2016年中考数学 微测试系列专题16 平行四边形、矩形、菱形、正方形(含解析)北师大版
- 格式:doc
- 大小:1.11 MB
- 文档页数:10
专题16 平行四边形、矩形、菱形、正方形学校:___________姓名:___________班级:___________1.【湖南益阳2015年中考数学试卷】如图,在矩形ABCD中,对角线AC、BD交于点O,以下说法错误的是()A.∠ABC=90°B.AC=BDC.OA=OBD.OA=AD【答案】D【解析】考点:矩形的性质2.【2015届浙江省杭州市5月中考模拟】用直尺和圆规作一个菱形,如图,能得到四边形ABCD是菱形的依据是()A.一组邻边相等的四边形是菱形B.四边相等的四边形是菱形C.对角线互相垂直的平行四边形是菱形D.每条对角线平分一组对角的平行四边形是菱形【答案】B.【解析】试题解析:由图形作法可知:AD=AB=DC=BC ,∴四边形ABCD 是菱形,故选:B .考点:菱形的判定;作图—复杂作图.3.【2015届浙江省金华市外国语学校联考中考模拟】如图,在周长为20cm 的▱ABCD 中,AB ≠AD ,对角线AC 、BD 相交于点O ,OE ⊥BD 交AD 于E ,则△ABE 的周长为( )A .4cmB .6cmC .8cmD .10cm【答案】D .【解析】考点:1. 线段垂直平分线的性质;2.平行四边形的性质.4.【黑龙江绥化2015年中考数学试卷】如图□ABCD 的对角线AC,BD 交于点O ,AE 平分∠BAD 交BC 于点E ,且∠ADC=600,AB=21BC ,连接OE .下列 结论:①∠CAD=300 ② S □ABCD =AB •AC ③ OB=AB ④ OE=41BC 成立的个数有( )A. 1个B. 2个C. 3个D. 4个【答案】C【解析】考点:1.平行四边形的性质;2.等边三角形的判定与性质;3.直角三角形的性质;4.三角形的中位线. 5.【黑龙江牡丹江2015年中考数学试题】如图,四边形ABCD的对角线相交于点O,AO=CO,请添加一个条件(只添一个即可),使四边形ABCD是平行四边形.【答案】BO=DO.【解析】试题分析:条件中已给出AO=CO,因为对角线互相平分的四边形是平行四边形,所以只要添加BO=DO就可以了.考点:平行四边形的判定.6.【黑龙江省黑河市、齐齐哈尔市、大兴安岭2015年中考数学试题】菱形ABCD的对角线AC=6cm,BD=4cm,以AC为边作正方形ACEF,则BF长为.【答案】5cm.【解析】试题分析:∵AC=6cm,BD=4cm,∴AO=12AC=12×6=3cm,BO=12BD=12×4=2m,如图1,正方形ACEF在AC的上方时,过点B作BG⊥AF交FA的延长线于G,BG=AO=3cm,FG=AF+AG=6+2=8cm,在Rt△BFG中,BF,如图2,正方形ACEF在AC的下方时,过点B作BG⊥AF于G,BG=AO=3cm,FG=AF﹣AG=6﹣2=4cm,在Rt△BFG中,BF cm,综上所述,BF长为5cm.故答案为:5cm.考点:1.菱形的性质;2.正方形的性质;3.分类讨论.7.【2015届山东省青岛市李沧区中考一模】如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是.【解析】则AM=BC+CE=1+3=4,FM=EF﹣AB=3﹣1=2,∠AMF=90°,∵四边形ABCD和四边形GCEF是正方形,∴∠ACD=∠GCF=45°,∴∠ACF=90°,∵H 为AF 的中点,∴CH=12AF ,在Rt △AMF 中,由勾股定理得:=∴ 考点:1.正方形的性质;2.直角三角形斜边上的中线;3.勾股定理.8.【2015届河北省邯郸市武安七中中考模拟】如图,依次连接第一个矩形各边的中点得到一个菱形,再依次连接菱形各边的中点得到第二个矩形,按照此方法继续下去.已知第一个矩形的面积为1,则第n 个矩形的面积为 .【答案】11()4n -.【解析】考点:1.矩形的性质;2.菱形的性质.9.【2015届江苏省盐城市亭湖区新洋实验学校中考模拟】如图,将▱ABCD 的边DC 延长到点E ,使CE=DC ,连接AE ,交BC 于点F .(1)求证:△ABF ≌△ECF ;(2)若∠AFC=2∠ABC ,连接AC 、BE .求证:四边形ABEC 是矩形.【答案】(1)【解析】考点:1.矩形的判定;2.全等三角形的判定与性质;3.平行四边形的性质.10.【黑龙江牡丹江2015年中考数学试题】已知四边形ABCD是正方形,等腰直角△AEF的直角顶点E在直线BC上(不与点B,C重合),FM⊥AD,交射线AD于点M.(1)当点E在边BC上,点M在边AD的延长线上时,如图①,求证:AB+BE=AM;(提示:延长MF,交边BC的延长线于点H.)(2)当点E在边CB的延长线上,点M在边AD上时,如图②;当点E在边BC的延长线上,点M在边AD上时,如图③.请分别写出线段AB,BE,AM之间的数量关系,不需要证明;(3)在(1),(2)的条件下,若BE=,∠AFM=15°,则AM= .【答案】(1)参见解析;(2)图②:AB=EB+AM,图③:BE=AM+AB;(3)3.【解析】试题解析:(1)如图①,构建全等三角形,延长MF,交边BC的延长线于点H,∵四边形ABCD是正方形,FM⊥AD,∴∠ABE=90°,∠EHF=90°,四边形ABHM为矩形,∴AM=BH=BE+EH,∵△AEF为等腰直角三角形,∴AE=EF,∠AEB+∠FEH=90°,∵∠EFH+∠FEH=90°,∴∠AEB=∠EFH(同角的余角相等),∴△AB E≌△EHF (AAS),∴AB=EH,∵AM=BH=BE+EH,∴AM=BE+AB,即AB+BE=AM;(2)同上题思路一样,找到全等三角形,利用全等三角形的性质把已知线段进行等量代换,如图②,设BC与MF交于H,∵∠AEB+∠FEH=90°,∠AEB+∠EAB=90°,∴∠FEH=∠E AB(同角的余角相等),又∵AE=FE,∠ABE=∠EHF=90°,∴△ABE≌△EHF(AAS),∴AB=EH=EB+BH,又BH=AM;∴AB=EB+AM.如图③,设BC与MF交于H,∠BAE+∠AEB=90°,∠AEB+∠HEF=90°,∴∠BAE=∠HEF(同角的余角相等),在△ABE与△EHF中,∵∠ABE=∠EHF=90°,AE=EF,∴△ABE≌△EHF (AAS),∴AB=EH,∵BH=AM,∴BE=BH+EH=AM+EH=AM+AB,即BE=AM+AB;(3)根据(1)(2)图形进行分类讨论:如图①,∵∠AFM=15°,∠AFE=45°,∴∠EFM=45°+15°=60°,∴∠EFH=180°-60°=120°,在△EFH中,∵∠FHE=90°,∠EFH=120°,这与三角形内角和定理矛盾,∴此情况不存在;如图②,∵∠AFM=15°,考点:1.矩形与正方形的性质;2.全等三角形的判定与性质;3.等腰直角三角形的性质;4.锐角三角函数.。
第110讲四边形微课平行四边形的性质题一:如图所示,四边形ABCD的对角线AC和BD相交于点O,下列判断正确的是() A.若AO=OC,则四边形ABCD是平行四边形B.若AC=BD,则四边形ABCD是平行四边形C.若AO=BO,CO=DO,则四边形ABCD是平行四边形D.若AO=OC,BO=OD,则四边形ABCD是平行四边形A DOB题二:四边形ABCD中,对角线AC、BD相交于点O,给出下列四个条件:①AD∥BC;②AD=BC;③OA=OC;④OB=OD.从中任选两个条件,能使四边形ABCD为平行四边形的选法有()A.3种B.4种C.5种D.6种题三:在平行四边形ABCD中,对角线AC、BD垂直于点O,且它们的长度分别为6cm和8cm,过点O的直线分别交AD、BC于点E、F,则阴影部分面积的和为_____.教育选轻轻·家长更放心页1教育选轻轻·家长更放心页 2题四:如图,平行四边形ABCD 中,对角线AC 、BD 交于点O ,BC =6,BC 边上的高为4,其中EF 、MN 、GH 交于点O ,则阴影部分的面积为_____.题五:如图,平行四边形ABCD 中,O 是对角线交点,AB =13cm ,BC =5cm ,那么△AOB 周长比△BOC 的周长多_____cm .题六:如图,在平行四边形ABCD 中,EF 经过对角线的交点O ,交AB 于点E ,交CD 于点F .若AB =5,AD =4,OF =1.8,那么四边形BCFE 的周长为_____.教育选轻轻·家长更放心页 3题七:如图,平行四边形ABCD 中,P 是CD 上的一点,且AP 和BP 分别平分∠DAB 和∠C BA ,过点P 作PQ ∥AD ,交AB 于点Q .下列结论不一定成立的是( )A .AP ⊥BPB .AD =PDC .△PBC 是等边三角形D .点Q 是AB 的中点题八:如图,已知四边形ABCD 是平行四边形.(1)若AF ,BE 分别是∠DAB 、∠CBA 的平分线,求证:DE =FC ;(2)已知AD =3,AB =5,求EF 的长.教育选轻轻·家长更放心页 4第111讲 四边形微课 平行四边形的判定题一:如图所示,在四边形ABCD 中,AD ∥BC ,要使四边形ABCD 成为平行四边形还需要条件( )A.AB =DC B .∠1=∠2C .AB =AD D .∠D =∠B题二:如图,在平行四边形ABCD 中,对角线BD 、AC 相交于点O ,E 、F 是BO 上的两点,请你添一个条件_______使四边形AECF 是平行四边形,并说出你的理由.题三:如图,AD ∥BC ,ED ∥BF ,且AE =CF ,求证:四边形ABCD 是平行四边形.教育选轻轻·家长更放心页 5题四:如图,四边形ABCD 中,AD ∥BC ,AE ⊥AD 交BD 于点E ,CF ⊥BC 交BD 于点F ,且AE =CF .求证:四边形ABCD 是平行四边形.题五:如图,平行四边形ABCD 中,对角线AC ,BD 相交于点O ,点E ,F 分别是OB ,OD 的中点,试说明四边形AECF 是平行四边形.题六:如图,在平行四边形ABCD 中,点E 是AD 边的中点,BE 的延长线与CD 的延长线相交于点F ,求证:四边形ABDF 是平行四边形.第112讲四边形微课矩形题一:矩形具有而平行四边形不具有的性质是()A.内角和为360°B.对角线相等C.对角相等D.相邻两角互补题二:矩形具有而平行四边形不具有的性质是()A.对角线互相平分B.对角线相等C.内角和为360°D.对边平行且相等题三:下列关于矩形的说法中正确的是()A.矩形的对角线互相垂直且平分B.矩形的对角线相等且互相平分C.对角线相等的四边形是矩形D.对角线互相平分的四边形是矩形题四:下列说法正确的有()①两条对角线相等的四边形是矩形;②有一组对边相等,一组对角是直角的四边形是矩形;③一个角为直角,两条对角线相等的四边形是矩形;④四个角都相等的四边形是矩形;⑤对角线相等且垂直的四边形是矩形;⑥有一个角是直角的平行四边形是矩形.A.1个B.2个C.3个D.4个教育选轻轻·家长更放心页6教育选轻轻·家长更放心页 7题五:如图,在矩形ABCD 中,AE ⊥BD ,垂足为E ,∠DAE :∠BAE =1:2,试求∠CAE 的度数.题六:如图,已知矩形ABCD 中,AC 与BD 相交于O ,DE 平分∠ADC 交BC 于E ,∠BDE =15°,试求∠COE 的度数.教育选轻轻·家长更放心页 8题七:如图,△ABC 中,AB =AC ,D 是BC 中点,F 是AC 中点,AN 是△ABC 的外角∠MAC 的角平分线,延长DF 交AN 于点E.(1)判断四边形ABDE 的形状,并说明理由;(2)问:线段CE 与线段AD 有什么关系?请说明你的理由.题八:已知:如图,在平行四边形ABCD 中,E 、F 分别为边AB 、CD 的中点,BD 是对角线,AG ∥DB 交CB 的延长线于G .(1)求证:△ADE ≌△CBF ;(2)若四边形BEDF 是菱形,则四边形AGBD 是什么特殊四边形?并证明你的结论.第113讲四边形微课菱形题一:如图,AC是菱形ABCD的对角线,E、F分别是AB、AC的中点,如果EF=3,那么菱形ABCD的周长是_____.题二:如图,菱形花坛ABCD的边长为6m,∠A=120°,其中由两个正六边形组成的图形部分种花,则种花部分图形的周长为()A.12m B.20mC.22m D.24m题三:能判定一个四边形是菱形的条件是()A.对角线互相平分且相等B.对角线互相垂直且相等C.对角线互相垂直且对角相等D.对角线互相垂直,且一条对角线平分一组对角题四:下列给出的条件中,能识别一个四边形是菱形的是()A.有一组对边平行且相等,有一个角是直角B.两组对边分别相等,且有一组邻角相等C.有一组对边平行,另一组对边相等,且对角线互相垂直D.有一组对边平行且相等,且有一条对角线平分一个内角教育选轻轻·家长更放心页9题五:红丝带是关注艾滋病防治问题的国际性标志.将宽为1cm的红丝带交叉成60°角重叠在一起(如图),判断重叠四边形是什么特殊四边形?证明你的结论.题六:将平行四边形纸片ABCD按如图方式折叠,使点C与A重合,点D落到D′处,折痕为EF,连接CF,判断四边形AECF是什么特殊四边形?证明你的结论.教育选轻轻·家长更放心页10题七:如图所示,在Rt△ABC中,∠ABC= 90°.将Rt△ABC绕点C顺时针方向旋转60°得到△DEC,点E在AC上,再将Rt△ABC沿着AB所在直线翻转180°得到△ABF,连接AD.求证:四边形AFCD是菱形.题八:Rt△ABC中,∠ACB=90°,过点C的直线m∥AB,D为AB边上一点,过点D作DE⊥BC,交直线m于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由.教育选轻轻·家长更放心页11教育选轻轻·家长更放心页 12第114讲 四边形微课 正方形题一:下列判断中正确的是( )A .四边相等的四边形是正方形B .四角相等的四边形是正方形C .对角线互相垂直的平行四边形是正方形D .对角线互相垂直平分且相等的四边形是正方形 题二:正方形四边中点的连线围成的四边形(最准确的说法)一定是( )A .矩形B .菱形C .正方形D .平行四边形题三:如图,正方形ABCD 中,点E 、F 、H 分别是AB 、BC 、CD 的中点,CE 、DF 交于G ,连接AG 、HG .下列结论:①CE ⊥DF ;②AG =AD ;③∠CHG =∠DAG ;④HG =12AD .其中正确的有( )A .①②B .①②④C .①③④D .①②③④题四:如图,正方形ABCD 的对角线相交于O 点,BE 平分∠ABO 交AO 于E 点,CF ⊥BE 于F 点,交BO 于G 点,连接EG 、OF .下列四个结论:①CE =CB ;②AE 2;③OF =12CG .