(完整版)随机过程题库1
- 格式:doc
- 大小:728.51 KB
- 文档页数:21
随机过程考试试题及答案详解1、(15分)设随机过程C t R t X +⋅=)(,),0(∞∈t ,C 为常数,R 服从]1,0[区间上的均匀分布。
(1)求)(t X 的一维概率密度和一维分布函数; (2)求)(t X 的均值函数、相关函数和协方差函数。
【理论基础】 (1)⎰∞-=xdt t f x F )()(,则)(t f 为密度函数;(2))(t X 为),(b a 上的均匀分布,概率密度函数⎪⎩⎪⎨⎧<<-=其他,0,1)(bx a a b x f ,分布函数⎪⎩⎪⎨⎧>≤≤--<=b x b x a ab a x a x x F ,1,,0)(,2)(ba x E +=,12)()(2a b x D -=; (3)参数为λ的指数分布,概率密度函数⎩⎨⎧<≥=-0,00,)(x x e x f x λλ,分布函数⎩⎨⎧<≥-=-0,00,1)(x x e x F x λ,λ1)(=x E ,21)(λ=x D ; (4)2)(,)(σμ==x D x E 的正态分布,概率密度函数∞<<-∞=--x e x f x ,21)(222)(σμπσ,分布函数∞<<-∞=⎰∞---x dt ex F xt ,21)(222)(σμπσ,若1,0==σμ时,其为标准正态分布。
【解答】本题可参加课本习题2.1及2.2题。
(1)因R 为]1,0[上的均匀分布,C 为常数,故)(t X 亦为均匀分布。
由R 的取值范围可知,)(t X 为],[t C C +上的均匀分布,因此其一维概率密度⎪⎩⎪⎨⎧+≤≤=其他,0,1)(tC x C t x f ,一维分布函数⎪⎩⎪⎨⎧+>+≤≤-<=t C x t C X C tCx C x x F ,1,,0)(;(2)根据相关定义,均值函数C tt EX t m X +==2)()(; 相关函数2)(231)]()([),(C t s Cst t X s X E t s R X +++==; 协方差函数12)]}()()][()({[),(stt m t X s m s X E t s B X X X =--=(当t s =时为方差函数) 【注】)()()(22X E X E X D -=;)()(),(),(t m s m t s R t s B X X X X -=求概率密度的通解公式|)(|/)(|)(|)()(''y x y f x y y f x f t ==2、(15分)设{}∞<<∞-t t W ),(是参数为2σ的维纳过程,)4,1(~N R 是正态分布随机变量;且对任意的∞<<∞-t ,)(t W 与R 均独立。
随机过程考试试题及答案详解1、(15分)设随机过程C t R t X +⋅=)(,),0(∞∈t ,C 为常数,R 服从]1,0[区间上的均匀分布。
(1)求)(t X 的一维概率密度和一维分布函数; (2)求)(t X 的均值函数、相关函数和协方差函数。
【理论基础】 (1)⎰∞-=xdt t f x F )()(,则)(t f 为密度函数;(2))(t X 为),(b a 上的均匀分布,概率密度函数⎪⎩⎪⎨⎧<<-=其他,0,1)(bx a a b x f ,分布函数⎪⎩⎪⎨⎧>≤≤--<=b x b x a ab a x a x x F ,1,,0)(,2)(ba x E +=,12)()(2a b x D -=; (3)参数为λ的指数分布,概率密度函数⎩⎨⎧<≥=-0,00,)(x x e x f x λλ,分布函数⎩⎨⎧<≥-=-0,00,1)(x x e x F x λ,λ1)(=x E ,21)(λ=x D ; (4)2)(,)(σμ==x D x E 的正态分布,概率密度函数∞<<-∞=--x e x f x ,21)(222)(σμπσ,分布函数∞<<-∞=⎰∞---x dt ex F xt ,21)(222)(σμπσ,若1,0==σμ时,其为标准正态分布。
