的问题,不要遗漏.14.11【分析】先根据题意求出多边形的边数再根据从n 边形一个顶点出发共有(n-3)条对角线即可解答【详解】设多边形的边数为n 则有(n-2)•180+360=2520解得:n=1414-3=11即从这个多解析:11【分析】先根据题意求出多边形的边数,再根据从n 边形一个顶点出发共有(n-3)条对角线即可解答.【详解】设多边形的边数为n ,则有(n -2)•180+360=2520,解得:n =14,14-3=11,即从这个多边形的一个顶点出发共有11条对角线,故答案为11.【点睛】本题考查了多边形的内角和与外角和、多边形的对角线,得到多边形的边数是解本题的关键.15.(52)(-36)(1-2)【分析】D 的位置分三种情况分析;由平行四边形对边平行关系用平移规律求出对应点坐标【详解】解:根据平移性质可以得到AB 对应DC 所以由BC 的坐标关系可以推出AD 的坐标关系即D解析:(5,2),(-3,6),(1,-2) .【分析】D 的位置分三种情况分析;由平行四边形对边平行关系,用平移规律求出对应点坐标.【详解】解:根据平移性质可以得到AB 对应DC ,所以,由B ,C 的坐标关系可以推出A ,D 的坐标关系,即D(-1-2,2+4),所以D 点的坐标为(-3,6);同理,当AB 与CD 对应时,D 点的坐标为(5,2);当AC 与BD 对应时,D 点的坐标为(1,-2)故答案为:(5,2),(-3,6),(1,-2).【点睛】本题考核知识点:平行四边形和平移.解题关键点:用平移求出点的坐标.16.【分析】利用平行四边形的性质可知AO =5在Rt △ABO 中利用勾股定理可得BO =13即可得出BD =2BO =26【详解】解:∵四边形ABCD 是平行四边形∴BD =2BOAO =OC =AC =5∵AB ⊥AC ∴∠解析:【分析】利用平行四边形的性质可知AO =5,在Rt △ABO 中利用勾股定理可得BO =13,即可得出BD =2BO =26.【详解】解:∵四边形ABCD 是平行四边形,∴BD =2BO ,AO =OC =12AC =5, ∵AB ⊥AC ,∴∠BAC =90°,在Rt △ABO 中,由勾股定理可得:BO 22AO AB 225+1213, ∴BD =2BO =26,故答案为:26.【点睛】本题考查了平行四边形对角线互相平分性质和勾股定理运用,解题关键是熟悉相关性质. 17.3【分析】首先根据平行四边形的性质可得AD=BC 又由可得BE=3BC=3AD 和的高相等即可得出的面积【详解】解:∵∴AD=BCAD ∥BC ∴和的高相等设其高为又∵∴BE=3BC=3AD 又∵∴故答案为3解析:3【分析】首先根据平行四边形的性质,可得AD=BC ,又由2CE BC =,可得BE=3BC=3AD ,ADE 和ABE △的高相等,即可得出ABE △的面积.【详解】解:∵ABCD , ∴AD=BC ,AD ∥BC , ∴ADE 和ABE △的高相等,设其高为h ,又∵2CE BC =,∴BE=3BC=3AD ,又∵1=12ADE S AD h =△,1=2ABE S BE h △ ∴11=3322ABE S BE h AD h =⨯=△ 故答案为3.【点睛】此题主要考查利用平行四边形的性质进行等量转换,即可求得三角形的面积.18.21【分析】根据三角形中位线性质证△ADF ≌△DBE ≌△EFD ≌△FEC 求出S1=S △FEC =S =16S2=S1=4S3=S2=1【详解】解:∵点DEF 分别是△ABC 三边的中点∴AD =DBDF =BC解析:21【分析】根据三角形中位线性质证△ADF ≌△DBE ≌△EFD ≌△FEC ,求出S 1=S △FEC =14S =16,S 2=14S 1=4,S 3=14S 2=1. 