其中正确的结论只有( )A .①②B .②③教育选轻轻·家长更放心页 13C .①③D .①②③题五:如图,已知点E 为正方形ABCD的边BC 上一点,连接AE ,过点D 作DG ⊥AE ,垂足为G ,延长DG 交AB 于点F .求证:BF =CE .题六:如图,四边形ABCD 是正方形,G 是BC 上任意一点(点G 与B 、C 不重合),AE ⊥DG 于E ,CF ∥AE 交DG 于F .求证:AE =FC +EF .第110讲四边形微课平行四边形的性质题一:D.详解:∵AO=OC,BO=OD,∴四边形的对角线互相平分所以D能判定四边形ABCD是平行四边形.故选D.题二:B.详解:①②组合可根据一组对边平行且相等的四边形是平行四边形判定出四边形ABCD为平行四边形;③④组合可根据对角线互相平分的四边形是平行四边形判定出四边形ABCD为平行四边形;①③可证明△ADO≌△CBO,进而得到AD=CB,可利用一组对边平行且相等的四边形是平行四边形判定出四边形ABCD为平行四边形;①④可证明△ADO≌△CBO,进而得到AD=CB,可利用一组对边平行且相等的四边形是平行四边形判定出四边形ABCD为平行四边形;故选:B.题三:12cm2.详解:∵AC、BD是平行四边形ABCD的对角线,∴OA=OC,∵AD∥BC,∴∠OAE=∠OCF,在△AOE和△COF中,∠OAE=∠OCF,OA=OC,∠AOE=∠COF,∴△AOE≌△COF(ASA),∴△AOE的面积=△COF的面积,教育选轻轻·家长更放心页14∴阴影部分的面积=12平行四边形ABCD的面积,∵对角线AC、BD的长度分别为6cm和8cm,且AC⊥BD,∴平行四边形ABCD的面积=12×6×8=24cm2,∴阴影部分面积的和=12×24=12cm2.题四:12.详解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,AD∥BC,AB∥CD,∴∠OAN=∠OCM,在△AON和△COM中,∠OAN=∠OCM,∠AON=∠COM,OA=OC,∴△AO N≌△COM(AAS),同理:△AOE≌△COF,△BOE≌△DOF,△BOG≌△DOH,∴OG=OH,OM=ON,在△GOM和△HON中,OG=OH,∠GPM=∠HON,OM=ON,∴△GOM≌△HON(SAS),∴S阴影=12S平行四边形ABCD=12×6×4=12.题五:8.详解:∵四边形ABCD为平行四边形,∴OA=OC,OB=OD△AOB的周长为OA+OB+AB;教育选轻轻·家长更放心页15△BOC的周长为OB+OC+BC∴两周长之差为OA+OB+AB-(OB+OC+BC)=AB-BC=13-5=8cm.题六:12.6.详解:∵四边形ABCD是平行四边形,∴BC=AD=4,OA=OC,AB∥CD,∴∠OAE=∠OCF,在△OAE和△OCF中,∠AOE=∠COF,OA=OC,∠OAE=∠OCF,∴△AOE≌△COF(ASA),∴CF=AE,OE=OF=1.8,∴EF=OE+OF=3.6,∴四边形BCFE的周长为:EF+BE+BC+CF=EF+BC+BE+AE=EF+BC+AB=3.6+4+5=12.6.题七:C.详解:A.∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAB+∠CBA=180°,∵AP和BP分别平分∠DAB和∠CBA,∴∠PAB+∠PBA=12(∠DAB+∠CBA)=90°,∴∠APB=90°,即AP⊥BP;故A正确;B.∵AB∥CD,∴∠DPA=∠PAQ,∵∠DAP=∠PAQ,∴∠DAP=∠DPA,∴AD=PD,故B正确;C.同理:PC=BC,但不能证得△PBC是等边三角形.故C错误;D.∵PQ∥AD,∴∠APQ=∠DAP,教育选轻轻·家长更放心页16∵∠DAP=∠PAQ,∴∠PAQ=∠APQ,∴AQ=PQ,同理:PQ=BQ,∴AQ=BQ,即Q是AB的中点,故D正确.故选C.题八:见详解.详解:(1)证明:∵AB∥CD,∴∠DFA=∠FAB,∵AF、BE分别是∠DAB,∠CBA的平分线,∴∠DAF=∠FAB,∴∠DAF=∠DFA,∴DA=DF,同理得出CE=CB,∴DF=EC,∴DF-EF=CE-EF,∴DE=CF;(2)由(1)得:AD=DF,∵AD=3,∴DF=3,同理:CE=3,∵AB=DC=5,∴EF=DF+EC-DC=2BC-DC=3+3-5=1.第111讲四边形微课平行四边形的判定题一:D.详解:A.符合条件AD∥BC,AB=DC,可能是等腰梯形,故本选项错误;B.根据∠1=∠2,推出AD∥BC,不能推出平行四边形,故本选项错误;C.根据AB=AD和AD∥BC不能推出平行四边形,故本选项错误;D.∵AD∥BC,∴∠1=∠2,∵∠B=∠D,∴∠BAC=∠DCA,∴AB∥CD,∴四边形ABCD是平行四边形,故本选项正确.故选D.题二:OE=OF.教育选轻轻·家长更放心页17详解:OE=OF(答案多样,以此为例).理由:∵四边形ABCD为平行四边形,∴OA=OC,∵OE=OF,∴四边形AECF为平行四边形.故答案为:OE=OF.题三:见详解.详解:∵AD∥BC,∴∠EAD=∠FCB,又∵ED∥BF,∴∠FED=∠EFB,∠AED=180°-∠FED,∠CFB=180°-∠EFB,∴∠AED=∠CFB,又已知AE=CF,∴△AED≌△CFB,∴AD=BC,∴四边形ABCD是平行四边形.题四:见详解.详解:∵AE⊥AD,CF⊥BC,∴∠EAD=∠FCB=90°,∵AD∥BC,∴∠ADE=∠CBF,在Rt△AED和Rt△CFB中,∠ADE=∠CBF,∠EAD=∠FCB=90°,AE=CF,∴Rt△AED≌Rt△CFB(AAS),∴AD=BC,∵AD∥BC,∴四边形ABCD是平行四边形.题五:见详解.详解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD.∵点E、F分别是OB、OD的中点,∴OE=OF.∴四边形AECF是平行四边形.教育选轻轻·家长更放心页18题六:见详解.详解:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠ABE=∠BFD,∵点E是AD的中点,∴AE=DE.在△ABE与△DFE中,∠ABE=∠EFD,AE=DE,∠AEB=∠DEF,∴△ABE≌△DFE(ASA),∴AB=DF,∵AB∥DF,∴四边形ABDF为平行四边形.第112讲四边形微课矩形题一:B.详解:A.内角和为360°矩形与平行四边形都具有,故此选项错误;B.对角线相等只有矩形具有,而平行四边形不具有,故此选项正确;C.对角相等矩形与平行四边形都具有,故此选项错误;D.相邻两角互补矩形与平行四边形都具有,故此选项错误.故选B.题二:B.详解:A、矩形、平行四边形的对角线都互相平分,故本选项错误;B、矩形的对角线相等,平行四边形的对角线不相等,故本选项正确;C、矩形、平行四边形的内角和都是360°,故本选项错误;D、矩形、平行四边形的对边都平行且相等,故本选项错误.教育选轻轻·家长更放心页19故选B.题三:B.详解:A.矩形的对角线互相平分,且相等,但不一定互相垂直,本选项错误;B.矩形的对角线相等且互相平分,本选项正确;C.对角线相等的四边形不一定为矩形,例如等腰梯形对角线相等,但不是矩形,本选项错误;D.对角线互相平分的四边形为平行四边形,不一定为矩形,本选项错误.故选B.题四:C.详解:两条对角线相等且相互平分的四边形为矩形,故①③⑤错;有一个角为直角的平行四边形为矩形,故②④⑥正确.故选C.题五:30°.详解:∵∠DAE:∠BAE=1:2,∠DAB=90°,∴∠DAE=30°,∠BAE=60°,∴∠DBA=90°-∠BAE=90°-60°=30°,∵OA=OB,∴∠OAB=∠OBA=30°,∴∠CAE=∠BAE-∠OAB=60°-30°=30°.题六:75°.详解:∵四边形ABCD是矩形,DE平分∠ADC,∴∠CDE=∠CED=45°,∴EC=DC,又∵∠BDE=15°,∴∠CDO=60°,又∵矩形的对角线互相平分且相等,∴OD=OC,∴△OCD是等边三角形,教育选轻轻·家长更放心页20∴∠DCO=60°,∠OCB=90° ∠DCO=30°,∵DE平分∠ADC,∠ECD=90°,∠CDE=∠CED=45°,∴CD=CE=CO,∴∠COE=∠CEO;∴∠COE=(180°-30°)÷2=75°.题七:见详解.详解:(1)四边形ABDE是平行四边形,理由:∵AB=AC,D是BC中点,F是AC中点,∴DF∥AB,∵AB=AC,D是BC中点,∴∠BAD=∠CAD,AD⊥DC,∵AN是△ABC的外角∠MAC的角平分线,∴∠MAE=∠CAE,∴∠NAD=90°,∴AE∥BD,∴四边形ABDE是平行四边形;(2)CE∥AD,CE=AD;理由:∵AN是△ABC外角∠CAM的平分线,∴∠MAE=12∠MAC,∵∠MAC=∠B+∠ACB,∵AB=AC,∴∠B=∠ACB,∴∠MAE=∠B,∴AN∥BC,∵AB=AC,点D为BC中点,∴AD⊥BC,∵CE⊥AN,∴AD∥CE,∴四边形ADCE为平行四边形,∵CE⊥AN,∴∠AEC=90°,∴四边形ADCE为矩形,∴CE∥AD,CE=AD.教育选轻轻·家长更放心页21教育选轻轻·家长更放心页 22题八:见详解.详解:(1)∵四边形ABCD 是平行四边形,∴∠4=∠C ,AD =CB ,AB =CD ,∵点E 、F 分别是AB 、CD 的中点,∴AE =12AB ,CF =12CD .∴AE =CF , 在△AED 与△CBF 中,AD =CB ,∠4=∠C ,AE =CF ,∴△ADE ≌△CBF (SAS),(2)当四边形BEDF 是菱形时,四边形AGBD 是矩形;证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∵AG ∥BD ,∴四边形AGBD 是平行四边形,∵四边形BEDF 是菱形,∴DE =BE ,∵AE =BE ,∴AE =BE =DE ,∴∠1=∠2,∠3=∠4,∵∠1+∠2+∠3+∠4=180°,∴2∠2+2∠3=180°,∴∠2+∠3=90°,即∠ADB =90°,∴四边形AGBD 是矩形.第113讲 四边形微课 菱形题一:24.教育选轻轻·家长更放心页 23详解:∵AC 是菱形ABCD 的对角线,E 、F 分别是AB 、AC 的中点,∴EF 是△ABC 的中位线,∴EF =12BC =3, ∴BC =6,∴菱形ABCD 的周长是4×6=24.题二:B .详解:连接AC ,已知∠A =120°,ABCD 为菱形,则∠B =60°,从而得出△ABC 为正三角形,以△ABC 的顶点所组成的小三角形也是正三角形,所以正六边形的边长是△ABC 边长的13,则种花部分图形共有10条边,所以它的周长为13×6×10=20m ,故选B .题三:C .详解:∵对角线互相垂直平分的四边形是菱形,∴A 、B 、D 都不正确;∵对角相等的四边形是平行四边形,而对角线互相垂直的四边形是菱形,∴C 正确.故选C .题四:D .详解:A .错误,可判定为矩形,而不一定是菱形;B .错误,可判定为矩形,而不一定是菱形;C .错误,可判定为等腰梯形,而不是菱形;D .正确,有一组对边平行且相等可判定为平行四边形,有一条对角线平分一个内角,则可判定有一组邻边相等,而一组邻边相等的平行四边形是菱形.故选D .题五:菱形.详解:如图,过点A作AE⊥BC于E,AF⊥CD于F,因为红丝带宽度相同,∴AB∥CD,AD∥BC,AE=AF,∴四边形ABCD是平行四边形.∵S□ABCD=BC •AE=CD •AF,又AE=AF,∴BC=CD,∴四边形ABCD是菱形.题六:菱形.详解:四边形AECF是菱形.证明:由折叠可知:AE=EC,∠AEF=∠CEF,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠CEF =∠AFE,∴∠AEF =∠AFE,∴AF=AE,∵AE=EC,∴AF=EC,又∵AF∥EC,∴四边形AECF是平行四边形,∵AF=AE,∴平行四边形AECF是菱形.题七:见详解.详解:Rt△DEC是由Rt△ABC绕C点旋转60°得到,∴AC=DC,∠ACB=∠ACD=60°,∴△ACD是等边三角形,∴AD=DC=AC,又∵Rt△ABF是由Rt△ABC沿AB所在直线翻转180°得到,∴AC=AF,∠ABF=∠ABC=90°,教育选轻轻·家长更放心页24∵∠ACB=∠ACD=60°,∴△AFC是等边三角形,∴AF=FC=AC,∴AD=DC=FC=AF,∴四边形AFCD是菱形.题八:见详解.详解:(1)证明:∵直线m∥AB,∴∠ECD=∠ADC,又∵∠ACB=90°,DE⊥BC,∴DE∥AC,∴∠EDC=∠ACD,CD为公共边,∴△EDC≌△ACD,∴CE=AD;(2)当D在AB中点时,四边形BECD是菱形.证明:D是AB中点,由(1)知DE∥AC,∴F为BC中点,即BF=CF,∵直线m∥AB,∴∠ECF=∠DBF,∠BFD=∠CFE,∴△BFD≌△CFE,∴DF=EF,已知DE⊥BC,∴BC和DE垂直且互相平分,故四边形BECD是菱形.第114讲四边形微课正方形题一:D.详解:A错误,四边相等的四边形是菱形;B错误,四角相等的四边形是矩形;C错误,对角线互相垂直的平行四边形是菱形;D正确,对角线互相垂直平分且相等的四边形是正方形;故选D.教育选轻轻·家长更放心页25教育选轻轻·家长更放心页 26题二:C .详解:如图,连接AC 、BD ,交于O ,∵正方形ABCD ,∴AC =BD ,AC ⊥BD ,∵E 是AD 的中点,H 是CD 的中点,F 是AB 的中点,G 是BC 的中点,∴EH ∥AC ,FG ∥AC ,EF ∥BD ,GH ∥BD ,EF =12BD ,EH =12AC , ∴EF =EH ,EF ⊥EH ,四边形EFGH 是平行四边形,∴平行四边形EFGH 是正方形.故选C .题三:D .详解:∵四边形ABCD 是正方形,∴AB =BC =CD =AD ,∠B =∠BCD =90°,∵点E 、F 、H 分别是AB 、BC 、CD 的中点,∴△BCE ≌△CDF ,∴∠ECB =∠CDF ,∵∠BCE +∠ECD =90°,∴∠ECD +∠CDF =90°,∴∠CGD =90°,∴CE ⊥DF ,故①正确; 在Rt △CGD 中,H 是CD 边的中点,∴HG =12CD =12AD ,故④正确; 连接AH ,同理可得:AH ⊥DF ,∵HG =HD =12CD ,∴DK =GK , ∴AH 垂直平分DG ,∴AG =AD ,故②正确;∴∠DAG =2∠DAH ,同理:△ADH ≌△DCF ,教育选轻轻·家长更放心页 27∴∠DAH =∠CDF ,∵GH =DH ,∴∠HDG =∠HGD ,∴∠GHC =∠HDG +∠HGD =2∠CDF ,∴∠CHG =∠DAG ,故③正确;故正确的结论有①②③④.故选D .题四:D .详解:∵四边形ABCD 是正方形,∴∠ABO =∠ACO =∠CBO = 45°,AB =BC ,OA =OB =OC ,BD ⊥AC ,∵BE 平分∠ABO ,∴∠OBE =12∠ABO =22.5°, ∴∠CBE =∠CBO +∠EBO =67.5°,在△BCE 中,∠CEB =180°-∠BCO -∠CBE =180°- 45°-67.5°=67.5°,∴∠CEB =∠CBE ,∴CE =CB ;故①正确;∵OA =OB ,AE =BG ,∴OE =OG ,∵∠AOB =90°,∴△OEG 是等腰直角三角形,∴EG 2,∵∠ECG =∠BCG ,EC =BC ,CG =CG ,∴△ECG ≌△BCG ,∴BG =EG ,∴AE =EG 2;故②正确;∵∠AOB =90°,EF =BF ,∵BE =CG ,∴OF=12BE=12CG.故③正确;故正确的结论有①②③.故选D.题五:见详解.详解:在正方形ABCD中,∠DAF=∠ABE=90°,DA=AB=BC,∵DG⊥AE,∴∠FDA+∠DAG=90°.又∵∠EAB+∠DAG=90°,∴∠FDA=∠EAB.在Rt△DAF与Rt△ABE中,DA=AB,∠FDA=∠EAB,∴Rt△DAF≌Rt△ABE.∴AF=BE.∵AB=BC,∴BF=CE.题六:见详解.详解:∵四边形ABCD是正方形,∴AD=DC,∠ADC=90°,又∵AE⊥DG,CF∥AE,∴∠AED=∠DFC=90°,∴∠EAD+∠ADE=∠FDC+∠ADE=90°,∴∠EAD=∠FDC,∴△AED≌△DFC(AAS),∴AE=DF,ED=FC,∵DF=DE+EF,∴AE=FC+EF.教育选轻轻·家长更放心页28。