【解答】本题可参加课本习题2.1及2.2题。
(1)因R 为]1,0[上的均匀分布,C 为常数,故)(t X 亦为均匀分布。
由R 的取值范围可知,)(t X 为],[t C C +上的均匀分布,因此其一维概率密度⎪⎩⎪⎨⎧+≤≤=其他,0,1)(tC x C t x f ,一维分布函数⎪⎩⎪⎨⎧+>+≤≤-<=t C x t C X C tCx C x x F ,1,,0)(;(2)根据相关定义,均值函数C tt EX t m X +==2)()(; 相关函数2)(231)]()([),(C t s Cst t X s X E t s R X +++==; 协方差函数12)]}()()][()({[),(stt m t X s m s X E t s B X X X =--=(当t s =时为方差函数) 【注】)()()(22X E X E X D -=;)()(),(),(t m s m t s R t s B X X X X -=求概率密度的通解公式|)(|/)(|)(|)()(''y x y f x y y f x f t ==2、(15分)设{}∞<<∞-t t W ),(是参数为2σ的维纳过程,)4,1(~N R 是正态分布随机变量;且对任意的∞<<∞-t ,)(t W 与R 均独立。
1.设随机变量X 服从参数为λ的泊松分布,则X 的特征函数为 。
2.设随机过程X(t)=Acos( t+),-<t<ωΦ∞∞ 其中ω为正常数,A 和Φ是相互独立的随机变量,且A 和Φ服从在区间[]0,1上的均匀分布,则X(t)的数学期望为 。
3.强度为λ的泊松过程的点间间距是相互独立的随机变量,且服从均值为 的同一指数分布。
4.设{}n W ,n 1≥是与泊松过程{}X(t),t 0≥对应的一个等待时间序列,则n W 服从 分布。
5.袋中放有一个白球,两个红球,每隔单位时间从袋中任取一球,取后放回,对每一个确定的t 对应随机变量⎪⎩⎪⎨⎧=时取得白球如果时取得红球如果t t t e tt X ,,3)(,则 这个随机过程的状态空间 。
6.设马氏链的一步转移概率矩阵ij P=(p ),n 步转移矩阵(n)(n)ijP (p )=,二者之间的关系为 。
7.设{}n X ,n 0≥为马氏链,状态空间I ,初始概率i 0p P(X =i)=,绝对概率{}j n p (n)P X j ==,n 步转移概率(n)ij p ,三者之间的关系为 。
8.设}),({0≥t t X 是泊松过程,且对于任意012≥>t t 则{(5)6|(3)4}______P X X ===9.更新方程()()()()0tK t H t K t s dF s =+-⎰解的一般形式为 。
10.记()(),0n EX a t M M t μ=≥→∞-→对一切,当时,t +a 。
二、证明题(本大题共4道小题,每题8分,共32分)P(BC A)=P(B A)P(C AB)。
2.设{X (t ),t ≥0}是独立增量过程, 且X (0)=0, 证明{X (t ),t ≥0}是一个马尔科夫过程。
3.设{}n X ,n 0≥为马尔科夫链,状态空间为I ,则对任意整数n 0,1<n l ≥≤和i,j I ∈,n 步转移概率(n)()(n-)ij ik kjk Ip p p l l ∈=∑ ,称此式为切普曼—科尔莫哥洛夫方程,证明并说明其意义。
随机过程试题及答案随机过程是概率论与数理统计的重要理论基础之一。
通过研究随机过程,可以揭示随机现象的规律性,并应用于实际问题的建模与分析。
以下是一些关于随机过程的试题及答案,帮助读者更好地理解与掌握这一概念。
1. 试题:设随机过程X(t)是一个马尔可夫过程,其状态空间为S={1,2,3},转移概率矩阵为:P =| 0.5 0.2 0.3 || 0.1 0.6 0.3 || 0.1 0.3 0.6 |(1) 计算X(t)在t=2时的转移概率矩阵。