【详解】解:∵点D ,E ,F 分别是△ABC 三边的中点,∴AD =DB ,DF =12BC =BE ,DE =12AC =AF , 在△ADF 和△DBE 中,AD DB AF DE BE DF =⎧⎪==⎨⎪⎩,∴△ADF ≌△DBE (SSS ),同理可证,△ADF ≌△DBE ≌△EFD ≌△FEC ,∴S1=S△FEC=14S=16,同理可得,S2=14S1=4,S3=14S2=1,∴S1+S2+S3=16+4+1=21,故答案为:21.【点睛】考核知识点:三角形中位线.理解三角形中位线性质,证三角形全等是解决问题的关键.19.20【分析】连接ACBD根据三角形的中位线求出HGGFEFEH的长再求出四边形EFGH的周长即可【详解】如图连接ACBD四边形ABCD是矩形AC=BD=8cmEFGH分别是ABBCCDDA的中点HG解析:20【分析】连接AC、BD,根据三角形的中位线求出HG,GF,EF,EH的长,再求出四边形EFGH的周长即可.【详解】如图,连接AC、BD,四边形ABCD是矩形,AC=BD=8cm,E、F、G、H分别是AB、BC、CD、DA的中点,HG=EF=12AC=4cm,EH=FG=12BD=4cm,四边形EFGH的周长等于4+4+4+4=16cm.【点睛】本题考查了矩形的性质,三角形的中位线的应用,能求出四边形的各个边的长是解此题的关键,注意:矩形的对角线相等,三角形的中位线平行于第三边,并且等于第三边的一半. 20.60【分析】首先设此多边形为n边形根据题意得:180(n-2)=720即可求得n=6再由多边形的外角和等于360°即可求得答案【详解】解:设此多边形为n边形根据题意得:180(n-2)=720解得:解析:60【分析】首先设此多边形为n边形,根据题意得:180(n-2)=720,即可求得n=6,再由多边形的外角和等于360°,即可求得答案.【详解】解:设此多边形为n边形,根据题意得:180(n-2)=720,解得:n=6,∴这个正多边形的每一个外角等于:360°÷6=60°.故答案为:60°.【点睛】本题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n-2)•180°,外角和等于360°.三、解答题21.证明见详解【分析】证明△ADE≌△CBF(ASA),得DE=BF,∠AED=∠CFB,则∠DEF=∠BFE,证出DE∥BF,即可得出四边形BEDF是平行四边形.【详解】解:证明:∵四边形ABCD为平行四边形,∴AD=BC,AD∥BC,∴∠DAE=∠BCF,在△ADE和△CBF中,ADE CBF AD CBDAE BCF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADE≌△CBF(ASA),∴DE=BF,∠AED=∠CFB,∴∠DEF=∠BFE,∴DE∥BF,∴四边形BEDF是平行四边形.【点睛】本题主要考查平行四边形的性质和判定、全等三角形的判定与性质等知识,熟练掌握平行四边形的判定与性质,证明三角形全等是解题的关键.22.(1)见解析;(2)平行四边形,理由见解析【分析】(1)根据中心对称的性质,连接对应点AD、CF,交点即为旋转中心;(2)根据旋转的性质,对应点的连线段互相平分,再根据对角线互相平分的四边形是平行四边形证明.【详解】解:(1)对称中心O 如图所示;(2)∵A 与F ,C 与D 是对应点,∴AO =DO ,CO =FO ,∴四边形ACDF 是平行四边形.【点睛】本题考查了利用旋转变换作图,熟练掌握旋转的性质是解题的关键.23.(1)见解析;(2)是,理由见解析【分析】(1)根据平行四边形的性质,可得AB 与CD 的关系,根据平行线的性质,可得∠ABE =∠CDF ,根据AAS ,可得答案;(2)根据平行线的判定,可得AE 与CF 的关系,根据全等三角形的判定与性质,可得AE 与CF 的大小关系,根据平行四边形的判定,可得答案.