电磁场习题7
- 格式:pdf
- 大小:432.74 KB
- 文档页数:7
大学电磁场考试题及答案一、单项选择题(每题2分,共20分)1. 电磁波在真空中的传播速度是:A. 300,000 km/sB. 299,792,458 m/sC. 1,000,000 km/sD. 299,792,458 km/s答案:B2. 麦克斯韦方程组中描述电磁场与电荷和电流关系的方程是:A. 高斯定律B. 法拉第电磁感应定律C. 麦克斯韦-安培定律D. 所有上述方程答案:D3. 以下哪项不是电磁场的基本概念?A. 电场B. 磁场C. 引力场D. 电磁波答案:C4. 根据洛伦兹力定律,一个带电粒子在磁场中的运动受到的力与以下哪个因素无关?A. 粒子的电荷量B. 粒子的速度C. 磁场的强度D. 粒子的质量答案:D5. 电磁波的波长和频率的关系是:A. 波长与频率成正比B. 波长与频率成反比C. 波长与频率无关D. 波长与频率的乘积是常数答案:B6. 以下哪项是电磁波的主要特性?A. 需要介质传播B. 具有粒子性C. 具有波动性D. 以上都是答案:C7. 电磁波在介质中的传播速度比在真空中:A. 快B. 慢C. 相同D. 无法确定答案:B8. 根据电磁波的偏振特性,以下说法正确的是:A. 只有横波可以偏振B. 纵波也可以偏振C. 所有波都可以偏振D. 只有电磁波可以偏振答案:A9. 电磁波的反射和折射遵循的定律是:A. 斯涅尔定律B. 牛顿定律C. 欧姆定律D. 法拉第电磁感应定律答案:A10. 电磁波的干涉现象说明了:A. 电磁波具有粒子性B. 电磁波具有波动性C. 电磁波具有量子性D. 电磁波具有热效应答案:B二、填空题(每空1分,共10分)1. 电磁波的传播不需要________,可以在真空中传播。
答案:介质2. 麦克斯韦方程组由四个基本方程组成,分别是高斯定律、高斯磁定律、法拉第电磁感应定律和________。
答案:麦克斯韦-安培定律3. 根据洛伦兹力定律,一个带电粒子在磁场中受到的力的大小与粒子的电荷量、速度以及磁场强度的乘积成正比,并且与粒子速度和磁场方向的________垂直。
大学电磁场考试题及答案一、选择题(每题2分,共20分)1. 电磁场中,电场与磁场的相互作用遵循以下哪个定律?A. 高斯定律B. 法拉第电磁感应定律C. 安培环路定律D. 洛伦兹力定律答案:D2. 在真空中,电磁波的传播速度是多少?A. 100,000 km/sB. 300,000 km/sC. 1,000,000 km/sD. 3,000,000 km/s答案:B3. 一个点电荷产生的电场强度与距离的平方成什么关系?A. 正比B. 反比C. 对数关系D. 线性关系答案:B4. 以下哪种介质不能支持电磁波的传播?A. 真空B. 空气C. 玻璃D. 金属答案:D5. 麦克斯韦方程组中描述变化电场产生磁场的方程是?A. 高斯定律B. 高斯磁定律C. 法拉第电磁感应定律D. 安培环路定律答案:C6. 一个均匀带电球壳内部的电场强度是多少?A. 零B. 与球壳内的电荷分布有关C. 与球壳外的电荷分布有关D. 与球壳的总电荷量成正比答案:A7. 电磁波的频率和波长之间有什么关系?A. 频率与波长成正比B. 频率与波长成反比C. 频率与波长无关D. 频率越大,波长越小答案:B8. 根据洛伦兹力公式,一个带电粒子在磁场中运动时,其受到的力的方向与什么因素有关?A. 粒子的速度B. 磁场的方向C. 粒子的电荷D. 所有上述因素答案:D9. 电磁波的偏振现象说明电磁波是横波,这是因为?A. 电磁波的振动方向与传播方向垂直B. 电磁波的振动方向与传播方向平行C. 电磁波的传播不需要介质D. 电磁波在真空中传播速度最快答案:A10. 一个闭合电路中的感应电动势遵循以下哪个定律?A. 欧姆定律B. 基尔霍夫电压定律C. 法拉第电磁感应定律D. 安培环路定律答案:C二、填空题(每题2分,共20分)11. 电磁波的传播不需要______,因此它可以在真空中传播。