(2) 求X(t)的平稳分布。
2. 答案:(1) 根据马尔可夫过程的性质,X(t)在t=2时的转移概率矩阵可以通过原始的转移概率矩阵P的2次幂来计算。
令Q = P^2,则X(t=2)的转移概率矩阵为:Q =| 0.37 0.26 0.37 || 0.22 0.42 0.36 || 0.19 0.36 0.45 |(2) 平稳分布是指随机过程的状态概率分布在长时间内保持不变的分布。
设平稳分布为π = (π1,π2, π3),满足πP = π(即π为右特征向量),且所有状态的概率之和为1。
根据πP = π,可以得到如下方程组:π1 = 0.5π1 + 0.1π2 + 0.1π3π2 = 0.2π1 + 0.6π2 + 0.3π3π3 = 0.3π1 + 0.3π2 + 0.6π3解以上方程组可得到平稳分布:π = (0.25, 0.3125, 0.4375)3. 试题:设随机过程X(t)是一个泊松过程,其到达率为λ=1,即单位时间内到达的事件平均次数为1。
(1) 请计算X(t)在t=2时的累计到达次数的概率P{N(2)≤3}。
(2) 计算X(t)的平均到达速率。
4. 答案:(1) 泊松过程具有独立增量和平稳增量的性质,且在单位时间内到达次数服从参数为λ的泊松分布。
所以,P{N(2)≤3} = P{N(2)=0} + P{N(2)=1} + P{N(2)=2} +P{N(2)=3},其中P{N(2)=k}表示在时间间隔[0,2]内到达的次数为k的概率。
1.设随机变量X 服从参数为λ的泊松分布,则X 的特征函数为 。
2.设随机过程X(t)=Acos( t+),-<t<ωΦ∞∞ 其中ω为正常数,A 和Φ是相互独立的随机变量,且A 和Φ服从在区间[]0,1上的均匀分布,则X(t)的数学期望为 。
3.强度为λ的泊松过程的点间间距是相互独立的随机变量,且服从均值为 的同一指数分布。
4.设{}n W ,n 1≥是与泊松过程{}X(t),t 0≥对应的一个等待时间序列,则n W 服从 分布。
5.袋中放有一个白球,两个红球,每隔单位时间从袋中任取一球,取后放回,对每一个确定的t 对应随机变量⎪⎩⎪⎨⎧=时取得白球如果时取得红球如果t t t e tt X ,,3)(,则 这个随机过程的状态空间 。
6.设马氏链的一步转移概率矩阵ij P=(p ),n 步转移矩阵(n)(n)ijP (p )=,二者之间的关系为 。
7.设{}n X ,n 0≥为马氏链,状态空间I ,初始概率i 0p P(X =i)=,绝对概率{}j n p (n)P X j ==,n 步转移概率(n)ij p ,三者之间的关系为 。
8.设}),({0≥t t X 是泊松过程,且对于任意012≥>t t 则{(5)6|(3)4}______P X X ===9.更新方程()()()()0tK t H t K t s dF s =+-⎰解的一般形式为 。
10.记()(),0n EX a t M M t μ=≥→∞-→对一切,当时,t +a 。
二、证明题(本大题共4道小题,每题8分,共32分)P(BC A)=P(B A)P(C AB)。
2.设{X (t ),t ≥0}是独立增量过程, 且X (0)=0, 证明{X (t ),t ≥0}是一个马尔科夫过程。
3.设{}n X ,n 0≥为马尔科夫链,状态空间为I ,则对任意整数n 0,1<n l ≥≤和i,j I ∈,n 步转移概率(n)()(n-)ij ik kjk Ip p p l l ∈=∑ ,称此式为切普曼—科尔莫哥洛夫方程,证明并说明其意义。
随机过程综合练习题一、填空题(每空3分) 第一章1.n X X X ,,21是独立同分布的随机变量,i X 的特征函数为)(t g ,则n X X X +++ 21的特征函数是 。