【详解】解:(1)△ABE ≌△CDF ,理由如下:∵AE ⊥BD 于点E ,CF ⊥BD 于点F ,∴∠AEB =∠CFD =90°.∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD ,∴∠ABE =∠CDF ,在△ABE 与△DCF 中,ABE CDF AEB CFD AB CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△CDF (AAS );(2)四边形AECF 是平行四边形.理由如下:∵△ABE ≌△CDF (AAS ),∴AE =CF ,∵AE ⊥BD 于点E ,CF ⊥BD 于点F ,∴AE//CF ,∴四边形AECF 是平行四边形.【点睛】本题考查了平行四边形的判定与性质,全等三角形的判定与性质,平行四边形的判定,熟记平行四边形的判定与性质是解题关键.24.(1)CE BF =,CE BF ⊥;(2)成立,证明见解析;(3719【分析】(1)证明△BEC ≌△DBF (SAS ),由全等三角形的性质得出CE=BF ,∠BCE=∠DFB ,则可得到结论;(2)延长FD 交BC 于点G ,证明△CBE ≌△△FDB (SAS ),由全等三角形的性质得出CE=BF ,∠ECB=∠BFG ,则可得出结论;(3)分两种情况画出图形,由勾股定理可求出答案;【详解】(1)CE BF =,CE BF ⊥;如图,设CE 与BF 相交于点M ,∵△ABC 和△BDE 均为等腰直角三角形,∠ACB=∠DBE=90°,∴AC=BC ,DE=DB ,∵四边形CAFD 是平行四边形,∴CA=DF=BC ,CA ∥DF ,∠ACB=∠FDB ,∴∠CBE=∠FDB=90°,∴△BEC ≌△DBF (SAS ),∴CE=BF ,∠BCE=∠DFB ,∵∠DFB+∠DBF=90°,∴∠BCE+∠DBF==90°,∴∠CMB=90°,∴CE BF ⊥.(2)成立证明:如图,延长FD 交BC 于点G .四边形ACDF 是平行四边形,//AC FD ∴,AC FD =,90DGB ACB ∴∠=∠=︒,FDB DGB DBG ∴∠=∠+∠,90FDB DBG ∴∠=︒+∠,90DBE ∠=︒,90CBE DBG ∴∠=︒+∠,FDB CBE∠=∠,ABC是等腰直角三角形,∴=,AC BC=,又AC DF∴=,BC DF=,BD BE∴≌,CBE FDB∴=,ECB BFGCE BF∠=∠,BFG FBG∠+∠=︒,90∴∠+∠=︒,ECB FBG90∴⊥.CE BF(3)如(2)题图,由(2)知∠DGB=90°,BF=CE,∵∠DBC=30°,BD=2,∴DG=1,3,∵AC=3,AC=DF,∴FG=DF+DG=3+1=4,∴()2222=+=+=,4319BF FG BG∴19,如图所示,延长CB交DF于点M,∵AC ∥DF ,AC ⊥BC ,∴BM ⊥DF ,∴∠BMF=∠BMD=90°,∵∠MBD=30°,BD=2,∴DM=1,3,∵AC=DF=3,∴FM=DF-DM=3-1=2, ∴22347BF BM FM =+=+,∴7 ,∴CE 719【点睛】本题是四边形几何变换综合题,考查了平行四边形的性质,全等三角形的判定和性质,等腰直角三角形的性质,旋转的性质,勾股定理,熟练掌握旋转的性质是解题的关键; 25.(1)18BDF ∠=︒;(2)见解析.【分析】(1)根据等腰三角形的性质求出∠ACB=72゜,再由旋转的性质得∠DBF=∠ACB=72゜,最后根据直角三角形两锐角互余可得结论;(2)分别证明∠DEC=108゜,∠DAG =108゜,可得EG//AD ,AG//DE ,从而可证四边形ADEG 是平行四边形.