答案:介质12. 根据麦克斯韦方程组,电荷守恒定律可以表示为:∇⋅ E =______。
电磁场期末考试题及答案一、选择题(每题2分,共20分)1. 电磁波在真空中的传播速度是()。
A. 3×10^8 m/sB. 2×10^8 m/sC. 1×10^8 m/sD. 4×10^8 m/s答案:A2. 电场强度的定义式为E=()。
A. F/qB. F/QC. Q/FD. F/C答案:A3. 磁场强度的定义式为B=()。
A. F/IB. F/iC. F/qD. F/Q答案:B4. 根据麦克斯韦方程组,变化的磁场会产生()。
A. 电场B. 磁场C. 电势D. 电势差答案:A5. 电磁波的波长、频率和波速之间的关系是()。
B. λ = f/cC. λ = c*fD. λ = f^2/c答案:A6. 两个点电荷之间的静电力与它们之间的距离的平方成()。
A. 正比B. 反比C. 无关D. 一次方答案:B7. 根据洛伦兹力公式,带电粒子在磁场中运动时,受到的力与磁场强度的关系是()。
A. 正比C. 无关D. 一次方答案:A8. 电容器的电容与两极板之间的距离成()。
A. 正比B. 反比C. 无关D. 一次方答案:B9. 根据楞次定律,当线圈中的磁通量增加时,感应电流产生的磁场方向是()。
A. 增加磁通量B. 减少磁通量D. 增加或减少磁通量答案:B10. 根据法拉第电磁感应定律,感应电动势的大小与磁通量变化率的关系是()。
A. 正比B. 反比C. 无关D. 一次方答案:A二、填空题(每题2分,共20分)1. 电场中某点的电势为V,将单位正电荷从该点移到无穷远处,电场力做的功为________。
2. 两个点电荷q1和q2之间的静电力常数为k,它们之间的距离为r,则它们之间的静电力大小为________。
答案:k*q1*q2/r^23. 磁场中某点的磁感应强度为B,将单位电流元i放置在该点,电流元与磁场方向垂直时,受到的磁力大小为________。
答案:B*i4. 根据麦克斯韦方程组,变化的电场会产生________。
电磁场练习题一、选择题1. 电磁波是一种:A. 机械波B. 电磁场的传播C. 粒子流D. 声波2. 麦克斯韦方程组中描述电场和磁场变化关系的方程是:A. 高斯定律B. 法拉第电磁感应定律C. 安培定律D. 洛伦兹力定律3. 以下哪个不是电磁波的特性:A. 波长B. 频率C. 质量D. 速度4. 电磁波的传播不需要:A. 介质B. 真空C. 电荷D. 磁场5. 根据洛伦兹力定律,一个带正电的粒子在磁场中运动时,其受力方向:A. 与速度和磁场垂直B. 与速度方向相同C. 与磁场方向相同D. 与速度和磁场平行二、填空题6. 电磁波的传播速度在真空中等于______。
7. 麦克斯韦方程组包括高斯定律、高斯磁定律、法拉第电磁感应定律和______。
8. 当电磁波的频率增加时,其波长会______。
9. 电磁波的频率与波长的关系可以用公式______表示。
10. 在电磁波的传播过程中,电场和磁场的能量是相互______的。
三、简答题11. 简述麦克斯韦方程组的物理意义。
12. 描述电磁波在介质中的传播与在真空中的传播有何不同。
13. 解释为什么电磁波可以穿透某些物质,而不能穿透另一些物质。
四、计算题14. 假设一个电磁波在真空中的频率为10GHz,求其波长。
15. 已知一个带电粒子在均匀磁场中以速度v=3×10^7 m/s运动,磁场强度B=0.5T,求该粒子受到的洛伦兹力的大小和方向。