2.{}=)(Y X E E 。
3. X 的特征函数为)(t g ,b aX Y +=,则Y 的特征函数为 。
4.条件期望)(Y X E 是 的函数, (是or 不是)随机变量。
5.n X X X ,,21是独立同分布的随机变量,i X 的特征函数为)(t g i ,则n X X X +++ 21的特征函数是 。
6.n 维正态分布中各分量的相互独立性和不相关性 。
第二章7.宽平稳过程是指协方差函数只与 有关。
8.在独立重复试验中,若每次试验时事件A 发生的概率为)10(<<p p ,以)(n X 记进行到n 次试验为止A 发生的次数, 则},2,1,0),({ =n n X 是 过程。
9.正交增量过程满足的条件是 。
10.正交增量过程的协方差函数=),(t s C X 。
第三章11. {X(t), t ≥0}为具有参数0>λ的齐次泊松过程,其均值函数为 ; 方差函数为 。
12.设到达某路口的绿、黑、灰色的汽车的到达率分别为1λ,2λ,3λ且均为泊松过程,它们相互独立,若把这些汽车合并成单个输出过程(假定无长度、无延时),相邻绿色汽车之间的不同到达时间间隔的概率密度是 ,汽车之间的不同到达时刻间隔的概率密度是 。
13.{X(t), t ≥0}为具有参数0>λ的齐次泊松过程,{}==-+n s X s t X P )()( 。
,1,0=n14.设{X(t), t ≥0}是具有参数0>λ的泊松过程,泊松过程第n 次到达时间W n 的数学期望是 。
15.在保险的索赔模型中,设索赔要求以平均2次/月的速率的泊松过程到达保险公司.若每次赔付金额是均值为10000元的正态分布,求一年中保险公司的平均赔付金额 。
随机过程习题及部分解答习题一1. 若随机过程()(),X t X t At t =-∞<<+∞为,式中A 为(0,1)上均匀分布的随机变量,求X (t )的一维概率密度(;)X P x t 。
2. 设随机过程()cos(),X t A t t R ωθ=+∈,其中振幅A 及角频率ω均为常数,相位θ是在[,]ππ-上服从均匀分布的随机变量,求X (t )的一维分布。
习题二1. 若随机过程X (t )为X (t )=At t -∞<<+∞,式中A 为(0,1)上均匀分布的随机变量,求12[()],(,)X E X t R t t2. 给定一随机过程X (t )和常数a ,试以X (t )的相关函数表示随机过程()()()Y t X t a X t =+-的自相关函数。
3. 已知随机过程X (t )的均值M X (t )和协方差函数12(,),()X C i t t ϕ是普通函数,试求随机过程()()()Y t X t t ϕ=+是普通函数,试求随机过程()()()Y t X t t ϕ=+的均值和协方差函数。
4. 设()cos sin X t A at B at =+,其中A ,B 是相互独立且服从同一高斯(正态)分布2(0,)N σ的随机变量,a 为常数,试求X (t )的值与相关函数。
习题三1. 试证3.1节均方收敛的性质。
2. 证明:若(),;(),X t t T Y t t T ∈∈均方可微,a ,b 为任意常数,则()()aX t bY t +也是均方可微,且有[()()]()()aX t bY t aX t bY t '''+=+3. 证明:若(),X t t T ∈均方可微,()f t 是普通的可微函数,则()()f t X t 均方可微且[()()]()()()()f t X t f t X t f t X t '''=+4. 证明:设()[,]X t a b 在上均方可微,且()[,]X t a b '在上均方连续,则有()()()b aX t dt X b X a '=-⎰5. 证明,设(),[,];(),[,]X t t T a b Y t t T a b ∈=∈=为两个随机过程,且在T 上均方可积,αβ和为常数,则有[()()]()()b b baaaX t Y t dt X t dt Y t dt αβαβ+=+⎰⎰⎰()()(),b c baacaX t dt X t dt X t dt a c b =+⎰⎰⎰≤≤6. 求随机微分方程()()()[0,](0)0X t aX t Y t t X '+=∈+∞⎧⎨=⎩的()X t 数学期望[()]E X t 。