专题16 平行四边形、矩形、菱形、正方形学校:___________姓名:___________班级:___________一、选择题:(共4个小题)1.【2015资阳】若顺次连接四边形ABCD四边的中点,得到的图形是一个矩形,则四边形ABCD一定是()A.矩形 B.菱形 C.对角线相等的四边形 D.对角线互相垂直的四边形【答案】D.【解析】【考点定位】中点四边形.2.【2015南充】如图,菱形ABCD的周长为8cm,高AE长为3cm,则对角线AC长和BD长之比为()A.1:2 B.1:3 C.1:2D.1:3【答案】D.【解析】【考点定位】菱形的性质.3.【2015内江】如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形AB CD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为()A.3B.23C.26D.6【答案】B.【解析】试题分析:连接BD,与AC交于点F.∵点B与D关于AC对称,∴PD=PB,∴PD+PE=PB+PE=BE最小.∵正方形ABCD的面积为12,∴AB=23.又∵△ABE是等边三角形,∴BE=AB=23.故所求最小值为23.故选B.【考点定位】1.轴对称-最短路线问题;2.最值问题;3.正方形的性质.4.【2015攀枝花】如图,在菱形ABCD中,AB=BD,点E、F分别是AB、AD上任意的点(不与端点重合),且AE=DF,连接BF与DE相交于点G,连接CG与BD相交于点H.给出如下几个结论:①△AED ≌△DFB ;②S 四边形BCDG =232CG ;③若AF =2DF ,则BG =6GF ;④CG 与BD 一定不垂直;⑤∠BGE 的大小为定值. 其中正确的结论个数为( )A.4 B.3 C.2 D.1【答案】B.【解析】③过点F 作FP ∥AE 于P 点(如图2),∵AF =2FD ,∴FP :AE =DF :DA =1:3,∵AE =DF ,AB =AD ,∴BE =2AE ,∴FP :BE =FP :12AE =1:6,∵FP ∥AE ,∴PF ∥BE ,∴FG :BG =FP :BE =1:6,即BG =6GF ,故本选项正确; ④当点E ,F 分别是AB ,AD 中点时(如图3),由(1)知,△ABD ,△BDC 为等边三角形,∵点E ,F 分别是AB ,AD 中点,∴∠BDE =∠DBG =30°,∴DG =BG ,在△GDC 与△BGC 中,∵DG =BG ,CG =CG ,CD =CB ,∴△GDC ≌△BGC ,∴∠DCG =∠BCG ,∴CH ⊥BD ,即CG ⊥BD ,故本选项错误;⑤∵∠BGE =∠BDG +∠DBF =∠BDG +∠GDF =60°,为定值,故本选项正确;综上所述,正确的结论有①③⑤,共3个,故选B.【考点定位】四边形综合题.二、填空题:(共4个小题)5.【2015成都】如图,在平行四边形ABCD 中,AB =13,AD =4,将平行四边形ABCD 沿AE 翻折后,点B 恰好与点C 重合,则折痕AE 的长为________.【答案】3.【解析】【考点定位】1.翻折变换(折叠问题);2.勾股定理;3.平行四边形的性质.6.【2015凉山州】菱形ABCD 在平面直角坐标系中的位置如图所示,顶点B (2,0),∠DOB =60°,点P 是对角线OC 上一个动点,E (0,﹣1),当EP +BP 最短时,点P 的坐标为 .【答案】(33-,23-).【解析】试题分析:连接ED ,如图,【考点定位】1.菱形的性质;2.坐标与图形性质;3.轴对称-最短路线问题;4.动点型.7.【2015成都】已知菱形1111A B C D 的边长为2,111A B C =60°,对角线11A C ,11B D 相交于点O .以点O 为坐标原点,分别以1OA ,1OB 所在直线为x 轴、y 轴,建立如图所示的直角坐标系.以11B D 为对角线作菱形1212B C D A ∽菱形1111A B C D ,再以22A C 为对角线作菱形2222A B C D ∽菱形1212B C D A ,再以22B D 为对角线作菱形2323B C D A ∽菱形2222A B C D ,…,按此规律继续作下去,在x 轴的正半轴上得到点1A ,2A ,3A ,......,n A ,则点n A 的坐标为________.【答案】(3n-1,0).【解析】【考点定位】1.相似多边形的性质;2.菱形的性质;3.规律型.8.【2015内江】如图,正方形ABCD的边CD在正方形ECGF的边CE上,O是EG的中点,∠EGC的平分线GH过点D,交BE于点H,连接OH,FH,EG与FH交于点M,对于下面四个结论:①GH⊥BE;②HO 12BG;③S正方形ABCD:S正方形ECGF=1:2;④EM:MG=1:(12),其中正确结论的序号为.【答案】①②④.【解析】试题分析:∵四边形ABCD 是正方形,∴BC =DC ,∠BCE =90°,同理可得CE =CG ,∠DCG =90°,在△BCE 和△DCG 中,∵BC =DC ,∠BCE =∠DCG =90°,CE =CG ,∴△BCE ≌△DCG ,∴∠BEC =∠DGC ,∵∠EDH =∠CDG ,∠DGC +∠CDG =90°,∴∠EDH +∠BEC =90°,∴∠EHD =90°,∴GH ⊥BE ,则故①正确;在△BGH 和△EGH 中,∵∠EHG =∠BHG ,HG =HG ,∠EGH =∠BGH ,∴△BGH ≌△EGH ,∴BH =EH ,又∵O 是EG 的中点,∴HO 12BG ,故②正确; 设EC 和OH 相交于点N .设HN =a ,则BC =2a ,设正方形ECGF 的边长是2b ,则NC =b ,CD =2a ,∵OH ∥BC ,∴△DHN ∽△DGC ,∴DN HN DC CG =,即222b a a a b-=,即2220a ab b +-=,解得:(12)a b =-+或(12)a b =--(舍去),则21a b=-,则S 正方形ABCD :S 正方形ECGF =2(21)-=322-,故③错误;∵EF ∥OH ,∴△EFM ∽△OMH ,∴2EM EF b OM OH a b ==+,∴23EM b OE a b =+,3EM b EG a b =+,∴2EM b MG a b =+=(21)2b b -+=21+=1:(21)+.故④正确. 故正确的是①②④.故答案为:①②④.【考点定位】四边形综合题.三、解答题:(共2个小题)9.【2015眉山】如图,在矩形ABCD 中,E 是AB 边的中点,沿EC 对折矩形ABCD ,使B 点落在点P 处,折痕为EC ,连结AP 并延长AP 交CD 于F 点,(1)求证:四边形AECF 为平行四边形;(2)若△AEP 是等边三角形,连结BP ,求证:△APB ≌△EPC ;(3)若矩形ABCD 的边AB =6,BC =4,求△CPF 的面积.【答案】(1)证明见试题解析;(2)证明见试题解析;(3)42 25.【解析】试题分析:(1)由折叠的性质得到BE=PE,EC⊥PB,根据E为AB中点,得到AE=PE,利用等角对等边得到两对角相等,利用外角性质得到∠AEP=2∠EPB,设∠EPB=x,则∠AEP=2x,表示出∠APE,由∠APE+∠EPB得到∠APB为90°,进而得到AF与EC平行,再由AE与FC平行,利用两对边平行的四边形为平行四边形即可得证;(2)∵△AEP为等边三角形,∴∠BAP=∠AEP=60°,AP=AE=EP=EB,∵∠PEC=∠BEC,∴∠P EC=∠BEC=60°,∵∠BAP+∠ABP=90°,∠ABP+∠BEQ=90°,∴∠BAP=∠BEQ,在△ABP和△EBC中,∵∠APB=∠EBC=90°,∠BAP=∠BEQ,AP=EB,∴△ABP≌△EBC(AAS),∵△EBC ≌△EPC,∴△ABP≌△EPC;(3)过P作PM⊥DC,交DC于点M,在Rt△EBC中,EB=3,BC=4,根据勾股定理得:EC=2234+=5,∵S△EBC=12EB•BC=12EC•BQ,∴BQ=345⨯=125,由折叠得:BP=2BQ=245,在Rt△ABP中,AB=6,BP=245,根据勾股定理得:AP=22AB BP-=185,∵四边形AECF为平行四边形,∴AF =EC =5,FC =AE =3,∴PF =1855-=75,∵PM ∥AD ,∴PF PM AF AD =,即7554PM =,解得:PM =2825,则S △PFC =12FC •PM =1283225⨯⨯=4225.【考点定位】1.四边形综合题;2.翻折变换(折叠问题).10.【2015甘孜州】已知E ,F 分别为正方形ABCD 的边BC ,CD 上的点,AF ,DE 相交于点G ,当E ,F 分别为边BC ,CD 的中点时,有:①AF =DE ;②AF ⊥DE 成立.试探究下列问题:(1)如图1,若点E 不是边BC 的中点,F 不是边CD 的中点,且CE =DF ,上述结论①,②是否仍然成立?(请直接回答“成立”或“不成立”),不需要证明)(2)如图2,若点E ,F 分别在CB 的延长线和DC 的延长线上,且CE =DF ,此时,上述结论①,②是否仍然成立?若成立,请写出证明过程,若不成立,请说明理由;(3)如图3,在(2)的基础上,连接AE 和BF ,若点M ,N ,P ,Q 分别为AE ,EF ,FD ,AD 的中点,请判断四边形MNPQ 是“矩形、菱形、正方形”中的哪一种,并证明你的结论.【答案】(1)成立;(2)成立,理由见试题解析;(3)正方形,证明见试题解析.【解析】(3)设MQ,DE分别交AF于点G,O,PQ交DE于点H,因为点M,N,P,Q分别为AE,EF,FD,AD的中点,可得MQ=PN=12DE,PQ=MN=12AF,MQ∥DE,PQ∥AF,然后根据AF=DE,可得四边形MNPQ是菱形,又因为AF⊥DE即可证得四边形MNPQ是正方形.试题解析:(1)上述结论①,②仍然成立,理由是:∵四边形ABCD为正方形,∴AD=DC,∠BCD=∠ADC=90°,在△ADF和△DCE中,∵DF=CE,∠ADC=∠BCD=90°,AD=CD,∴△ADF≌△DCE(SAS),∴AF=DE,∠DAF=∠CDE,∵∠ADG+∠E DC=90°,∴∠ADG+∠DAF=90°,∴∠AGD=90°,即AF⊥DE;(2)上述结论①,②仍然成立,理由是:∵四边形ABCD为正方形,∴AD=DC,∠BCD=∠ADC=90°,在△ADF和△DCE中,∵DF=CE,∠A DC=∠BCD=90°,AD=CD,∴△ADF≌△DCE(SAS),∴AF=DE,∠E=∠F,∵∠ADG+∠EDC=90°,∴∠ADG+∠DAF=90°,∴∠AGD=90°,即AF⊥DE;【考点定位】1.四边形综合题;2.存在型;3.探究型.。