五、论述题16. 论述电磁波在现代通信技术中的应用及其重要性。
17. 讨论电磁波的产生机制以及它们在自然界和人工环境中的表现形式。
六、实验题18. 设计一个实验来验证电磁波的反射和折射现象。
19. 利用示波器观察电磁波的传播,并记录其波形,分析其特点。
20. 通过实验演示电磁波的干涉和衍射现象,并解释其物理原理。
以上练习题涵盖了电磁场的基本概念、电磁波的性质、麦克斯韦方程组的应用以及电磁波在现代科技中的应用等多个方面,旨在帮助学习者全面理解和掌握电磁场的相关知识。
变化的电磁场作业班级:_____________ 姓名:_____________ 学号:_____________ 日期:__________年_______月_______日 成绩:_____________ 一、选择题 1.如图所示,一矩形金属线框,以速度v从无场空间进入一均匀磁场中,然后又从磁场中出来,到无场空间中.不计线圈的自感,下面哪一条图线正确地表示了线圈中的感应电流对时间的函数关系?(从线圈刚进入磁场时刻开始计时,I 以顺时针方向为正) 2.将形状完全相同的铜环和木环静止放置,并使通过两环面的磁通量随时间的变化率相等,则不计自感时(A) 铜环中有感应电动势,木环中无感应电动势. (B) 铜环中感应电动势大,木环中感应电动势小. (C) 铜环中感应电动势小,木环中感应电动势大.(D) 两环中感应电动势相等. [ ] 3.尺寸相同的铁环与铜环所包围的面积中,通以相同变化率的磁通量,当不计环的自感时,环中(A) 感应电动势不同. (B) 感应电动势相同,感应电流相同. (C) 感应电动势不同,感应电流相同. (D) 感应电动势相同,感应电流不同. [ ] 4.如图所示,矩形区域为均匀稳恒磁场,半圆形闭合导线回路在纸面内绕轴O 作逆时针方向匀角速转动,O 点是圆心且恰好落在磁场的边缘上,半圆形闭合导线完全在磁场外时开始计时.图(A)—(D)的--t 函数图象中哪一条属于半圆形导线回路中产生的感应电动势? [ ] 5.如图所示,M 、N 为水平面内两根平行金属导轨,ab 与cd 为垂直于导轨并可在其上自由滑动的两根直裸导线.外磁场垂直水平面向上.当外力使ab 向右平移时,cd (A) 不动. (B) 转动. (C) 向左移动. (D) 向右移动.[ ] 6.如图所示,直角三角形金属框架abc 放在均匀磁场中,磁场B平行于ab 边,bc的长度为l .当金属框架绕ab 边以匀角速度转动时,abc 回路中的感应电动势和a 、c 两点间的电势差U a – U c 为 (A) =0,U a – U c =221l B . (B) =0,U a – U c =221l B . (C) =2l B ,U a – U c =221l B .(D) =2l B ,U a – U c =221l B . [ ]7.已知一螺绕环的自感系数为L .若将该螺绕环锯成两个半环式的螺线管,则两个半环螺线管的自感系数(A) 都等于L 21. (B) 有一个大于L 21,另一个小于L 21.(C) 都大于L 21. (D) 都小于L 21. [ ]8.用线圈的自感系数L 来表示载流线圈磁场能量的公式221LI W m(A) 只适用于无限长密绕螺线管. (B) 只适用于单匝圆线圈. (C) 只适用于一个匝数很多,且密绕的螺绕环.(D) 适用于自感系数L一定的任意线圈. [ ] 9.有两个长直密绕螺线管,长度及线圈匝数均相同,半径分别为r 1和r 2.管内充满均匀介质,其磁导率分别为1和2.设r 1∶r 2=1∶2,1∶2=2∶1,当将两只螺线管串联在电路中通电稳定后,其自感系数之比L 1∶L 2与磁能之比W m 1∶W m 2分别为: (A) L 1∶L 2=1∶1,W m 1∶W m 2 =1∶1. (B) L 1∶L 2=1∶2,W m 1∶W m 2 =1∶1. (C) L 1∶L 2=1∶2,W m 1∶W m 2 =1∶2.