随机过程试题与答案《随机过程》试题一、简答题(每小题4分,共16分) 1、φX t =E e jtX2、acos ωt +π3 ,acos ωt ?π4 . (任意两条即可)3、N t 为参数λ的poison 过程,{X n }是独立同分布的随机变量序列,且与N t相互独立,则称Y t = X n N tn=1为复合poison 过程。
4、二重积分 R X s,t dsdt ba b a 存在且有限。
二、(本题10分)解:(1)P N 12 ?N 8 =0 =e ?12. (5分)(2)f T t =3e ?3t t >00t ≤0(10分)三、(本题12分)解:(1){0,3}是正常返的闭集,{1,4}是正常返的闭集,{2}是非常返的。
(4分)(2)对于{0,3}和{1,4}的转移概率矩阵分别为P 1= 0.60.40.40.6 ,P 2= 0.60.40.20.8 (6分)记z 1 =(z 1 1,z 2 1),z 2 =(z 1 2,z 2 2),求解方程组z 1 =z 1 P 1, z 1 1 +z 2 1=1z 2 =z 2 P 2, z 1 2 +z 2 2=1得z 1 = 12,12 , z 2 = 13,23 。
则平稳分布为(10分)π= λ1,λ2,0,λ1,2λ2(12分)四、(本题13分)解:(1)Q = ?λλμ?(λ+μ) 0 0λ 00 μ0 0 ?(λ+μ)λμ?μ (4分)前进方程dP(t)dt =P(t)Q (6分)后退方程dP(t)dt=QP(t) (8分)(2)由πQ =0,π=1, π=(π0,π1,π2,π3) 解得平稳分布为π0=1?λμ1? λμ4,π1=λμ 1?λμ1? λμ4,π2=λμ2 1?λμ1? λμ4,π3=λμ3 1?λμ1? λμ4(13分) 五、(本题13分)解:(1)对任意的t 1,t 2,?,t n ∈R ,Z t 1 Z t 2 ?Z t n = t 12t 22?t n2 2t 12t 2?2t n X Y + ?2?2?2?2因X,Y 是相互独立的正态分布,所以 XY 是正态分布,又线性变换的性质可知Z t 1 ,Z t 2 ,?,Z t n T 服从多元正态分布,故Z t 是正态过程。
随机过程试题及答案一、选择题1. 随机过程是研究什么的对象?A. 确定性系统B. 随机性系统C. 静态系统D. 动态系统答案:B2. 下列哪项不是随机过程的特点?A. 可预测性B. 随机性C. 连续性D. 状态的不确定性答案:A3. 随机过程的数学描述通常使用什么?A. 概率分布B. 微分方程C. 差分方程D. 以上都是答案:A4. 马尔可夫链是具有什么特性的随机过程?A. 独立性B. 无记忆性C. 均匀性D. 周期性答案:B5. 以下哪个是随机过程的数学工具?A. 傅里叶变换B. 拉普拉斯变换C. 特征函数D. 以上都是答案:D二、简答题1. 简述什么是随机过程的遍历性。
答:遍历性是随机过程的一种特性,指的是在足够长的时间内,随机过程的统计特性不随时间变化而变化,即时间平均与遍历平均相等。
2. 解释什么是泊松过程,并给出其主要特征。
答:泊松过程是一种计数过程,它描述了在固定时间或空间内随机发生的事件次数。
其主要特征包括:事件在时间或空间上独立发生,事件的发生具有均匀性,且在任意小的时间段内,事件发生的概率与该时间段的长度成正比。
三、计算题1. 假设有一个泊松过程,其平均事件发生率为λ。