中考数学微测试系列专题16平行四边形、矩形、菱形、正方形苏教版(2)1.【江苏省南京市鼓楼区2015届九年级下学期中考二模考试数学试题】下列命题中假命题是()A、两组对边分别相等的四边形是平行四边形B、两组对角分别相等的四边形是平行四边形C、一组对边平行一组对角相等的四边形是平行四边形D、一组对边平行一组对边相等的四边形是平行四边形D、例如等腰梯形,满足一组对边平行一组对边相等,但它不是平行四边形,所以是个假命题.正确.故选D.【考点定位】命题与定理.2.【江苏省江阴市华士实验中学2015届九年级下学期期中考试数学试题】如图,菱形ABCD中,对角线AC交BD于O,AB=8, E是CD 的中点,则OE的长等于( )A.2B.3C.4D.5【答案】C.【解析】已知菱形ABCD,根据菱形的性质可得AB=BC=8,OB=OD,又因E是CD的中点,所以OE为△DBC的中位线,根据三角形的中位线1定理可得OE=BC=4.故选C.2【考点定位】菱形的性质;三角形的中位线定理.3. 【江苏省常州市2015年中考数学试题】如图,▱ABCD的对角线AC、BD相交于点O,则下列说法一定正确的是()A.AO=ODB.AO⊥OD C.AO=OC D.AO⊥AB【答案】C.【考点定位】平行四边形的性质.4.【江苏省徐州市2015年中考数学试题】如图,菱形中,对角线AC、BD交于点O,E为AD边中点,菱形ABCD的周长为28,则OE的长等于()【考点定位】菱形的性质.5. 【江苏省徐州市市区、铜山县2015届九年级中考模拟数学试题】15.如图,四边形ABCD中,E,F,G,H分别是边AB、BC、CD、DA的中点.若四边形EFGH为菱形,则对角线AC、BD应满足条件.【答案】AC=BD.【考点定位】1.菱形的性质;2.三角形中位线定理.6.【江苏省徐州市市区、铜山县2015届九年级中考模拟数学试题】将两块全等的含30°角的三角尺如图1摆放在一起,设较短直角边为1,如图2,将Rt△BCD沿射线BD方向平移,在平移的过程中,当点B的移动距离为时,四边ABC1D1为矩形;当点B的移动距离为时,四边形ABC1D1为菱形.【答案】,.333【解析】当点B的移动距离为时,∠C1BB1=60°,则∠ABC1=90°,根据有一直角的平行四边形是矩形,可判定四边形ABC1D1为矩形;当点B的移动距离为时,D、B1两点重合,根据对角线互相垂直平分的四边形是菱形,可判定四边形ABC1D1为菱形.333如图:【考点定位】1.菱形的判定;2.矩形的判定;3.平移的性质.7. 【江苏省淮安市2015年中考数学试题】如图,A,B两地被一座小山阻隔,为测量A,B两地之间的距离,在地面上选一点C,连接CA,CB,分别取CA,CB的中点D、E,测得DE的长度为360米,则A、B两地之间的距离是米.【答案】720.【考点定位】1.三角形中位线定理;2.应用题.8.【江苏省无锡市2015年中考数学试题】如图,已知矩形ABCD的对角线长为8cm,E、F、G、H分别是AB、BC、CD、DA的中点,则四边形EFGH的周长等于cm.【答案】16.【解析】根据三角形的中位线定理和矩形对角线相等的性质可证得四边形EFGH是菱形,且故答案为:16.【考点定位】三角形的中位线定理;矩形的性质;菱形的判定及性质.9.【江苏省徐州市市区、铜山县2015届九年级中考模拟数学试题】已知:如图,在平行四边形ABCD中,点E、F在AC上,且AE=CF.求证:四边形BEDF是平行四边形.【答案】证明见解析.【解析】试题分析:根据平行四边形的性质,可得对角线互相平分,根据对角线互相平分的四边形是平行四边形,可得证明结论.试题解析:证明:如图,连接 BD设对角线交于点O.∵四边形ABCD是平行四边形,∴OA=OC,OB=OD.∵AE=CF,OA﹣AE=OC﹣CF,∴OE=OF.∴四边形BEDF是平行四边形.【考点定位】平行四边形的判定与性质.10.【江苏省常州市2015年中考数学试题】如图,在▱ABCD中,∠BCD=120°,分别延长DC、BC到点E,F,使得△BCE和△CDF都是正三角形.(1)求证:AE=AF;(2)求∠EAF的度数.【答案】(1)证明见试题解析;(2)60°.【考点定位】1.全等三角形的判定与性质;2.等边三角形的性质;3.平行四边形的性质.。
矩形、菱形、正方形一、填空题1.矩形的两条对角线的一个交角为60°,两条对角线的长度的和为8cm,则这个矩形的一条较长边为cm.2.边长为5cm的菱形,一条对角线长是6cm,则另一条对角线的长是cm.3.正方形的一条对角线长为2,则它的面积为.4.已知菱形的两对角线长分别为6cm和8cm,则菱形的面积为cm2.二、选择题5.下列命题中,真命题是()A.两条对角线垂直的四边形是菱形B.对角线垂直且相等的四边形是正方形C.两条对角线相等的四边形是矩形D.两条对角线相等的平行四边形是矩形6.平行四边形ABCD中,AC、BD是两条对角线,如果添加一个条件,即可推出平行四边形ABCD是矩形,那么这个条件是()A.AB=BC B.AC=BD C.AC⊥BD D.AB⊥BD7.如图,把矩形ABCD沿EF对折后使两部分重合,若∠1=50°,则∠AEF=()A.110°B.115°C.120°D.130°8.如图,沿虚线EF将平行四边形ABCD剪开,则得到的四边形ABFE是()A.梯形 B.平行四边形C.矩形 D.菱形三、解答题9.如图,菱形的对角线BD,AC的长分别是6和8,求菱形的周长与面积.10.如图,在四边形ABCD中,点E是线段AD上的任意一点(E与A,D不重合),G,F,H分别是BE,BC,CE的中点.(1)证明:四边形EGFH是平行四边形;(2)在(1)的条件下,若EF⊥BC,且EF=BC,证明:平行四边形EGFH是正方形.11.如图,菱形ABCD中,BE⊥AD,BF⊥CD,E、F为垂足,AE=ED,求∠EBF的度数.12.如图,四边形ABCD是矩形,E是AB上一点,且DE=AB,过C作CF⊥DE,垂足为F.(1)猜想:AD与CF的大小关系;(2)请证明上面的结论.13.已知:如图,D是△ABC的BC边上的中点,DE⊥AC,DF⊥AB,垂足分别是E、F,且BF=CE.(1)求证:△ABC是等腰三角形;(2)当∠A=90°时,试判断四边形AFDE是怎样的四边形,证明你的结论.14.如图,在△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的角平分线于点E,交∠BCA的外角平分线于点F.(1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.矩形、菱形、正方形参考答案与试题解析一、填空题1.矩形的两条对角线的一个交角为60°,两条对角线的长度的和为8cm,则这个矩形的一条较长边为2cm.【考点】矩形的性质.【分析】根据矩形的性质推出OA=OB,证出等边△OAB,求出BA,根据勾股定理求出BC即可得到答案.【解答】解:∵四边形ABCD是矩形,∴AC=BD,OA=OC,OD=OB,∴OA=OB,∵∠AOB=60°,∴△AOB是等边三角形,∴OA=OB=AB=AC=2(cm),∵四边形ABCD是矩形,∴AB=CD=2cm,∠ABC=90°,在△ABC中,由勾股定理得:BC===2(cm),∴AD=BC=2(cm).故答案是:2.【点评】本题主要考查对矩形的性质,等边三角形的性质和判定,勾股定理等知识点的理解和掌握,能求出AB的长是解此题的关键.2.边长为5cm的菱形,一条对角线长是6cm,则另一条对角线的长是8 cm.【考点】勾股定理;菱形的性质.【专题】压轴题.【分析】根据菱形的对角线互相垂直平分,得已知对角线的一半是3.根据勾股定理,得要求的对角线的一半是4,则另一条对角线的长是8.【解答】解:在菱形ABCD中,AB=5,AC=6,因为对角线互相垂直平分,所以∠AOB=90°,AO=3,在RT△AOB中,BO==4,∴BD=2BO=8.【点评】注意菱形对角线的性质:菱形的对角线互相垂直平分.熟练运用勾股定理.3.正方形的一条对角线长为2,则它的面积为 2 .【考点】正方形的性质.【专题】计算题.【分析】根据正方形的性质利用勾股定理可求得其边长,从而就不难求得其面积.【解答】解:由题意得,正方形的边长为,故面积为2.故答案为2.【点评】主要考查到正方形的性质和面积的求法.要注意:正方形的对角线和正方形的两条相邻的边构成等腰直角三角形.4.已知菱形的两对角线长分别为6cm和8cm,则菱形的面积为24 cm2.【考点】菱形的性质.【专题】计算题.【分析】根据菱形的面积等于两对角线乘积的一半求得其面积即可.【解答】解:由已知得,菱形的面积等于两对角线乘积的一半即:6×8÷2=24cm2.故答案为:24.【点评】此题主要考查菱形的面积等于两条对角线的积的一半.二、选择题5.下列命题中,真命题是()A.两条对角线垂直的四边形是菱形B.对角线垂直且相等的四边形是正方形C.两条对角线相等的四边形是矩形D.两条对角线相等的平行四边形是矩形【考点】菱形的判定;矩形的判定;正方形的判定.【分析】本题要求熟练掌握平行四边形、菱形、矩形、正方形的性质以及之间的相互联系.【解答】解:A、两条对角线垂直并且相互平分的四边形是菱形,故选项A错误;B、对角线垂直且相等的平行四边形是正方形,故选项B错误;C、两条对角线相等的平行四边形是矩形,故选项C错误;D、根据矩形的判定定理,两条对角线相等的平行四边形是矩形,为真命题,故选项D正确;故选D.【点评】本题考查的是普通概念,熟练掌握基础的东西是深入研究的必要准备.6.平行四边形ABCD中,AC、BD是两条对角线,如果添加一个条件,即可推出平行四边形ABCD是矩形,那么这个条件是()A.AB=BC B.AC=BD C.AC⊥BD D.AB⊥BD【考点】矩形的判定;平行四边形的性质.【专题】证明题;压轴题.【分析】根据对角线相等的平行四边形是矩形判断.【解答】解:A、是邻边相等,可得到平行四边形ABCD是菱形,故不正确;B、是对角线相等,可推出平行四边形ABCD是矩形,故正确;C、是对角线互相垂直,可得到平行四边形ABCD是菱形,故不正确;D、无法判断.故选B.【点评】本题主要考查的是矩形的判定定理.但需要注意的是本题的知识点是关于各个图形的性质以及判定.7.如图,把矩形ABCD沿EF对折后使两部分重合,若∠1=50°,则∠AEF=()A.110°B.115°C.120°D.130°【考点】翻折变换(折叠问题).【专题】压轴题.【分析】根据折叠的性质,对折前后角相等.【解答】解:根据题意得:∠2=∠3,∵∠1+∠2+∠3=180°,∴∠2=(180°﹣50°)÷2=65°,∵四边形ABCD是矩形,∴AD∥BC,∴∠AEF+∠2=180°,∴∠AEF=180°﹣65°=115°.故选B.【点评】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.8.如图,沿虚线EF将平行四边形ABCD剪开,则得到的四边形ABFE是()A.梯形 B.平行四边形C.矩形 D.菱形【考点】剪纸问题.【专题】操作型.【分析】对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.【解答】解:由于EF的位置是不确定的,只能得到所求的四边形的一组对边平行,所以是梯形.故选A.【点评】本题主要考查学生的动手能力及空间想象能力.三、解答题9.如图,菱形的对角线BD,AC的长分别是6和8,求菱形的周长与面积.【考点】菱形的性质.【分析】根据菱形的对角线可以求得菱形ABCD的面积,根据菱形对角线互相垂直平分的性质,可以求得BO=OD,AO=OC,在Rt△AOB中,根据勾股定理可以求得AB的长,即可求菱形ABCD的周长.【解答】解:菱形的对角线BD,AC的长分别是6和8,则菱形的面积为×6×8=24,菱形对角线互相垂直平分,∴BO=OD=3,AO=OC=4,∴AB==5,故菱形的周长为20,答:菱形的周长为20,面积为24.【点评】本题考查了菱形面积的计算,考查了勾股定理在直角三角形中的运用,考查了菱形各边长相等的性质,本题中根据勾股定理计算AB的长是解题的关键.10.如图,在四边形ABCD中,点E是线段AD上的任意一点(E与A,D不重合),G,F,H分别是BE,BC,CE的中点.(1)证明:四边形EGFH是平行四边形;(2)在(1)的条件下,若EF⊥BC,且EF=BC,证明:平行四边形EGFH是正方形.【考点】正方形的判定;三角形中位线定理;平行四边形的判定.【专题】证明题.【分析】通过中位线定理得出GF∥EH且GF=EH,所以四边形EGFH是平行四边形;当添加了条件EF ⊥BC,且EF=BC后,通过对角线相等且互相垂直平分(EF⊥GH,且EF=GH)就可证明是正方形.【解答】证明:(1)∵G,F分别是BE,BC的中点,∴GF∥EC且GF=EC.又∵H是EC的中点,EH=EC,∴GF∥EH且GF=EH.∴四边形EGFH是平行四边形.(2)连接GH,EF.∵G,H分别是BE,EC的中点,∴GH∥BC且GH=BC.又∵EF⊥BC且EF=BC,又∵EF⊥BC,GH是三角形EBC的中位线,∴GH∥BC,∴EF⊥GH,又∵EF=GH.∴平行四边形EGFH是正方形.【点评】主要考查了平行四边形的判定和正方形的性质.正方形对角线的特点是:对角线互相垂直;对角线相等且互相平分;每条对角线平分一组对角.11.如图,菱形ABCD中,BE⊥AD,BF⊥CD,E、F为垂足,AE=ED,求∠EBF的度数.【考点】菱形的性质.【专题】计算题.【分析】首先连接BD,根据菱形的四条边都相等,可得AB=BC=CD=AD;又由BE⊥AD,AE=ED,可得AB=AD=BD,所以∠A=60°,可得∠ADC=120°,即可得∠EBF的度数.【解答】解:连接BD,∵BE⊥AD,AE=ED,∴AB=BD,∵四边形ABCD是菱形,∴AB=BC=CD=AD,AD∥BC,AB∥CD,∴AB=AD=BD,∴∠A=60°,∴∠ADC=120°,∵BE⊥AD,BF⊥CD,∴∠BED=∠BFD=90°,∴∠EBF=60°.【点评】此题考查了菱形的性质:菱形的四条边都相等.还考查了线段垂直平分线的性质.此题比较简单,解题要细心.12.如图,四边形ABCD是矩形,E是AB上一点,且DE=AB,过C作CF⊥DE,垂足为F.(1)猜想:AD与CF的大小关系;(2)请证明上面的结论.【考点】矩形的性质;全等三角形的判定与性质.【专题】探究型.【分析】由全等三角形的判定定理直接可证△ADE≌△FCD,即证AD=CF.【解答】解:(1)AD=CF.(2分)(2)证明:∵四边形ABCD是矩形,∴CD∥AE,AB=CD,∴∠AED=∠FDC,∵DE=AB,∴DE=AB=CD.又∵CF⊥DE,∴∠CFD=∠A=90°.(4分)∴△ADE≌△FCD(AAS).(5分)∴AD=CF.(6分)【点评】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.13.已知:如图,D是△ABC的BC边上的中点,DE⊥AC,DF⊥AB,垂足分别是E、F,且BF=CE.(1)求证:△ABC是等腰三角形;(2)当∠A=90°时,试判断四边形AFDE是怎样的四边形,证明你的结论.【考点】全等三角形的判定与性质;正方形的判定.【专题】几何综合题.【分析】先利用HL判定Rt△BDF≌Rt△CDE,从而得到∠B=∠C,即△ABC是等腰三角形;由已知可证明它是矩形,因为有一组邻边相等即可得到四边形AFDE是正方形.【解答】(1)证明:∵DE⊥AC,DF⊥AB,∴∠BFD=∠CED=90°,又∵,∴Rt△BDF≌Rt△CDE(HL),∴∠B=∠C.∴△ABC是等腰三角形;(2)解:四边形AFDE是正方形.证明:∵∠A=90°,DE⊥AC,DF⊥AB,∴四边形AFDE是矩形,又∵Rt△BDF≌Rt△CDE,∴DF=DE,∴四边形AFDE是正方形.【点评】此题主要考查学生对全等三角形的判定和性质及正方形的判定方法的掌握情况.判别一个四边形为正方形主要根据正方形的概念,途经有两种:①先说明它是矩形,再说明有一组邻边相等;②先说明它是菱形,再说明它有一个角为直角.14.如图,在△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的角平分线于点E,交∠BCA的外角平分线于点F.(1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.【考点】矩形的判定.【专题】几何综合题.【分析】(1)根据平行线性质和角平分线性质,以及由平行线所夹的内错角相等易证.(2)根据矩形的判定方法,即一个角是直角的平行四边形是矩形可证.【解答】(1)证明:∵CE平分∠ACB,∴∠1=∠2,又∵MN∥BC,∴∠1=∠3,∴∠3=∠2,∴EO=CO,同理,FO=CO,∴EO=FO.(2)解:当点O运动到AC的中点时,四边形AECF是矩形.理由:∵EO=FO,点O是AC的中点.∴四边形AECF是平行四边形,∵CF平分∠BCA的外角,∴∠4=∠5,又∵∠1=∠2,∴∠2+∠4=×180°=90°.即∠ECF=90°,∴四边形AECF是矩形.【点评】本题涉及矩形的判定定理,解答此类题的关键是要突破思维定势的障碍,运用发散思维,多方思考,探究问题在不同条件下的不同结论,挖掘它的内在联系,向“纵、横、深、广”拓展,从而寻找出添加的条件和所得的结论.。