(D) L 1∶L 2=2∶1,W m 1∶W m 2 =2∶1. [ ] 10.真空中一根无限长直细导线上通电流I ,则距导线垂直距离为a 的空间某点处的磁能密度为(A) 200)2(21aI (B)200)2(21a I (C) 20)2(21I a (D) 200)2(21a I [ ] 二、填空题 11.半径为r 的小绝缘圆环,置于半径为R 的大导线圆环中心,二者在同一平面内,且r <<R .在大导线环中通有正弦电流(取逆时针方向为正)I =I 0sin t ,其中、I 0为常数,t 为时间,则任一时刻小线环中感应电动势(取逆时针方向为正)为 _________________________________.12.半径为a 的无限长密绕螺线管,单位长度上的匝数为n ,通以交变电流i =I m sin t ,则围在管外的同轴圆形回路(半径为r )上的感生电动势为 _____________________________.13.桌子上水平放置一个半径r =10 cm 的金属圆环,其电阻R =1.若地球磁场磁感强度的竖直分量为5×10-5 T .那么将环面翻转一次,沿环流过任一横截 面的电荷q =_________________________.14.用导线制成一半径为r =10 cm 的闭合圆形线圈,其电阻R =10 ,均匀磁场垂直于线圈平面.欲使电路中有一稳定的感应电流i = 0.01 A ,B 的变化率应为 d B /d t =_______________________________.15.一自感线圈中,电流强度在 0.002 s 内均匀地由10 A 增加到12 A ,此过程 中线圈内自感电动势为 400 V ,则线圈的自感系数为L =____________. 16.有一根无限长直导线绝缘地紧贴在矩形线圈的中心轴OO ′上,则直导线与矩形线圈间的互感系数为_________________.17.一个中空的螺绕环上每厘米绕有20匝导线,当通以电流I =3 A 时,环中磁 场能量密度w =_____________ .(=4×10-7 N/A 2)18.真空中一根无限长直导线中通有电流I ,则距导线垂直距离为a 的某点的磁 能密度w m =________________.19. 反映电磁场基本性质和规律的积分形式的麦克斯韦方程组为试判断下列结论是包含于或等效于哪一个麦克斯韦方程式的.将你确定的方程式用代号填在相应结论后的空白处.(1) 变化的磁场一定伴随有电场;__________________ (2) 磁感线是无头无尾的;________________________ (3) 电荷总伴随有电场.__________________________ 20.平行板电容器的电容C 为20.0F ,两板上的电压变化率为d U /d t =1.50×105V ·s -1,则该平行板电容器中的位移电流为____________. 三、计算题21.如图所示,在马蹄形磁铁的中间A 点处放置一半径r =1 cm 、匝数N =10匝的小线圈,且线圈平面法线平行于A 点磁感应强度,今将此线圈移到足够远处,在这期间若线圈中流过的总电荷为Q =×10-5 C ,试求A 点处磁感强度是多少?(已知线圈的电阻R =10 ,线圈的自感忽略不计) 22.如图所示,两条平行长直导线和一个矩形导线框共面.且导线框的一个边与长直导线平行,他到两长直导线的距离分别为r 1、r 2.已知两导线中电流都为t I I sin 0 ,其中I 0和为常数,t 为时间.