计算在时间间隔[0, t]内恰好发生n次事件的概率。
答:在时间间隔[0, t]内恰好发生n次事件的概率由泊松分布给出,公式为:\[ P(N(t) = n) = \frac{e^{-\lambda t} (\lambda t)^n}{n!} \]2. 考虑一个具有两个状态的马尔可夫链,其状态转移概率矩阵为:\[ P = \begin{bmatrix}p_{11} & p_{12} \\p_{21} & p_{22}\end{bmatrix} \]如果初始时刻在状态1的概率为1,求在第k步时处于状态1的概率。
答:在第k步时处于状态1的概率可以通过马尔可夫链的状态转移矩阵的k次幂来计算,即:\[ P_{11}^{(k)} = p_{11}^k + p_{12} p_{21} (p_{11}^{k-1} + p_{12} p_{21}^{k-2} + \ldots) \]四、论述题1. 论述随机过程在信号处理中的应用及其重要性。
随机过程试题及答案一、选择题1. 关于随机过程的描述,错误的是:A. 随机过程是一种由随机变量组成的集合B. 随机过程是一种在时间上有序排列的随机变量序列C. 随机过程可以是离散的,也可以是连续的D. 随机过程是一种确定性的数学模型答案:D2. 以下哪种过程不是随机过程?A. 白噪声过程B. 马尔可夫过程C. 布朗运动D. 正态分布答案:D3. 随机过程的一阶矩描述的是:A. 均值B. 方差C. 偏度D. 峰度答案:A4. 当随机过程的各个时间点上的随机变量是独立同分布时,该随机过程为:A. 马尔可夫过程B. 马尔可夫链C. 平稳随机过程D. 白噪声过程答案:B5. 下列关于马尔可夫过程的说法中,正确的是:A. 当前状态只与上一状态有关,与历史状态无关B. 当前状态只与历史状态有关,与上一状态无关C. 当前状态只与上一状态和历史状态有关D. 当前状态与所有历史状态均无关答案:A二、填空题1. 随机过程中,时域函数常用的表示方法是__________。
答案:概率分布函数或概率密度函数2. 马尔可夫过程的状态转移概率只与__________相关。
答案:当前状态和下一状态3. 随机过程的时间参数称为__________。
答案:时刻或时间点4. 白噪声过程的自相关函数是一个__________函数。
答案:冲激函数5. 平稳随机过程的自相关函数只与__________相关。
答案:时间差三、解答题1. 请简要解释随机过程的概念。
随机过程是一种由随机变量组成的集合,表示一个在时间上有序排列的随机变量序列。
它可以是离散的,也可以是连续的。
随机过程的描述通常包括概率分布函数或概率密度函数,以及相关的统计特征,如均值、方差等。
随机过程可以用于对随机现象进行建模和分析。
2. 请简要说明马尔可夫过程的特点及应用。
马尔可夫过程是一种具有马尔可夫性质的随机过程,即当前状态只与上一状态有关,与历史状态无关。
其状态转移概率只与当前状态和下一状态相关。
随机过程综合练习题一、填空题(每空3分) 第一章1.n X X X ,,21是独立同分布的随机变量,i X 的特征函数为)(t g ,则n X X X +++ 21的特征函数是 。
2.{}=)(Y X E E 。
3. X 的特征函数为)(t g ,b aX Y +=,则Y 的特征函数为 。
4.条件期望)(Y X E 是 的函数, (是or 不是)随机变量。
5.n X X X ,,21是独立同分布的随机变量,i X 的特征函数为)(t g i ,则n X X X +++ 21的特征函数是 。
6.n 维正态分布中各分量的相互独立性和不相关性 。
第二章7.宽平稳过程是指协方差函数只与 有关。
8.在独立重复试验中,若每次试验时事件A 发生的概率为)10(<<p p ,以)(n X 记进行到n 次试验为止A 发生的次数, 则},2,1,0),({ =n n X 是 过程。