中考数学专题训练:矩形、菱形、正方形(附参考答案)1.下列命题正确的是( )A .正方形的对角线相等且互相平分B .对角互补的四边形是平行四边形C .矩形的对角线互相垂直D .一组邻边相等的四边形是菱形2.如图,D ,E ,F 分别是△ABC 各边的中点,则以下说法错误的是( )A .△BDE 和△DCF 的面积相等B .四边形AEDF 是平行四边形C .若AB =BC ,则四边形AEDF 是菱形D .若∠A =90°,则四边形AEDF 是矩形3.如图,在正方形ABCD 中,E ,F 分别是AB ,BC 的中点,CE ,DF 交于点G ,连接AG .下列结论:①CE =DF ;②CE ⊥DF ;③∠AGE =∠CDF .其中正确的结论是( )A .①②B .①③C .②③D .①②③4.如图,平行四边形ABCD 的对角线AC ,BD 相交于点O ,E 为BC 的中点,连接EO 并延长交AD 于点F ,∠ABC =60°,BC =2AB .下列结论:①AB ⊥AC ;②AD =4OE ;③四边形AECF 是菱形;④S △BOE =14S △ABC .其中正确结论的个数是( )A .4B .3C .2D .15.如图,在矩形ABCD中,AB=6 cm,BC=9 cm,点E,F分别在边AB,BC上,AE=2 cm,BD,EF交于点G.若G是EF的中点,则BG的长为______cm.6.如图,在菱形ABCD中,AC,BD为菱形的对角线,∠DBC=60°,BD=10,点F为BC的中点,则EF的长为_____.7.已知四边形ABCD是正方形,点E在边DA的延长线上,连接CE交AB于点G,过点B作BM⊥CE,垂足为点M,BM的延长线交AD于点F,交CD的延长线于点H.(1)如图1,求证:CE=BH;(2)如图2,若AE=AB,连接CF,在不添加任何辅助线情况下,请直接写出图2中的四个三角形(△AEG除外),使写出的每个三角形都与△AEG全等.8.如图,在菱形ABCD中,E,F,G,H分别是AB,BC,CD,AD上的点,且BE =BF=CG=AH.若菱形的面积等于24,BD=8,则EF+GH=_____.9.如图,在矩形ABCD中,点E在DC上,DE=BE,AC与BD相交于点O,BE与AC相交于点F.(1)若BE平分∠CBD,求证:BF⊥AC;(2)找出图中与△OBF相似的三角形,并说明理由;(3)若OF=3,EF=2,求DE的长度.10.(1)如图1,在矩形ABCD中,点E,F分别在边DC,BC上,AE⊥DF,垂足为点G.求证:△ADE∽△DCF.【问题解决】(2)如图2,在正方形ABCD中,点E,F分别在边DC,BC上,AE=DF,延长BC 到点H,使CH=DE,连接DH.求证:∠ADF=∠H.【类比迁移】(3)如图3,在菱形ABCD中,点E,F分别在边DC,BC上,AE=DF=11,DE=8,∠AED=60°,求CF的长.参考答案1.A 2.C 3.A 4.D5.√13 6.5 7.(1)证明略 (2)略8.6解析:如图,连接AC ,交BD 于点O ,∵四边形ABCD 是菱形,BD =8,∴AB =BC =AD =CD ,AC ⊥BD ,AO =OC =12AC ,BO =OD =12BD =4. ∵S 菱形ABCD =12AC ·BD =24,∴AC =6,∴AO =3,∴AB =√AO 2+BO 2=5=AD .∵BE =BF =CG =AH ,∴AE =CF =DH =DG ,∴BE AE =BF CF ,∴EF ∥AC .同理可得GH ∥AC ,设BE =BF =CG =AH =a ,则有DH =5-a ,∵EF ∥AC ,∴△BEF ∽△BAC ,∴BE AB =EF AC ,即a 5=EF 6,∴EF =65a ,同理可得DH DA =GH CA ,即5−a 5=GH 6,∴GH =6-65a ,∴EF +GH =6.9.(1)证明略(2)与△OBF相似的三角形有△ECF,△BAF,理由略(3)DE=3+√1910.(1)证明:∵四边形ABCD是矩形,∴∠C=∠ADE=90°,∴∠CDF+∠DFC=90°.∵AE⊥DF,∴∠DGE=90°,∴∠CDF+∠AED=90°,∴∠AED=∠DFC,∴△ADE∽△DCF.(2)证明:∵四边形ABCD是正方形,∴AD=DC,AD∥BC,∠ADE=∠DCF=90°.∵AE=DF,∴Rt△ADE≌Rt△DCF(HL),∴DE=CF.∵CH=DE,∴CF=CH.∵点H在BC的延长线上,∴∠DCH=∠DCF=90°.又∵DC=DC,∴△DCF≌△DCH(SAS),∴∠DFC=∠H.∵AD∥BC,∴∠ADF=∠DFC,∴∠ADF=∠H.(3)解:如图3,延长BC至点G,使CG=DE=8,连接DG,∵四边形ABCD是菱形,∴AD=DC,AD∥BC,∴∠ADE=∠DCG,∴△ADE≌△DCG(SAS),∴∠DGC=∠AED=60°,AE=DG. ∵AE=DF,∴DG=DF,∴△DFG是等边三角形,∴FG=DF=11.∵CF+CG=FG,∴CF=FG-CG=11-8=3,即CF的长为3.。
2016年中考数学试题分类解析汇编--平行四边形,矩形,菱形,正方形一.选择题1.(2016•益阳)下列判断错误的是(D)A.两组对边分别相等的四边形是平行四边形B.四个内角都相等的四边形是矩形C.四条边都相等的四边形是菱形D.两条对角线垂直且平分的四边形是正方形2.(2016•内江)下列命题中,真命题是(C)A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相平分的四边形是平行四边形D.对角线互相垂直平分的四边形是正方形3.(2015•广东)如图,正方形ABCD的面积为1,则以相邻两边中点连线EF为边正方形EFGH的周长为(B)A.B.2C.+1 D.2+1(第3题)(第4题)(第5题)(第6题)(第7题)4.(2016•陕西)如图,在正方形ABCD中,连接BD,点O是BD的中点,若M、N是边AD上的两点,连接MO、NO,并分别延长交边BC于两点M′、N′,则图中的全等三角形共有(B)A.2对B.3对C.4对D.5对5.(2016•台湾)如图,有一平行四边形ABCD与一正方形CEFG,其中E点在AD上.若∠ECD=35°,∠AEF=15°,则∠B的度数为何?(C)A.50 B.55 C.70 D.75 6.(2016•郴州)如图,在正方形ABCD中,△ABE和△CDF为直角三角形,AEB=∠CFD=90°,AE=CF=5,BE=DF=12,则EF的长是(C)A.7 B.8 C.7D.77.(2016•苏州)矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB上,当△CDE的周长最小时,点E的坐标为(B)A.(3,1)B.(3,)C.(3,)D.(3,2)8.(2016•绥化)如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=4,则四边形OCED的周长为(B)A.4 B.8 C.10 D.12 9.(2016•威海)如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为(D)A.B.C.D.10.(2016•宜宾)如图,点P是矩形ABCD的边AD上的一动点,矩形的两条边AB、BC 的长分别是6和8,则点P到矩形的两条对角线AC和BD的距离之和是(A)A.4.8 B.5 C.6 D.7.2(第8题)(第9题)(第10题)(第11题)(第12题)(第13题)二、填空题11.【滨州市】如图,正方形纸片ABCD的边长为3,点E、F分别在边BC、CD上,将AB、AD分别沿AE、AF折叠,点B、D恰好都落在点G处,已知BE=1,则EF的长为 2.5 .12.(2016·天津市和平区·一模)长为1,宽为a的矩形纸片(<a<1),如图那样折一下,剪下一个边长等于矩形宽度的正方形(称为第一次操作);再把剩下的矩形如图那样折一下,剪下一个边长等于此时矩形宽度的正方形(称为第二次操作);如此反复操作下去,若在第n次操作后,剩下的矩形为正方形,则操作终止.(1)第二次操作时,剪下的正方形的边长为1-a;(2)当n=3时,a的值为33或.(用4含a的式子表示)13.(2016·河大附中·一模)在菱形ABCD中,AB=5,AC=8,点P是AC上的一个动点,过点P作EF垂直于AC交AD于点E,交AB于点F,将△AEF沿EF折叠,使点A落在点A'处,当△A'CD是直角三角形时,AP的长为728或.三、解答题14.【泰山区】如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证:AF=DC;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.15.【沂水县】在正方形ABCD中,BD是一条对角线,点P在CD上(与点C,D不重合),连接AP,平移△ADP,使点D移动到点C,得到△BCQ,过点Q作QM⊥BD于M,连接AM,PM(如图1).(1)判断AM与PM的数量关系与位置关系并加以证明;(2)若点P在线段CD的延长线上,其它条件不变(如图2),(1)中的结论是否仍成立?请说明理由.解:(1)∵直线y=-分别与x轴、y轴交于点A、B,且点A的坐标为(8,0),∴-×8+b=0,解得:b=6;(2)如图1,过点D作DE⊥x轴于点E,则∠AOB=∠DEA=90°,∴∠1+∠2=90°,∠2+∠3=90,∴∠1=∠3,又∵四边形ABCD是正方形,∴AB=DA,∵在△AOB和△DEA中,∴△AOB≌△DEA(AAS),∴OA=DE=8,OB=AE=6,∴OE=OA+AE=8+6=14,∴点D的坐标为(14,8);(3)存在.①如图2,当OM=MB=BN=NO 时,四边形OMBN 为菱形.连接NM ,交OB 于点P ,则NM 与OB 互相垂直平分,∴OP=OB=3,∴当y=3时,-x+6=3,解得:x=4,∴点M 的坐标为(4,3),∴点N 的坐标为(-4,3).②如图3,当OB=BN=NM=MO=6时,四边形BOMN 为菱形.延长NM 交x 轴于点P ,则MP ⊥x 轴.∵点M 在直线y=-x+6上,∴设点M 的坐标为(a ,-a+6)(a >0), 在Rt △OPM 中,OP 2+PM 2=OM 2,即:a 2+(-a+6)2=62,整理得:a 2-9a=0, ∵a >0,∴a-9=0,解得:a=,∴点M 的坐标为(,),∴点N 的坐标为(,). ③如图4,当OB=ON=NM=BM=6时,四边形BONM 为菱形.设NM 交x 轴于点P ,则MP ⊥x 轴.∵点M 在直线y=-x+6上,∴设点M 的坐标为(a ,-a+6)(a >0),在Rt △OPN 中,OP 2+PN 2=ON 2,即:a 2+[6-(-a+6)]2=62,整理得:a 2+2916a =36,解得:a=245,∴点N 的坐标为(245,185-). 综上所述,点N 有三个,分别为(-4,3),(,)和(245,185-).。
矩形、菱形、正方形聚焦考点☆温习理解一、矩形1、矩形的概念有一个角是直角的平行四边形叫做矩形。
2、矩形的性质(1)具有平行四边形的一切性质(2)矩形的四个角都是直角(3)矩形的对角线相等(4)矩形是轴对称图形3、矩形的判定(1)定义:有一个角是直角的平行四边形是矩形(2)定理1:有三个角是直角的四边形是矩形(3)定理2:对角线相等的平行四边形是矩形4、矩形的面积S矩形=长×宽=ab二、菱形1、菱形的概念有一组邻边相等的平行四边形叫做菱形2、菱形的性质(1)具有平行四边形的一切性质(2)菱形的四条边相等(3)菱形的对角线互相垂直,并且每一条对角线平分一组对角(4)菱形是轴对称图形3、菱形的判定(1)定义:有一组邻边相等的平行四边形是菱形(2)定理1:四边都相等的四边形是菱形(3)定理2:对角线互相垂直的平行四边形是菱形4、菱形的面积S 菱形=底边长×高=两条对角线乘积的一半 三、正方形 1、正方形的概念有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。
2、正方形的性质(1)具有平行四边形、矩形、菱形的一切性质 (2)正方形的四个角都是直角,四条边都相等(3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角 (4)正方形是轴对称图形,有4条对称轴(5)正方形的一条对角线把正方形分成两个全等的等腰直角三角形,两条对角线把正方形分成四个全等的小等腰直角三角形(6)正方形的一条对角线上的一点到另一条对角线的两端点的距离相等。
3、正方形的判定(1)判定一个四边形是正方形的主要依据是定义,途径有两种: 先证它是矩形,再证有一组邻边相等。
先证它是菱形,再证有一个角是直角。