导线框长为a 宽为b ,求导线框中的感应电动势. 23.两根平行无限长直导线相距为d ,载有大小相等方向相反的电流I ,电流变化率d I /d t =>0.一个边长为d 的正方形线圈位于导线平面内与一根导线相距d ,如图所示.求线圈中的感应电动势,并说明线圈中的感应电流是顺时针还是逆时针方向.24.如图所示,一长直导线通有电流I ,其旁共面地放置一匀质金属梯形线框abcda ,已知:da =ab =bc =L ,两斜边与下底边夹角均为60°,d 点与导线相距l .今线框从静止开始自由下落H 高度,且保持线框平面与长直导线始终共面,求: (1) 下落高度为H 的瞬间,线框中的感应电流为多少?(2) 该瞬时线框中电势最高处与电势最低处之间的电势差为多少? 参考答案1.C2.D3.D4.A5.D6.B7.D8.D9.C 10.B11.t I Rr cos 2020 3分12.t a nI m cos 20 3分13.3.14×10-6 C 3分 14.3.18 T/s 3分 15.0.400 H 3分 16.0 3分 17.22.6 J ·m -33分18.)8/(2220a I 3分 19.② 1分 ③ 1分 ① 1分 20.3 A 3分 21.解:由法拉第电磁感应定律可知感应电动势大小ti d dE , tR Ri i d d 1 E 2分而由 t q i d d可得 d 1d d Rt i q Q R q 0d 1d2分RQ 11分所以 的大小为 Wb 105 RQ 2分因 B r 2 ∴ T 10)/(22 N r B 3分22.解:两个载同向电流的长直导线在如图坐标x 处所产生的磁场为)11(2210r r x xB2分 选顺时针方向为线框回路正方向,则)d d (21111210br r b r r r r x xxx Ia BdS 3分)ln(222110r br r b r Ia2分 t r r b r b r a Icos ]))((ln[22121003分23.解:(1) 载流为I 的无限长直导线在与其相距为r 处产生的磁感强度为:)2/(0r I B 2分以顺时针绕向为线圈回路的正方向,与线圈相距较远的导线在线圈中产生的磁通量为:23ln 2d 203201Id r r I d dd与线圈相距较近的导线对线圈的磁通量为:总磁通量 34ln 2021 IdΦΦΦ 4分感应电动势为: 34ln 2d d )34(ln 2d d 00 d t I d t Φ 2分 由 >0和回路正方向为顺时针,所以的绕向为顺时针方向,线圈中的感应电流亦是顺时针方向. 2分24.解:(1)由于线框垂直下落,线框所包围面积内的磁通量无变化,故感应电流I i = 0 2分(2) 设dc 边长为l ′,则由图可见 l = L + 2L cos60°= 2L 取d →c 的方向为dc 边内感应电动势的正向,则l l l gH Iln220 lLl gH I2ln2203分 0 dc E ,说明cd 段内电动势的方向由d →c 2分由于回路内无电流 dc d c cd U U V E llL gH I 2ln 220 2分因为c 点电势最高,d 点电势最低,故:cd V 为电势最高处与电势最低处之间的电势差. 1分希望以上资料对你有所帮助,附励志名言3条:1、上帝说:你要什么便取什么,但是要付出相当的代价。