9.正交增量过程满足的条件是 。
10.正交增量过程的协方差函数=),(t s C X 。
第三章11. {X(t), t ≥0}为具有参数0>λ的齐次泊松过程,其均值函数为 ; 方差函数为 。
12.设到达某路口的绿、黑、灰色的汽车的到达率分别为1λ,2λ,3λ且均为泊松过程,它们相互独立,若把这些汽车合并成单个输出过程(假定无长度、无延时),相邻绿色汽车之间的不同到达时间间隔的概率密度是 ,汽车之间的不同到达时刻间隔的概率密度是 。
13.{X(t), t ≥0}为具有参数0>λ的齐次泊松过程,{}==-+n s X s t X P )()( 。
,1,0=n14.设{X(t), t ≥0}是具有参数0>λ的泊松过程,泊松过程第n 次到达时间W n 的数学期望是 。
15.在保险的索赔模型中,设索赔要求以平均2次/月的速率的泊松过程到达保险公司.若每次赔付金额是均值为10000元的正态分布,求一年中保险公司的平均赔付金额 。
16.到达某汽车总站的客车数是一泊松过程,每辆客车内乘客数是一随机变量.设各客车内乘客数独立同分布,且各辆车乘客数与车辆数N(t)相互独立,则在[0,t]内到达汽车总站的乘客总数是 (复合or 非齐次)泊松过程.17.设顾客以每分钟2人的速率到达,顾客流为泊松流,求在2min 内到达的顾客不超过3人的概率是 .第四章18. 无限制随机游动各状态的周期是 。
19.非周期正常返状态称为 。
20.设有独立重复试验序列}1,{≥n X n 。
以1=n X 记第n 次试验时事件A 发生,且p X P n ==}1{,以0=n X 记第n 次试验时事件A 不发生,且p X P n -==1}0{,若有1,1≥=∑=n X Y nk k n ,则}1,{≥n Y n 是 链。
答案 一、填空题1.)(t g n; 2.EX ; 3.)(at g eibt4.;Y 是 5.∏=ni i t g 1)(; 6.等价7.时间差; 8.独立增量过程;9.[][]{}0)()()()(3412=--t X t X t X t X E 10.}),(min{2t s X σ11.t t λλ;; 12.⎩⎨⎧<≥=-000)(11t t e t f tλλ ⎩⎨⎧<≥++=++-000)()()(321321t t e t f tλλλλλλ13.t n e n t λλ-!)( 14.λn 15.240000 16.复合; 17.4371-e18.2; 19.遍历状态; 20.齐次马尔科夫链;二、判断题(每题2分) 第一章1.)(t g i ),2,1(n i =是特征函数,∏=ni it g 1)(不是特征函数。
( ) 2.n 维正态分布中各分量的相互独立性和不相关性等价。
( ) 3.任意随机变量均存在特征函数。
( ) 4.)(t g i ),2,1(n i =是特征函数,∏=ni it g 1)(是特征函数。
( ) 5.设()1234X ,X ,X ,X 是零均值的四维高斯分布随机变量,则有1234123413241423()()()+()()+()()E X X X X E X X E X X E X X E X X E X X E X X =( )第二章6.严平稳过程二阶矩不一定存在,因而不一定是宽平稳过程。
( ) 7.独立增量过程是马尔科夫过程。
( ) 8.维纳过程是平稳独立增量过程。
( )第三章9.非齐次泊松过程是平稳独立增量过程。
( )第四章10.有限状态空间不可约马氏链的状态均常返。
( )11.有限齐次马尔科夫链的所有非常返状态集不可能是闭集。
( )12.有限马尔科夫链,若有状态k 使0lim )(≠∞→n ik n p ,则状态k 即为正常返的。
( )13.设S i ∈,若存在正整数n ,使得,0,0)1()(>>+n ii n ii p p 则i 非周期。
( )14.有限状态空间马氏链必存在常返状态。