【详解】解:(1)∵AB AC =,36BAC ∠=︒∴72ABC ACB ∠=∠=︒∴72ADB ABD ∠∠==︒∵DF AB ⊥,∴90DFB ∠=︒∴∠DBF+∠BDF=90゜∴907218BDF ∠=︒-︒=︒(2)∵108α=︒,即108CAE ∠=︒又AE AC =∴36ACE AEC ∠=∠=︒∵∠AED=∠ADE=72゜∴∠DEC=72゜+36゜=108゜∴∠ADE+∠CED=180゜∴EG//AD∵∠DAE=∠BAC∴∠DAE+∠EAG=∠CAB+∠EAG=108゜∴∠DAG+∠ADE=180゜∴AG//DE∴四边形ADEG 是平行四边形【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了平行四边形的判定.26.(1)2t ,2t ,604t -;(2)//EF AC ,理由见解析;(3)606y t =-,10t =;(4)存在,152t s =或12t s = 【分析】 (1)根据题意直接写出AE ,AD ,在Rt CDF 中写出DF 即可;(2)根据题意可得//DF AE ,再结合(1)中结论,证得四边形ADFE 是平行四边形即可;(3)由(2)可知四边形ADFE 是平行四边形,点O 即为对角线的交点,ADO △与DFO 的周长差即为线段AD 与DF 的差,从而列出表达式再计算即可;(4)分两种情况进行讨论,当DE DF ⊥与DE FE ⊥时,各自进行计算即可.【详解】(1)同时运动t 时间时,2AE t =,4CD t =,604AD AC DC t =-=-,因为30C ∠=︒,DF BC ⊥,则122==DF CD t , 故答案为:2t ,2t ,604t -;(2)//EF AC ,理由如下:由题:DF BC ⊥,AB BC ⊥,则//DF AB , 又E 在AB 上,//DF AE ∴,由(1)可知,随着时间变化,总有2AE DF t ==,即:DF 与AE 是平行且相等的关系,则四边形ADFE 是平行四边形,//EF AC ∴,(3)由(2)可知,四边形ADFE 是平行四边形,连接AF ,点O 即为对角线AF 和DE 的交点,则AO FO =,ADO DFO A C D F C D ∆∆∴-=-,即:6042606y t t t =--=-,若ADO △与DFO 的周长相等,则0y =,即:6060t -=,解得:10t =,606y t ∴=-,当10t =时,ADO △与DFO 的周长相等;(4)①若DE DF ⊥,即90EDF ∠=︒时,//DE BC ,则在Rt ADE △中,30ADE C ∠=∠=︒,24AD AE t ∴==,又604AD t =-,6044t t ∴-=, 解得:152t =;②若DE FE ⊥,即90DEF ∠=︒时,四边形ADFE 是平行四边形,//AD EF ∴,DE AD ∴⊥,ADE ∴为直角三角形,90ADE ∠=︒,60A ∠=︒,30DEA ∴∠=︒,12AD AE ∴=, 即:604t t -=,解得:12t =,综上,当152t s =或12t s =时,DEF 为直角三角形. 【点睛】 本题考查了平行四边形的判定与性质,直角三角形的性质等,熟记基本的性质,灵活分类讨论是解题关键.。
第20章 平行四边形的判定单元测试卷(一)
一、精心选一选(每小题3分,共30分。
请把结果直接填在题中的横线上.只要你理解概念,仔细运算,积极思考,相信你一定会填对的)
1. 在平行四边形ABCD 中,∠A :∠B :∠C :∠D 的值可以是( )
(A )1:2:3:4 (B ) 3:4:4:3 (C ) 3:3:4:4 (D ) 3:4:3:4