(2)判定一个四边形为正方形的一般顺序如下: 先证明它是平行四边形; 再证明它是菱形(或矩形); 最后证明它是矩形(或菱形) 4、正方形的面积设正方形边长为a ,对角线长为b ,S 正方形=222b a名师点睛☆典例分类※考向一:特殊四边形的有关计算典例1:(2018滨州)如图,在矩形ABCD 中,AB =2,BC =4,点E ,F 分别在BC ,CD 上,若AE,∠EAF =45°,则AF 的长为___________. ※考向二:特殊四边形有关推理ABCDEF典例2:(2018·成都,24,4分) 如图,在菱形ABCD 中,tanA=34,M ,N 分别在边AD ,BC 上,将四边形AMNB 沿MN 翻折,使AB 的对应线段EF 经过顶点D ,当EF ⊥AD 时,BNCN 的值为 .※考向三:特殊四边形中的定长对定角模型典例3:(2017•宜昌)正方形ABCD 的边长为1,点O 是BC 边上的一个动点(与,B C 不重合),以O 为顶点在BC 所在直线的上方作90MON ∠=︒.(1)当OM 经过点A 时,①请直接填空:ON (可能,不可能)过D 点;(图1仅供分析)②如图2,在ON 上截取OE OA =,过E 点作EF 垂直于直线BC ,垂足为点F ,册E H C D ⊥于H ,求证:四边形EFCH 为正方形.(2)当OM 不过点A 时,设OM 交边AB 于G ,且1OG =.在ON 上存在点P ,过P 点作PK 垂直于直线BC ,垂足为点K ,使得4PKO OBG S S ∆∆=,连接GP ,求四边形PKBG 的最大面积.※考向四:特殊四边形中的全等与相似模型典例4:(2016•扬州)已知正方形ABCD 的边长为4,一个以点A 为顶点的45°角绕点A 旋转,角的两边分别与边BC 、DC 的延长线交于点E 、F ,连接EF .设CE=a ,CF=b .(1)如图1,当∠EAF 被对角线AC 平分时,求a 、b 的值; (2)当△AEF 是直角三角形时,求a 、b 的值;(3)如图3,探索∠EAF 绕点A 旋转的过程中a 、b 满足的关系式,并说明理由. ※考向五:双正方形及演变典例6:已知正方形ABCD ,P 为射线AB 上的一点,以BP 为边作正方形BPEF ,使点F 在线段CB 的延长线上,连接EA 、EC .(1)如图1,若点P 在线段AB 的延长线上,求证:EA=EC ; (2)若点P 在线段AB 上.①如图2,连接AC ,当P 为AB 的中点时,判断△ACE 的形状,并说明理由; ②如图3,设AB=a ,BP=b ,当EP 平分∠AEC 时,求a :b 及∠AEC 的度数.※考向六:特殊四边形与函数问题典例6:(2018·恩施)如图,已知抛物线交x 轴于A 、B 两点,交y 轴于C 点,A 点坐标为(1,0)-,2OC =,3OB =,点D 为抛物线的顶点. (1)求抛物线的解析式;(2)P 为坐标平面内一点,以B 、C 、D 、P 为顶点的四边形是平行四边形,求P 点坐标;(3)若抛物线上有且仅有三个点1M 、2M 、3M 使得1M BC∆、2M BC∆、3M BC∆的面积均为定值S ,求出定值S 及1M 、2M 、3M 这三个点的坐标.课时作业☆能力提升一、单选题1.(2017•聊城)如图,△ABC 中,DE ∥BC ,EF ∥AB ,要判定四边形DBFE 是菱形,还需要添加的条件是( )A .AB=ACB .AD=BDC .BE ⊥ACD .BE 平分∠ABC2.(2018宿迁)如图,菱形ABCD 的对角线AC ,BD 相交于点O ,点E 为CD 的中点,若菱形ABCD 的周长为16,∠BAD =60°,则△OCE 的面积是( ) A .3 B .2 C .32 D .4OEDBCA3.(2018·上海)己知平行四边形ABCD ,下列条件中,不能判定这个平行四边形为矩形的是( )A .∠A=∠B B .∠A=∠C C .AC=BD D .AB ⊥BC4.(2017•宜宾)如图,在矩形ABCD 中BC =8,CD =6,将△ABE 沿BE 折叠,使点A 恰好落在对角线BD 上F 处,则DE 的长是( )A .3B .524C .5D .1689 5.(2017•安徽)如图,在矩形ABCD 中,AB=5,AD=3,动点P 满足ABCD PAB S S 矩形31=∆,则点P 到A 、B 两点距离之和PA+PB 的最小值为( )A .29B .34C .25D .416.(2018·恩施) 如图3所示,在正方形 ABCD 中,G 为 CD 边中点,连接 AG 并延长交 BC 边的延长线于 E 点,对角线 BD 交 AG 于 F 点,已知 FG =2,则线段 AE 的长度为( ) A .6B . 8C .10D .127.(2017•贵港)如图,在正方形ABCD 中,O 是对角线AC 与BD 的交点,M 是BC 边上的动点(点M 不与B ,C 重合),CN ⊥DM ,CN 与AB 交于点N ,连接OM ,ON ,MN .下列五个结论:①△CNB ≌△DMC ;②△CON ≌△DOM ;③△OMN ∽△OAD ;④222MN CM AN =+;⑤若AB=2,则S △OMN 的最小值是21,其中正确结论的个数是( )A .2B .3C .4D .5二、填空题8.. (2018·湖州)如图,已知菱形ABCD ,对角线AC ,BD 交于点O ,若tan ∠BAC =13,AC=6,则BD 的长是_________.9.(2018·成都)如图,在矩形ABCD 中,按以下步骤作图:①分别以点A 和C 为圆心,以大于21AC 的长为半径作弧,两弧相交于点M 和N ;②作直线MN 交CD 于点E.若DE=2,CE=3,则矩形的对角线AC 的长为.10.(2018·攀枝花)如图,在矩形ABCD 中,AB =4,AD =3,矩形内部有一动点P 满足S △PAB=13S 矩形ABCD ,则点P 到A ,B 两点的距离之和PA +PB 的最小值是______.三、解答题11.(2018·荆州)如图,对折矩形纸片ABCD ,使AB 与DC 重合,得到折痕MN ,将纸片展PCB A D平;再一次折叠,使点D 落到MN 上的点F 处,折痕AP 交MN 于E ;延长PF 交AB 于G.求证:(1)△AFG ≌△AFP ;(2)△APG 为等边三角形. 12.(2018·扬州)如图,在平行四边形ABCD 中,DB =DA ,点F 是AB 的中点,连接DF 并延长,交CB 的延长线于点E ,连接AE . (1)求证:四边形AEBD 是菱形;(2)若DC tan ∠DCB =3,求菱形AEBD 的面积.131.点D 是边AB 上一点(点D 不与A ,B A 1B . (1时,求A 1B 的长;(2)如图2,当点A 1BCD 的形状,并说明理由;(3)当∠BDA 1=. 14.(2017•阜新)在菱形ABCD 中,点E 为对角线BD 上一点,点F ,G 在直线BC 上,且BE =EG ,∠AEF =∠BEG .(1)如图1,求证:△ABE ≌△FGE ;(2)如图2,当∠ABC =120°时,求证:AB =BE +BF ;(3)如图3,当∠ABC =90°,点F 在线段BC 上时,线段AB ,BE ,BF 的数量关系如何?(请直接写出你猜想的结论)15..(2018十堰) 已知正方形ABCD 与正方形 CEFG ,M 是AF 的中点,连接DM ,EM . (1)如图1,点E 在CD 上,点G 在BC 的延长线上,请判断DM ,EM 的数量关系与位置关系,并直接写出结论;(2)如图2,点E 在DC 的延长线上,点G 在BC 上,(1)中结论是否仍然成立?请证明你的结论;PM 1 2 3 B CDA E F N G EAA 1DB AA 1DB C(3)将图1中的正方形CEFG绕点C旋转,使D,E,F三点在一条直线上,若AB=13,CE =5,请画出图形,并直接写出MF的长.16.(2018·江西)在菱形ABCD中,∠ABC=60°,点P是射线BD上一动点,以AP为边向右侧作等边△APE,点E的位置随着点P的位置变化而化.(1)如图1,当点E在菱形ABCD内部或边上时,连接CE,BP与CE的数量关系是________,CE与AD的位置关系是________;(2)当点E在菱形ABCD外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由(选择图2,图3中的一种情况予以证明或说理).(2)如图4,当点P在线段BD的延长线上时,连接BE,若AB=23,BE=219,求正边形ADPE的面积.矩形、菱形、正方形聚焦考点☆温习理解一、矩形1、矩形的概念有一个角是直角的平行四边形叫做矩形。
2016中考数学模拟测试题之矩形菱形中考数学很多考生觉得复习难度大,其实这是因为考生没有掌握好数学知识点,为了加深大家对中考数学知识点的记忆,为此下面为大家带来2016中考数学模拟测试题之矩形菱形,希望有助于大家中考备考。
一、选择题1. (2014上海,第6题4分)如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是()A. △ABD与△ABC的周长相等B. △ABD与△ABC的面积相等C. 菱形的周长等于两条对角线之和的两倍D. 菱形的面积等于两条对角线之积的两倍考点:菱形的性质.分析:分别利用菱形的性质结合各选项进而求出即可.解答:解:A、∵四边形ABCD是菱形,AB=BC=AD,∵AC△ABD与△ABC的周长不相等,故此选项错误;B、∵S△ABD=S平行四边形ABCD,S△ABC=S平行四边形ABCD,△ABD与△ABC的面积相等,故此选项正确;C、菱形的周长与两条对角线之和不存在固定的数量关系,故此选项错误;D、菱形的面积等于两条对角线之积的,故此选项错误;故选:B.点评:此题主要考查了菱形的性质应用,正确把握菱形的性质是解题关键.2. (2014山东枣庄,第7题3分)如图,菱形ABCD的边长为4,过点A、C作对角线AC的垂线,分别交CB和AD的延长线于点E、F,AE=3,则四边形AECF的周长为( )A. 22B. 18C. 14D. 11考点:菱形的性质分析:根据菱形的对角线平分一组对角可得BAC=BCA,再根据等角的余角相等求出BAE=E,根据等角对等边可得BE=AB,然后求出EC,同理可得AF,然后判断出四边形AECF是平行四边形,再根据周长的定义列式计算即可得解.解答:解:在菱形ABCD中,BAC=BCA,∵AEAC,BAC+BAE=BCA+E=90,BAE=E,BE=AB=4,EC=BE+BC=4+4=8,同理可得AF=8,∵AD∥BC,四边形AECF是平行四边形,四边形AECF的周长=2(AE+EC)=2(3+8)=22.故选A.点评:本题考查了菱形的对角线平分一组对角的性质,等角的余角相等的性质,平行四边形的判定与性质,熟记性质并求出EC的长度是解题的关键.3. (2014山东烟台,第6题3分)如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接BO.若DAC=28,则OBC的度数为()A. 28B. 52C. 62D. 72考点:菱形的性质,全等三角形.分析:根据菱形的性质以及AM=CN,利用ASA可得△AMO≌△CNO,可得AO=CO,然后可得BOAC,继而可求得OBC的度数. 解答:∵四边形ABCD为菱形,AB∥CD,AB=BC,MAO=NCO,AMO=CNO,在△AMO和△CNO中,∵,△AMO≌△CNO(ASA),AO=CO,∵AB=BC,BOAC,BOC=90,∵DAC=28,BCA=DAC=28,OBC=90﹣28=62.故选C.点评:本题考查了菱形的性质和全等三角形的判定和性质,注意掌握菱形对边平行以及对角线相互垂直的性质.4.(2014山东聊城,第9题,3分)如图,在矩形ABCD中,边AB的长为3,点E,F分别在AD,BC上,连接BE,DF,EF,BD.若四边形BEDF是菱形,且EF=AE+FC,则边BC的长为()A. 2B. 3C. 6D.考点:矩形的性质;菱形的性质.分析:根据矩形的性质和菱形的性质得ABE=EBD=DBC=30,AB=BO=3,因为四边形BEDF是菱形,所以BE,AE可求出进而可求出BC的长.解答:解:∵四边形ABCD是矩形,A=90,即BABF,∵四边形BEDF是菱形,EFBD,EBO=DBF,AB=BO=3,ABE=EBO,ABE=EBD=DBC=30,BE= =2 ,BF=BE=2 ,∵EF=AE+FC,AE=CF,EO=FOCF=AE= ,BC=BF+CF=3 ,故选B.点评:本题考查了矩形的性质、菱形的性质以及在直角三角形中30角所对的直角边时斜边的一半,解题的关键是求出ABE=EBD=DBC=30.5. (2014浙江杭州,第5题,3分)下列命题中,正确的是()A. 梯形的对角线相等B. 菱形的对角线不相等C. 矩形的对角线不能相互垂直D. 平行四边形的对角线可以互相垂直考点:命题与定理.专题:常规题型.分析:根据等腰梯形的判定与性质对A进行判断;根据菱形的性质对B进行判断;根据矩形的性质对C进行判断;根据平行四边形的性质对D进行判断.解答:解:A、等腰梯形的对角线相等,所以A选项错误;B、菱形的对角线不一定相等,若相等,则菱形变为正方形,所以B 选项错误;C、矩形的对角线不一定相互垂直,若互相垂直,则矩形变为正方形,所以C选项错误;D、平行四边形的对角线可以互相垂直,此时平行四边形变为菱形,所以D选项正确.故选D.点评:本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成如果那么形式;有些命题的正确性是用推理证实的,这样的真命题叫做定理.6.(2014年贵州黔东南10.(4分))如图,在矩形ABCD中,AB=8,BC=16,将矩形ABCD沿EF折叠,使点C与点A重合,则折痕EF的长为()A. 6B. 12C. 2D. 4考点:翻折变换(折叠问题).分析:设BE=x,表示出CE=16﹣x,根据翻折的性质可得AE=CE,然后在Rt△ABE中,利用勾股定理列出方程求出x,再根据翻折的性质可得AEF=CEF,根据两直线平行,内错角相等可得AFE=CEF,然后求出AEF=AFE,根据等角对等边可得AE=AF,过点E作EHAD 于H,可得四边形ABEH是矩形,根据矩形的性质求出EH、AH,然后求出FH,再利用勾股定理列式计算即可得解.解答:解:设BE=x,则CE=BC﹣BE=16﹣x,∵沿EF翻折后点C与点A重合,AE=CE=16﹣x,在Rt△ABE中,AB2+BE2=AE2,即82+x2=(16﹣x)2,解得x=6,AE=16﹣6=10,由翻折的性质得,AEF=CEF,∵矩形ABCD的对边AD∥BC,AFE=CEF,AEF=AFE,AE=AF=10,过点E作EHAD于H,则四边形ABEH是矩形,EH=AB=8,AH=BE=6,FH=AF﹣AH=10﹣6=4,在Rt△EFH中,EF= = =4 .故选D.点评:本题考查了翻折变换的性质,矩形的判定与性质,勾股定理,熟记各性质并作利用勾股定理列方程求出BE的长度是解题的关键,也是本题的突破口.7.(2014遵义9.(3分))如图,边长为2的正方形ABCD中,P是CD 的中点,连接AP并延长交BC的延长线于点F,作△CPF的外接圆⊙O,连接BP并延长交⊙O于点E,连接EF,则EF的长为() A. B. C. D.考点:相似三角形的判定与性质;正方形的性质;圆周角定理分析:先求出CP、BF长,根据勾股定理求出BP,根据相似得出比例式,即可求出答案.解答:解:∵四边形ABCD是正方形,ABC=PCF=90,CD∥AB,∵F为CD的中点,CD=AB=BC=2,CP=1,∵PC∥AB,△FCP∽△FBA,= =,BF=4,CF=4﹣2=2,由勾股定理得:BP= = ,∵四边形ABCD是正方形,BCP=PCF=90,PF是直径,E=90=BCP,∵PBC=EBF,△BCP∽△BEF,= ,= ,EF= ,故选D.点评:本题考查了正方形的性质,圆周角定理,相似三角形的性质和判定的应用,主要考查学生的推理能力和计算能力,题目比较好,难度适中.8.(2014十堰9.