电磁场考试试题及答案一、选择题1. 下列哪个物理量不是描述电磁场的基本量?A. 电场强度B. 磁感应强度C. 电势D. 磁化强度2. 静电场的本质特征是:A. 磁场产生于电场B. 电场产生于静电荷C. 电场与磁场相互作用D. 电场与静电荷相互作用3. 关于电磁场的能量密度,以下说法正确的是:A. 电磁场的能量密度只与电场强度有关B. 电磁场的能量密度只与磁感应强度有关C. 电磁场的能量密度与电场和磁感应强度都有关D. 电磁场的能量密度与电荷和电流有关4. 电磁波中电场和磁场的相互关系是:A. 电场和磁场以90°的相位差波动B. 电场和磁场以180°的相位差波动C. 电场和磁场处于同相位波动D. 电场和磁场没有固定的相位关系5. 有一根长直导线,通有电流,要使其产生的磁场最强,应将观察点放置在:A. 导线的外侧B. 导线的内侧C. 导线的中央D. 对称轴上二、填空题1. 电荷为2μC的点电荷在距离它10cm处的电场强度大小为______ N/C。
2. 一根长度为50cm的直导线通有5A的电流,它产生的磁感应强度大小为______ T。
三、简答题1. 什么是电磁场?它的基本特征是什么?电磁场是一种通过电荷和电流相互作用而产生的物质场。
它基于电荷和电流的特性,表现为电场和磁场的存在和相互作用。
电磁场的基本特征包括:电场与静电荷相互作用,磁场与电流相互作用,电磁场遵循麦克斯韦方程组等。
2. 电场与磁场有何区别和联系?电场是由电荷产生的一种物质场,描述电荷对其他电荷施加的作用力的特性。
而磁场则是由电流产生的一种物质场,描述电流对其他电流施加的作用力的特性。
电场和磁场之间存在密切的联系,根据麦克斯韦方程组的推导可知,变化的电场会产生磁场,而变化的磁场也会产生电场。
3. 什么是电磁波?其特点是什么?电磁波是由电场和磁场相互耦合在空间中传播的波动现象。
其特点包括:- 电磁波是横波,电场与磁场的振动方向垂直于波传播方向。
工程电磁场工程电磁场试卷(练习题库)1、场2、力线3、通量4、环量5、旋度6、高斯散度定理7、斯托克斯定理8、亥姆霍兹定理9、电流元10、电偶极子11、电位移矢量12、电位函数13、电解质的极化14、极化强度15、静电力16、自感17、镜像法18、坡印廷矢量19、平面电磁波20、均匀平面电磁波21、相位常数22、偏振23、相速24、群速25、色散煤质26、关于有限区域内的矢量场的亥姆霍兹定理,下列说法中正确的是O27、两个载流线圈之间存在互感,对互感没有影响的是O28、以下关于时变电磁场的叙述中,正确的是O29、两个相互平行的导体平板构成一个电容器,与电容无关的是O30、用镜像法求解静电场边值问题时,判断镜像电荷设置是否正确的依据是O31、电磁波的右旋极化和左旋极化分别指电场强度矢量的旋转方向和波的传播方向间满足右手螺旋关系和左手螺旋关系32、一封闭曲面的电场强度通量为零,则在封闭面上的场强一定处处为零。
33、电磁波在界面处的反射系数指反射电磁波的电场强度振幅与入射区域内的总电场强度振幅之比。
34、电磁场矢量的本构关系反映了不同电磁特性的介质对电磁场有着不同的影响。
35、引入电磁场的复数表示,是为了在电磁场的分析过程中简化数学处理, 它并不反映任何实质性的物理考虑。
36、电荷在静电场中沿闭合路线移动一周时,电场力作功一定为零。
则电流元在磁场中沿闭合路线移动一周时,磁场力37、一小电流回路,不论是在产生磁场方面,还是在磁场中受力方面都等效于一个磁偶极子。
38、如果天线上的电流幅值一定,则天线的辐射电阻越大,它的辐射功率就越小。
39、某电磁场是感应电磁场还是辐射电磁场,判断的标准是看其平均能流密度是否为零。
40、静止电荷产生的电场,称之为O场。
它的特点是有散无旋场,不随时间变化。
41、高斯定律说明静电场是一个O场。
42、安培环路定律说明磁场是一个O场。
43、电流密度是一个矢量,它的方向与导体中某点的O的运动方向相同。
大学电磁场考试题及答案一、单项选择题(每题2分,共20分)1. 电场强度的定义式为E=______。
A. F/qB. q/FC. F*qD. F/q^2答案:A2. 电场中某点的电势为零,该点的电场强度一定为零。