2. 下面给出了四边形ABCD中∠A,∠B,∠C,∠D的度数之比,其中能判定四边形ABCD是平行四边形的是 ( )
(A )1:2:3:4 (B )2:2:3:3 (C )2;3:2:3 (D )2:3:3:2 3. 下列叙述中,正确的是 ( )
(A ) 只有一组对边平行的四边形是梯形; (B )矩形可以看作是一种特殊的梯形 (C )梯形有两个内角是锐角,其余两个角是钝角; (D )形的对角互补
4. 小明用两根同样长的竹棒做对角线,制作四边形的风筝,则该风筝的形状一定是( ) (A ) 矩形 (B ) 正方形 (C ) 等腰梯形 (D ) 无法确定
5. 如图1,宽为50 cm 的矩形图案由10个全等的小长方形 成,其中一个小长方形的面积
为 ( ) (A )400 cm 2 (B )500 cm 2 (C ) 600 cm 2 (D )4000 cm 2
6. 将一矩形纸片对折后再对折,如图2(1)、(2),然后沿图(3)中的虚线剪下,得到①、②两部分,将①展开后得到的平面图形一定是( ) (A )平行四边形 (B )矩形 (C )菱形 (D )正方形
7. 如图3,某正方形园地是由边长为1的四个小正方形组成的,现在园地上建一个花园(即每个图中的阴影部分),使花坛面积是园地面积的一半,以下图中的设计不合要求的是 ( )
8. 如图4,矩形ABCD 的边长AB =6,BC =8,将矩形沿EF 折叠,使C 点与A 点重合,则折痕EF 的长是( )
②
图(3)
图(2) ① 图2
图1
图3
(A )7.5 (B ) 6 (C ) 10 (D ) 5
9. 如图5:矩形花园ABCD 中, AB=a
, AD=b ,花园中建有一条矩形道路LMPQ 及一条平行四边形道路RSTK 。
若LM=RS=c ,则花园中可绿化部分的面积为 ( )
(A )bc -ab+ac+b 2 (B )a 2+ab+bc -ac (C )ab -bc -ac+c 2 (D )b 2-bc+a 2-ab
10. 如图6,四边形ABEF 、FECD 都是边长为a 的正方形,图中面积不小于22
a
的三角形共
有 ( )
(A )3个 (B )4个 (C )5个 (D )6个
二、耐心填一填(每小题3分,共30分。
在每题所给出的四个选项中,只有一项是符合题意的.把所选项前的字母代号填在题后的括号内. 相信你一定会选对!)
11.一个平行四边形的两条对角线的长度分别为5和7,则它的一条边长a 的取值范围
是 。
12.如图7,四边形ABCD 是平行四边形,∠D=39°∠CAD=31°,则∠BAC=_______,∠
BCD=_________。
13.如图8,将边长为1的正方形ABCD 绕A 点按逆时针方向旋转30°,至正方形AB ′C ′D ′,
则旋转前后正方形重叠部分的面积是________。
14. 用任意两个全等的直角三角形拼下列图形:①平行四边形, ②矩形, ③菱形,④正方形,⑤等腰三角形, ⑥等边三角形,其中一定能够拼成的图形是_______(只填题号)
15.以线段a=16,b=13为梯形的两底,以c=10为一腰,设另一腰长为d 则的取值范围是 。
16. 如图9,在梯形ABCD 中,DC∥AB,将梯形对折,使点D 、C 分别落在AB 上的G 、H 处,折痕为EF ,若CD=3cm ,EF=4cm ,则AG+BH= cm 。
17. 折叠式防盗窗利用的是四边形的 性。
18. 平行四边形的四个内角平分线围成了一个____________;矩形的四个内角平分线围成了一个__________________;菱形的四个内角平分线____________________________。
19. 如图10,把边长为AD=12cm ,AB=8cm 的矩形沿着AE 为折痕对折使点D 落在BC 上点F 。