(3分))如图,在四边形ABCD中,AD∥BC,DEBC,垂足为点E,连接AC交DE于点F,点G为AF的中点,ACD=2ACB.若DG=3,EC=1,则DE的长为()A. 2B.C. 2D.考点:勾股定理;等腰三角形的判定与性质;直角三角形斜边上的中线.分析:根据直角三角形斜边上的中线的性质可得DG=AG,根据等腰三角形的性质可得GAD=GDA,根据三角形外角的性质可得CGD=2GAD,再根据平行线的性质和等量关系可得ACD=CGD,根据等腰三角形的性质可得CD=DG,再根据勾股定理即可求解.解答:解:∵AD∥BC,DEBC,DEAD,CAD=ACB∵点G为AF的中点,DG=AG,GAD=GDA,CGD=2CAD,∵ACD=2ACB,ACD=CGD,CD=DG=3,在Rt△CED中,DE= =2 .故选:C.点评:综合考查了勾股定理,等腰三角形的判定与性质和直角三角形斜边上的中线,解题的关键是证明CD=DG=3.9. (2014江苏徐州,第7题3分)若顺次连接四边形的各边中点所得的四边形是菱形,则该四边形一定是()A.矩形B. 等腰梯形C.对角线相等的四边形D. 对角线互相垂直的四边形考点:中点四边形.分析:首先根据题意画出图形,由四边形EFGH是菱形,点E,F,G,H分别是边AD,AB,BC,CD的中点,利用三角形中位线的性质与菱形的性质,即可判定原四边形一定是对角线相等的四边形.解答:解:如图,根据题意得:四边形EFGH是菱形,点E,F,G,H分别是边AD,AB,BC,CD的中点,EF=FG=CH=EH,BD=2EF,AC=2FG,BD=AC.原四边形一定是对角线相等的四边形.故选C.点评:此题考查了菱形的性质与三角形中位线的性质.此题难度适中,注意掌握数形结合思想的应用.10. (2014山东淄博,第9题4分)如图,ABCD是正方形场地,点E 在DC的延长线上,AE与BC相交于点F.有甲、乙、丙三名同学同时从点A出发,甲沿着A﹣B﹣F﹣C的路径行走至C,乙沿着A﹣F ﹣E﹣C﹣D的路径行走至D,丙沿着A﹣F﹣C﹣D的路径行走至D.若三名同学行走的速度都相同,则他们到达各自的目的地的先后顺序(由先至后)是()A. 甲乙丙B. 甲丙乙C. 乙丙甲D. 丙甲乙考点:正方形的性质;线段的性质:两点之间线段最短;比较线段的长短.分析:根据正方形的性质得出AB=BC=CD=AD,B=ECF,根据直角三角形得出AFAB,EFCF,分别求出甲、乙、丙行走的距离,再比较即可.解答:解:∵四边形ABCD是正方形,AB=BC=CD=AD,B=90,甲行走的距离是AB+BF+CF=AB+BC=2AB;乙行走的距离是AF+EF+EC+CD;丙行走的距离是AF+FC+CD,∵B=ECF=90,AFAB,EFCF,AF+FC+CD2AB,AF+FC+CD甲比丙先到,丙比乙先到,即顺序是甲丙乙,故选B.点评:本题考查了正方形的性质,直角三角形的性质的应用,题目比较典型,难度适中.11.(2014福建福州,第9题4分)如图,在正方形ABCD的外侧,作等边三角形ADE. AC,BE相交于点F,则BFC为【】A.45B.55C.60D.7512.(2014甘肃兰州,第7题4分)下列命题中正确的是()A. 有一组邻边相等的四边形是菱形B. 有一个角是直角的平行四边形是矩形C. 对角线垂直的平行四边形是正方形D. 一组对边平行的四边形是平行四边形考点:命题与定理.分析:利用特殊四边形的判定定理对个选项逐一判断后即可得到正确的选项.解答:解:A、一组邻边相等的平行四边形是菱形,故选项错误;B、正确;C、对角线垂直的平行四边形是菱形,故选项错误;D、两组对边平行的四边形才是平行四边形,故选项错误.故选B.点评:本题考查了命题与定理的知识,解题的关键是牢记特殊的四边形的判定定理,难度不大,属于基础题.13.(2014广州,第8题3分)将四根长度相等的细木条首尾相接,用钉子钉成四边形,转动这个四边形,使它形状改变,当时,如图,测得,当时,如图,( ).(A) (B)2 (C) (D)图2-①图2-②【考点】正方形、有内角的菱形的对角线与边长的关系【分析】由正方形的对角线长为2可知正方形和菱形的边长为,当=60时,菱形较短的对角线等于边长,故答案为.【答案】A14.(2014广州,第10题3分)如图3,四边形、都是正方形,点在线段上,连接,和相交于点.设,( ).下列结论:①;②;③;④.其中结论正确的个数是( ).(A)4个(B)3个(C)2个(D)1个【考点】三角形全等、相似三角形【分析】①由可证,故①正确;②延长BG交DE于点H,由①可得,(对顶角)=90,故②正确;③由可得,故③不正确;④,等于相似比的平方,即,,故④正确.【答案】B[MVC:PAGE]15.(2014毕节地区,第8题3分)如图,菱形ABCD中,对角线AC、BC相交于点O,H为AD边中点,菱形ABCD的周长为28,则OH 的长等于( )A. 3.5B. 4C. 7D. 14考点:菱形的性质;直角三角形斜边上的中线;三角形中位线定理分析:根据菱形的四条边都相等求出AB,菱形的对角线互相平分可得OB=OD,然后判断出OH是△ABD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半可得OH= AB.解答:解:∵菱形ABCD的周长为28,AB=284=7,OB=OD,∵H为AD边中点,OH是△ABD的中位线,OH= AB= 7=3.5.故选A.点评:本题考查了菱形的对角线互相平分的性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记性质与定理是解题的关键.16.(2014襄阳,第12题3分)如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE= AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,对于下列结论:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的是()A. ①②B. ②③C. ①③D. ①④考点:翻折变换(折叠问题);矩形的性质分析:求出BE=2AE,根据翻折的性质可得PE=BE,再根据直角三角形30角所对的直角边等于斜边的一半求出APE=30,然后求出AEP=60,再根据翻折的性质求出BEF=60,根据直角三角形两锐角互余求出EFB=30,然后根据直角三角形30角所对的直角边等于斜边的一半可得EF=2BE,判断出①正确;利用30角的正切值求出PF= PE,判断出②错误;求出BE=2EQ,EF=2BE,然后求出FQ=3EQ,判断出③错误;求出PBF=PFB=60,然后得到△PBF是等边三角形,判断出④正确.解答:解:∵AE= AB,BE=2AE,由翻折的性质得,PE=BE,APE=30,AEP=90﹣30=60,BEF= (180﹣AEP)= (180﹣60)=60,EFB=90﹣60=30,EF=2BE,故①正确;∵BE=PE,EF=2PE,∵EFPF,PF2PE,故②错误;由翻折可知EFPB,EBQ=EFB=30,BE=2EQ,EF=2BE,FQ=3EQ,故③错误;由翻折的性质,EFB=BFP=30,BFP=30+30=60,∵PBF=90﹣EBQ=90﹣30=60,PBF=PFB=60,△PBF是等边三角形,故④正确;综上所述,结论正确的是①④.故选D.点评:本题考查了翻折变换的性质,直角三角形30角所对的直角边等于斜边的一半的性质,直角三角形两锐角互余的性质,等边三角形的判定,熟记各性质并准确识图是解题的关键.17.(2014孝感,第9题3分)如图,正方形OABC的两边OA、OC 分别在x轴、y轴上,点D(5,3)在边AB上,以C为中心,把△CDB 旋转90,则旋转后点D的对应点D的坐标是()A. (2,10)B. (﹣2,0)C. (2,10)或(﹣2,0)D. (10,2)或(﹣2,0) 考点:坐标与图形变化-旋转.分析:分顺时针旋转和逆时针旋转两种情况讨论解答即可.解答:解:∵点D(5,3)在边AB上,BC=5,BD=5﹣3=2,①若顺时针旋转,则点D在x轴上,OD=2,所以,D(﹣2,0),②若逆时针旋转,则点D到x轴的距离为10,到y轴的距离为2,所以,D(2,10),综上所述,点D的坐标为(2,10)或(﹣2,0).故选C.点评:本题考查了坐标与图形变化﹣旋转,正方形的性质,难点在于分情况讨论.18.(2014台湾,第12题3分)如图,D为△ABC内部一点,E、F两点分别在AB、BC上,且四边形DEBF为矩形,直线CD交AB于G 点.若CF=6,BF=9,AG=8,则△ADC的面积为何?()A.16B.24C.36D.54分析:由于△ADC=△AGC﹣△ADG,根据矩形的性质和三角形的面积公式计算即可求解.解:△ADC=△AGC﹣△ADG=12AGBC﹣12AGBF=128(6+9)﹣1289=60﹣36=24.故选:B.点评:考查了三角形的面积和矩形的性质,本题关键是活用三角形面积公式进行计算.19.(2014台湾,第27题3分)如图,矩形ABCD中,AD=3AB,O 为AD中点,是半圆.甲、乙两人想在上取一点P,使得△PBC的面积等于矩形ABCD的面积其作法如下:(甲) 延长BO交于P点,则P即为所求;(乙) 以A为圆心,AB长为半径画弧,交于P点,则P即为所求. 对于甲、乙两人的作法,下列判断何者正确?()A.两人皆正确B.两人皆错误C.甲正确,乙错误D.甲错误,乙正确分析:利用三角形的面积公式进而得出需P甲H=P乙K=2AB,即可得出答案.解:要使得△PBC的面积等于矩形ABCD的面积,需P甲H=P乙K=2AB.故两人皆错误.故选:B.点评:此题主要考查了三角形面积求法以及矩形的性质,利用四边形与三角形面积关系得出是解题关键.20.(2014浙江宁波,第6题4分)菱形的两条对角线长分别是6和8,则此菱形的边长是( )A. 10B. 8C. 6D. 5考点:菱形的性质;勾股定理.分析:根据菱形的性质及勾股定理即可求得菱形的边长.解答:解:∵四边形ABCD是菱形,AC=8,BD=6,OB=OD=3,OA=OC=4,ACBD,在Rt△AOB中,由勾股定理得:AB= = =5,即菱形ABCD的边长AB=BC=CD=AD=5,故选D.点评:本题考查了菱形的性质和勾股定理,关键是求出OA、OB 的长,注意:菱形的对角线互相平分且垂直.21.(2014浙江宁波,第11题4分)如图,正方形ABCD和正方形CEFG 中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是( )A. 2.5B.C.D. 2考点:直角三角形斜边上的中线;勾股定理;勾股定理的逆定理.分析:连接AC、CF,根据正方形性质求出AC、CF,ACD=GCF=45,再求出ACF=90,然后利用勾股定理列式求出AF,再根据直角三角形斜边上的中线等于斜边的一半解答即可.解答:解:如图,连接AC、CF,∵正方形ABCD和正方形CEFG中,BC=1,CE=3,AC= ,CF=3 ,ACD=GCF=45,ACF=90,由勾股定理得,AF= = =2 ,∵H是AF的中点,CH= AF= 2 = .故选B.点评:本题考查了直角三角形斜边上的中线等于斜边的一半的性质,正方形的性质,勾股定理,熟记各性质并作辅助线构造出直角三角形是解题的关键.22.(2014呼和浩特,第9题3分)已知矩形ABCD的周长为20cm,两条对角线AC,BD相交于点O,过点O作AC的垂线EF,分别交两边AD,BC于E,F(不与顶点重合),则以下关于△CDE与△ABF 判断完全正确的一项为()A. △CDE与△ABF的周长都等于10cm,但面积不一定相等B. △CDE与△ABF全等,且周长都为10cmC. △CDE与△ABF全等,且周长都为5cmD. △CDE与△ABF全等,但它们的周长和面积都不能确定考点:矩形的性质;全等三角形的判定与性质;线段垂直平分线的性质.分析:根据矩形的性质,AO=CO,由EFAC,得EA=EC,则△CDE 的周长是矩形周长的一半,再根据全等三角形的判定方法可求出△CDE与△ABF全等,进而得到问题答案.解答:解:∵AO=CO,EFAC,EF是AC的垂直平分线,EA=EC,△CDE的周长=CD+DE+CE=CD+AD= 矩形ABCD的周长=10cm,同理可求出△ABF的周长为10cm,根据全等三角形的判定方法可知:△CDE与△ABF全等,故选B.点评:本题考查了矩形的对角线互相平分的性质,还考查了线段垂直平分线的性质以及全等三角形的判定方法,题目的难度不大. 23. (2014株洲,第7题,3分)已知四边形ABCD是平行四边形,再从①AB=BC,②ABC=90,③AC=BD,④ACBD四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是()A. 选①②B. 选②③C. 选①③D. 选②④考点:正方形的判定;平行四边形的性质.分析:要判定是正方形,则需能判定它既是菱形又是矩形.解答:解:A、由①得有一组邻边相等的平行四边形是菱形,由②得有一个角是直角的平行四边形是矩形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意;B、由②得有一个角是直角的平行四边形是矩形,由③得对角线相等的平行四边形是矩形,所以不能得出平行四边形ABCD是正方形,错误,故本选项符合题意;C、由①得有一组邻边相等的平行四边形是菱形,由③得对角线相等的平行四边形是矩形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意;D、由②得有一个角是直角的平行四边形是矩形,由④得对角线互相垂直的平行四边形是菱形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意.故选B.点评:本题考查了正方形的判定方法:①先判定四边形是矩形,再判定这个矩形有一组邻边相等;②先判定四边形是菱形,再判定这个矩形有一个角为直角.③还可以先判定四边形是平行四边形,再用1或2进行判定.2016中考数学模拟测试题之矩形菱形为大家带来过了,希望大家能够利用好上面的内容,从而在中考中取得好的数学成绩。