(判断对错)A. 对B. 错答案:B3. 电场线与等势面的关系是______。
A. 垂直B. 平行C. 重合D. 相交答案:A4. 电容器的电容与两极板间的距离成反比,与两极板的面积成正比。
(判断对错)A. 对B. 错答案:B5. 电容器充电后断开电源,其电量Q和电压U将如何变化?A. Q增大,U不变B. Q不变,U增大C. Q不变,U减小D. Q减小,U增大答案:B6. 根据安培环路定理,磁场强度B沿闭合回路的线积分等于该回路所包围的总电流的______倍。
A. μ0B. 1/μ0C. μ0ε0D. 1/μ0ε0答案:A7. 磁感应强度B的方向与电流I的方向的关系是______。
A. 垂直B. 平行C. 重合D. 相反答案:A8. 根据右手定则,当电流I沿正z轴方向时,磁场B的方向是______。
A. 正x轴B. 正y轴C. 负x轴D. 负y轴答案:B9. 磁通量Φ的单位是______。
A. TB. WbC. JD. N答案:B10. 根据法拉第电磁感应定律,感应电动势ε与磁通量变化率dΦ/dt的关系是______。
A. ε=-dΦ/dtB. ε=dΦ/dtC. ε=-μ0dΦ/dtD. ε=μ0dΦ/dt答案:B二、填空题(每题2分,共20分)11. 电场强度的定义式为E=______,其中F是试探电荷所受的电场力,q是试探电荷的电量。
答案:F/q12. 电场强度的方向是______,电势的方向是______。
答案:正电荷受力的方向;电势降低的方向13. 电容器的电容C与两极板间的距离d和两极板的面积A的关系为C=______。
答案:εA/d14. 电容器的储能公式为W=______。
《电磁场与电磁波》习题解答 第七章 正弦电磁波求证在无界理想介质内沿任意方向e n (e n 为单位矢量)传播的平面波可写成j()e n r t m βω⋅-=e E E 。
解 E m 为常矢量。
在直角坐标中故 则 而 故可见,已知的()n j e r t m e βω⋅-=E E 满足波动方程 故E 表示沿e n 方向传播的平面波。
试证明:任何椭圆极化波均可分解为两个旋向相反的圆极化波。
:解 表征沿+z 方向传播的椭圆极化波的电场可表示为式中取显然,E 1和E 2分别表示沿+z 方向传播的左旋圆极化波和右旋圆极化波。
在自由空间中,已知电场3(,)10sin()V/my z t t z ωβ=-E e ,试求磁场强度(,)z t H 。
解 以余弦为基准,重新写出已知的电场表示式这是一个沿+z 方向传播的均匀平面波的电场,其初相角为90︒-。
与之相伴的磁场为 均匀平面波的磁场强度H 的振幅为1A/m 3π,以相位常数30rad/m 在空气中沿z -e 方向传播。
当t=0和z=0时,若H 的取向为y -e,试写出E 和H 的表示式,并求出波的频率和波长。
解 以余弦为基准,按题意先写出磁场表示式 与之相伴的电场为由rad/m β=30得波长λ和频率f 分别为 '则磁场和电场分别为一个在空气中沿ye +方向传播的均匀平面波,其磁场强度的瞬时值表示式为(1)求β和在3ms t =时,z H =的位置;(2)写出E 的瞬时表示式。
解(1)781π10πrad /m rad /m 0.105rad /m 31030β==⨯==⨯在t =3ms 时,欲使H z =0,则要求 若取n =0,解得y =。
考虑到波长260mπλβ==,故因此,t =3ms 时,H z =0的位置为(2)电场的瞬时表示式为在自由空间中,某一电磁波的波长为0.2m 。
当该电磁波进入某理想介质后,波长变为0.09m 。
设1r μ=,试求理想介质的相对介电常数r ε以及在该介质中的波速。