20. AD ∥BC.(1)如果延长BA 和CD 相交于E ,则EA = ;(2)
如果作AF ∥DC 交BC 于F ,则⊿ABF 是 三角形,四边形ADCF 是 形;(3)如果作AG ⊥BC 于G ,DH ⊥BC 于H ,则BG = =1
2 ;(4)如
果作DK ∥AC 交BC 的延长线于K ,则DK = = 。
F D C E
G
图6
三、认真答一答(只要你认真思考, 仔细运算, 一定会解答正确的! (每小题10分,共30分)
21.如图11,是某城市部分街道示意图,AF ∥BC ,EC ⊥BC ,BA ∥DE .BD
∥AE
.甲、乙两人同时从B 站乘车到F 站.甲乘1路车.路线是B —A —E —F ;乙乘2路车,路线是B —D —C —F .假设两车速度相同,途中耽误时间相同,那么谁先到达F 站.请说明理由。
22. 某城市因绿化需要,要建造依次有部分互相重叠的四块菱形组成的草地,要求每块菱形的对角线长为6m 和8m ,且菱形的长对角线在同一条对角线上,上个菱形的中心是下一个菱形的顶点,试画出草图,并求出这块草地的占地面积.
23.有一块厚度均匀的任意四边形木块,如图12所示.如何用作图的方法来确定此木块的重心位置?请写出作图步骤.
图11 D 图8
9
图
四、动脑想一想((每小题10分,共30分。
只要你认真探索,仔细思考,你一定会获得成功的!)
24. 如图13,在平行四边形ABCD 中,点E 、F 在对角线AC 上,且AE=CF.请你以F 为一个端点,和图中已标明字母的某一点连成一条新线段,猜想并证明它和图中已有的某一条线段相等(只须证明一组线段相等即可). (1)连结___________ (2)猜想:________=_________.
(3)证明:
25.如图14,在一块长为am 、宽为bm 的长方形草地上,有如图所示的一处处宽皆1m 的小路(即图中阴影部分)
(1图Ⅰ中,草地面积为_____,在Ⅱ图中,草地面积为______,在图Ⅲ中画出有两个折点的小路,并用阴影把它表示出来,则在图Ⅲ中草地面积为_____.
(2小路的形状如图Ⅳ所示,且每一处的水平宽度皆为1m ,则图中草地的面积为_____,请说明理由.
B B 图13
26.如图15,直角坐标平面中,四边形OABC 为矩形,点A 、B 的坐标分别为(3,0),(3,4). 动点M 、N 分别从O 、B 同时出发,以每秒1个单位的速度运动. 其中,点M 沿OA 向终点A 运动,点N 沿BC 向终点C 运动. 过点N 作NP ⊥BC ,交AC 于P ,连结MP. 已知动点运动了x 秒.
(1)P 点的坐标为( , );(用含x 的代数式表示) (2)试求△MPA 面积的最大值,并求此时x 的值.
(3)请你探索:当x 为何值时,△MPA 是一个等腰三角形?你发现了几种情况?请写出你的研究成果.
参考答案:
一、精心选一选1. D 2. C 3. A 4. D 5. C 6. C 7. B
8. A 9. C 10. C
二、耐心填一填11. 1<a<6 12. 110°,141°
13.
3
3
14. ①②⑤ 15. 7<d<13 16. 2cm 17. 不稳定 18. 矩形,正方形,互相垂直平分 图14
19. (18-6 5 )
20.⑴ED ⑵等腰,平行四边⑶HC,(BC-AD) ⑷AB,CD
三、认真答一答21. 同时到达,理由略
22. 4. 图略。
占地面积为78m223略
四、动脑想一想
24.(1)DF (2)DF=BE (3)略
25. (1) ab-b, ab-b, ab-b
(2) ab-b, 小路两边的草地相吻合,构成新的矩形,长为(a-1)m,宽不变.
26.(3-x, 4
3
x),
3
2
,
3
2
.。