一、选择题1.(2016山东东营,10,3分)如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,连接DF,分析下列四个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠A.4个B.3个C.2个D.1个【答案】B【逐步提示】本题考查矩形的性质,相似三角形的判定与性质,平行四边形的判定与性质,锐角三角函数的定义等.综上所述,①②③正确,而无法判断④正确,故选B.【解后反思】【一题多解】③取BC的中点M,连接DM,FM,∴FM=CM.∵E是AD的中点,∴DE=BM,又∵DE∥BM,∴四边形BMDE是平行四边形,∴DM∥BE,∴DM⊥CF,∴DM是线段CF的垂直平分线,∴DF=DC.【关键词】矩形的性质;相似三角形的判定与性质;平行四边形的判定与性质;锐角三角函数的定义2.(2016山东泰安,23,3分)如图,矩形ABCD中,已知AB=6,BC=8,BD的垂直平分线交AD于点E,交BC于点F,则△BOF的面积为.【逐步提示】本题考查了矩形的性质、勾股定理、相似三角形的判定与性质,解题的关键是相似三角形面积比等于相似比的平方的性质的应用.与因为已知AB =6,BC =8,所以可以求出△BDC 的面积,因为EF 垂直平分BD ,可知∠BOF =90°,所以△BOF 与△BCD 相似.利用勾股定理可以求出BD 的长,也就知道了OB 的长度,根据相似三角形面积比等于相似比的平方,可以计算出△BOF 的面积.【详细解答】解:∵四边形ABCD 是矩形,∴AB =CD =6,∠C =90°,∵BC =8,∴由勾股定理得10BD ,168242BCD S ∆⨯⨯==,∵EF 垂直平分BD ,∴∠BOF =90°,152OB BD ==.∵∠OBF =∠DBC ,∠BOF =∠C=90°,∴△BOF ∽△BCD ,∴222525864BOF BCD S OB S BC ∆∆⎛⎫ ⎪⎝⎭===,∴257524648BOFS ∆⨯==. 【解后反思】由于所求的△BOF 是直角三角形,所以有的同学可能直接用12S OB OF ∆⨯⨯=来计算三角形的面积,这样解决起来就很繁琐.实际上本题是考查相似三角形的性质:两个相似三角形面积的比等于相似比的平方.所以认真审题,理清脉络很关键.【关键词】矩形的性质;勾股定理;垂直平分线;相似三角形的性质.3. ( 2016山东省枣庄市,9,3分)如图,四边形ABCD 是菱形,AC =8,DB =6,DH ⊥AB 于H ,则DH 等于( ) A .245B .125 C .5 D .4【答案】A .【逐步提示】本题考查了菱形的性质,及面积公式,解题的关键是灵活运用菱形的性质.根据菱形对角线互相垂直且平分,求出菱形的边长,再利用菱形的面积公式即可求出高线DH . 【详细解答】解:设AC 、BD 交于点O .∵四边形ABCD 是菱形,∴AO =12AC =4,BO =12DB =3,∠AOB =90°,∴AB=5,∵S 菱形ABCD =12AC ·DB =AB ·DH ,∴DH =12AC BD AB ⋅=18625⨯⨯=245,故选择A .ABDCHOAEDBFC第23题图【解后反思】本题考查了菱形的性质及面积公式.菱形的性质:①菱形的四条边相等;②菱形的对角线互相垂直平分,且每一条对角线平分一组对角;③S 菱形ABCD =12AC ·DB =底×高.本题在解答时,还可以利用△BDH ∽△BAO ,BD DHBA AO=求解. 【关键词】 勾股定理;菱形的性质;菱形的面积;4. (2016山东淄博,8,4分)如图,正方形ABCD 的边长为10, AG =CH =8,BG =DH =6,连接GH . 则线段GH 的长为( )A.C. 145D. 10-【答案】B【逐步提示】本题考查正方形,勾股定理及逆定理的知识,解题关键是能灵活添加辅助线,将问题转化为已知问题解决. 延长BG 交CH 于点E ,根据正方形的性质证明ABG ≌△CDH≌△BCE ,可得GE =BE ﹣BG =2、HE =CH ﹣CE =2、∠HEG =90°,由勾股定理可得GH 的长. 【详细解答】解:法一:如图,延长BG 交CH 于点E ,∵AG =CH =8,BG =DH =6,AB =CD =10,∴△ABG ≌△CDH (SSS ). ∵22AG BG +=2286+=210=2AB ,∴△ABG 是直角三角形,∠AGB =90°. 同理△DHC 是直角三角形,∠DHC =90°. ∵∠1=∠5,∠2=∠6,∠AGB =∠CHD =90°, ∴∠1+∠2=90°,∠5+∠6=90°, 又∵∠2+∠3=90°,∠4+∠5=90°, ∴∠1=∠3=∠5,∠2=∠4=∠6,∵AB =BC ,∴△ABG ≌△BCE (ASA ).∴BE =AG =8,CE =BG =6,∠BEC =∠AGB =90°. ∴GE =BE -BG =8-6=2. 同理可得HE =2GE .在RT △GHE 中,GH.故选择B.ABDCHO法二:过点G 作EF ⊥AB 于点EF ,过点H 作HF ∥AB .∵22AG BG +=2286+=210=2AB ,∴△ABG 是直角三角形,∠AGB =90°. 同理△DHC 是直角三角形,∠DHC =90°. ∴EG =6810⨯=4.8. ∴GF =10-2×4.8=0.4. ∵BE =6610⨯=3.6,∴HF =10-2×3.6=2.8. ∴HG. 故选择B.【解后反思】添加辅助线,构造直角三角形求解是解题关键. 【关键词】正方形,勾股定理及逆定理5. (2016天津,10,3分)如图,把一张矩形纸片ABCD 沿对角线AC 折叠,点B 的对应点为B ′,AB ′与DC 相交于点E ,则下列结论正确的是()A .∠DAB′=∠CAB ′ B .∠ACD=∠B′CDC .AD =AE D . AE =CE 【答案】D【逐步提示】本题是一道有关折叠的问题,应根据折叠的性质求解.根据折叠得到△ABC 与△AB′C 全等,得到∠BAC =∠B′AC ,然后利用矩形的性质将∠ACE 转化到∠CAB′.【解析】根据折叠得到△ABC ≌△AB ′C ,∴=BAC B AC '∠∠,又∵AB ∥CD ,∴∠BAC =∠DCA ,∴∠EAC =∠DCA ,∴EA =E C.故选择D .【解后反思】折叠问题是属于轴对称变换,折叠后图形的形状和大小不变,三角形折叠后得到的三角形与原三角形全等,对应边和对应角相等.【关键词】折叠问题;等腰三角形;全等三角形(2016浙江宁波,12,4分)如图是一个由 5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S 1 ,另两张直角三角形纸片的面积都为 S 2,中间一张正方形纸片的面积为S 3,则这个平行四边形的面积一定可以表示为( )A. 4S 1B. 4S 2C. 4S 2+ S 3D. 3S 1+ 4S 3E F【答案】A【逐步提示】本题考查了平行四边形性质、直角三角形性质、整式的加减运算,解题的关键是引入字母找出S 1 、S 2、S 3 之间的关系.设等腰直角三角形纸片的直角边长为a, 中间一张正方形纸片的边长为m,从而可以表示出面积为S 2的直角三角形纸片两条直角边长,进而得出S 1 、S 2、S 3 之间的关系.【解析】设等腰直角三角形纸片的直角边长为a, 中间一张正方形纸片的边长为m,则2112S a =,23S m =,∴22213111()()()(2)222S a m a m a m S S =-+=-=-,即31222S S S =-,∴这个平行四边形的面积=123121212222(22)4S S S S S S S S ++=++-=,故选择A . 【解后反思】此类问题常常通过引入字母,再结合图形把所求的面积具体化,找出三个面积之间的等量关系,就可以求得问题的解.【关键词】等腰三角形与直角三角形;平行四边形;平方差公式;整式的加减6.(2016浙江舟山,9,3分)如图,矩形ABCD 中,AD =2,AB =3,过点A .C 作相距为2的平行线段AE 、CF ,分别交CD .AB 于点E 、F ,则DE 的长是( )A . 5B .136C .1D .56【答案】D【逐步提示】本题考查了矩形、平行四边形、全等三角形的性质与判定,解题的关键是用DE 的代数式表示AE 的长度. 过点F 作FH ⊥AE ,交AE 于点H ,根据平行线间的距离的概念,得FH =2=AD .设DE =x .先说明四边形AECF 为平行四边形,由矩形、平行四边形的性质可得DE =BF =x ,即F A =3-x .再证△ADE ≌△FHA ,得AE =F A =3-x ,然后在Rt △ADE 中利用勾股定理构造关于x 的方程,解方程求出x 的值,即得DE 的长.【解析】设DE=x.过点F 作FH ⊥AE ,交AE 于点H ,∵AE 、CF 是平行线段,∴FH=2=AD ,AE ∥CF.∵四边形ABCD 是矩形,∴AB ∥CD ,AB=CD ,∴.四边形AECF 为平行四边形,∴AF=CE ,∴DE=BF=x ,即FA=3-x. 在矩形ABCD 中,∠BAD=∠D=90°,∴∠D=∠AHF=90°,∠DAE=AFH ,∴△ADE ≌△FHA ,∴AE=FA=3-x.因此在Rt △ADE 中,由“AD 2+DE 2=AE 2”得“22+x 2=(3-x)2”,解得x=56,即DE=56,故选择D .【解后反思】本题较综合地考查了部分特殊四边形的性质与判定,全等三角形的识别与性质等知识,设DE=x后,利用上述知识,用x的代数式表示AE的长度是解答本题的关键,再结合勾股定理,利用方程求解,充分体现了方程思想在求解几何图形相关问题的重要功能.【关键词】矩形的性质;平行四边形的判定;全等三角形的识别与性质;勾股定理;方程思想.7.(2016四川省广安市,8,3分)下列说法:①三角形的三条高一定都在三角形内;②有一个角是直角的四边形是矩形;③有一组邻边相等的平行四边形是菱形;④两边及一角对应相等的两个三角形全等;⑤一组对边平行,另一组对边相等的四边形是平行四边形.其中正确的个数有()A.1个B.2个C.3个D.4个【答案】A【逐步提示】本题考查了三角形的中线、高线、角平分线的概念,矩形的判定,菱形的判定,全等三角形的判定,平行四边形的判定等,解题的关键是掌握这些概念、定理等.因为直角三角形与钝角三角形的三条高不都在三角形内,故①错;至少有三个角是直角的四边形是才是矩形,故②错;③是菱形的定义,正确;满足④的条件时有可能形成“边边角”的情况,故错误;等腰梯形满足“一组对边平行,另一组对边相等”,但它不是平行四边形,故⑤错误.【详细解答】解:只有③正确,故选择A.【解后反思】要理解三角形“三线”的概念,掌握三角形、平行四边形、矩形、菱形的判定方法,这是正确解题的基础.能画图举反例,以排除不符合条件情形,也是解这类题的基本功,要多思考,勤积累.类似的问题还有:判断下列说法是否正确:(1)一组对边相等且一组对角相等的四边形是平行四边形.解:错误.如图1,作△ABC,使AB=AC,在BC上取一点D(D点不与B、C重合且BD≠CD),连接AD.再以A为顶点,AD为一边,作∠EAD,使∠EAD=∠ADC,且AE=DC,连接DE.由上述画图方法,可知△ADC≌△DAE(SAS).所以DE=AC=AB,∠AED=∠C=∠B.即四边形ABCD有一组对边相等(DE=AB)、一组对角相等(∠AED=∠B),但却不是平行四边形(另一组对边AE和BD不平行也不相等).(2)一组对边相等,且一条对角线平分另一条对角线的四边形是平行四边形.解:错误.如图2,画两条相交直线,交点为O,在其中一条直线上截取OA=OC,分别过A、C两点向另一条直线作垂线,垂足分别为E、F.在线段OF上取一点D(D点不与O、F重合),连接CD.再在线段OE的延长线上取一点B,使EB=FD,连接AB.由上述画图方法,易知△COF≌△AOE(AAS),则CF=AE,由“SAS”可判定△CFD≌△AEB,则CD=AB .连接AD 、BC ,则四边形ABCD 满足条件,却不是平行四边形.(3)一组对角相等,且连接这一组对角的顶点的对角线被另一条对角线平分的四边形是平行四边形.解:错误.如图,画一个“筝形”ABCD ,其中AB =AD ,BC =DC 且AO ≠OC ,则该“筝形”满足条件,但它不是平行四边形.【关键词】 中线、高线、角平分线;矩形的判定;菱形的判定;全等三角形的判定;平行四边形的判定 8. ( 2016四川泸州,10,3分)如图,矩形ABCD 的边长AD=3,AB=2,E 为AB 的中点,F 在边BC 上,且BF=2FC ,AF 分别与DE 、DB 相交于点M ,N ,则MN 的长为( )A.5B.20C.4D.5【答案】B ,9 ( 2016四川省绵阳市,11,3分)如图,点E ,点F 分别在菱形ABCD 的边AB ,AD 上,且AE =DF ,BF 交DE 于点G ,延长BF 交CD 的延长线于H ,若AF DF =2,则HFBG的值为 ········ ( ) A .23 B .712C .12D .512【答案】B .【逐步提示】本题考查了相似三角形的判定和性质.由菱形ABCD 知AB ∥CD ,AD ∥BC ,可知图中存在多个相似三角形中的基本图形:“A ”型“与”X “型.由基本图形得HF FB =DF AF =12,所以HF =13HB ①.类似地,HD =12AB ,又BE =23AB ,所以HD BE =34.由基本图形得BG HG =BE HD =43,所以BG =47HB ②,由①②可求HFBG的比值. 【详细解答】解:设菱形ABCD 的边长为3a .因为四边形ABCD 是菱形,AFDF=2,AE =DF ,所以AE =DF =a ,AF =BE =2a ,AB ∥CD ,所以HF FB =HD AB =DF AF =12,所以HD =12AB =32a ,HF =13HB .因为AB∥CD ,所以BG HG =BE HD =232a a =43,所以BG =47HB .所以HF BG =1347HBHB 712,故答案为B . 【解后反思】(1)求线段的比通常利用平行线或相似三角形得到比例线段,然后再进行转化得到所求两线段的比.(2)遇到平行线,要联想到以下两个常用的基本图形(“A ”型“与”X “型).【关键词】菱形的性质;相似三角形的判定;转化思想.10 ( 2016四川南充,8,3分)如图,对折矩形纸片ABCD ,使AB 与DC 重合得到折痕EF ,将纸片展平,再一次折叠,使点D 落到EF 上G 点处,并使折痕经过点A ,展平纸片后∠DAG 的大小为( )E CDFGHABA.30°B.45°C.60°D.75°【答案】C【逐步提示】本题主要考查了翻折变换的性质以及平行线的性质,正确得出∠2=∠4是解题关键.直接利用翻折变换的性质以及直角三角形的性质得出∠2=∠4,再利用平行线的性质得出∠1=∠2=∠3,进而得出答案.【详细解答】解:如图所示:由题意可得:∠1=∠2,AN=MN,∠MGA=90°,则NG=12AM,故AN=NG,则∠2=∠4,∵EF∥AB,∴∠4=∠3,∴∠1=∠2=∠3=13×90°=30°,∴∠DAG=60°.故选择C.【解后反思】本题还可以采用如下方法求解。