( ) 15.i 是正常返周期的充要条件是)(lim n ii n p ∞→不存在。
( )16.平稳分布唯一存在的充要条件是:只有一个基本正常返闭集。
( ) 17.有限状态空间马氏链不一定存在常返状态。
( ) 18.i 是正常返周期的充要条件是)(lim n ii n p ∞→存在。
( )19.若i j ↔,则有i j d d =( )20.不可约马氏链或者全为常返态,或者全为非常返态.( )答案 二、判断题1.× 2.√ 3.√ 4.√ 5.√ 6.√ 7.√ 8.√ 9.×10.√ 11.√ 12.√ 13.√ 14.√ 15.√ 16.√ 17.× 18.× 19.√ 20.√三、大题 第一章1.(10分)—(易)设),(~p n B X ,求X 的特征函数,并利用其求EX 。
2.(10分)—(中)利用重复抛掷硬币的试验定义一个随机过程,+∞<<∞-⎩⎨⎧=t t t t X 出现反面出现正面,2,cos )(π出现正面和反面的概率相等,求)(t X 的一维分布函数)2/1,(x F 和)1,(x F ,)(t X 的二维分布函数)1,2/1;,(21x x F 。
3.(10分)—(易)设有随机过程0,)(≥+=t Bt A t X ,其中A 与B 是相互独立的随机变量,均服从标准正态分布,求)(t X 的一维和二维分布。
第二章4.(10分)—(易)设随机过程X(t)=Vt+b ,t ∈(0,+∞), b 为常数,V 服从正态分布N(0,1)的随机变量,求X(t)的均值函数和相关函数。
5.(10分)—(易)已知随机过程X(t)的均值函数m x (t)和协方差函数B x (t 1, t 2),g(t)为普通函数,令Y(t)= X(t)+ g(t),求随机过程Y(t)的均值函数和协方差函数。
6.(10分)—(中)设}),({T t t X ∈是实正交增量过程,ξ,0)0(),,0[=∞=X T 是一服从标准正态分布的随机变量,若对任一)(,0t X t ≥都与ξ相互独立,求),0[,)()(∞∈+=t t X t Y ξ的协方差函数。
7.(10分)—(中)设},)({+∞<<∞-+=t Yt X t Z ,若已知二维随机变量),(Y X 的协方差矩阵为⎥⎦⎤⎢⎣⎡2221σρρσ,求)(t Z 的协方差函数。
8.(10分)—(难)设有随机过程}),({T t t X ∈和常数a ,试以)(t X 的相关函数表示随机过程T t t X a t X t Y ∈-+=),()()(的相关函数。
第三章9.(10分)—(易)某商店每日8时开始营业,从8时到11时平均顾客到达率线性增加.在8时顾客平均到达率为5人/时,11时到达率达到最高峰20人/时,从11时到13时,平均顾客到达率维持不变,为20人/时,从13时到17时,顾客到达率线性下降,到17时顾客到达率为12人/时。
假定在不相重叠的时间间隔内到达商店的顾客数是相互独立的,问在8:30—9:30间无顾客到达商店的概率是多少?在这段时间内到达商店的顾客数学期望是多少?10.(15分)—(难)设到达某商店的顾客组成强度为λ的泊松过程,每个顾客购买商品的概率为p ,且与其它顾客是否购买商品无关,求(0,t )内无人购买商品的概率。
11.(15分)—(难)设X 1(t) 和X 2 (t) 是分别具有参数1λ和2λ的相互独立的泊松过程,证明:Y(t)是具有参数21λλ+的泊松过程。
12.(10分)—(中)设移民到某地区定居的户数是一泊松过程,平均每周有2户定居.即2=λ。
如果每户的人口数是随机变量,一户四人的概率为1/6,一户三人的概率为1/3,一户两人的概率为1/3,一户一人的概率为1/6,并且每户的人口数是相互独立的,求在五周内移民到该地区人口的数学期望与方差。
13.(10分)—(难)在时间t 内向电话总机呼叫k 次的概率为 ,2,1,0,!)(==-k e k k p kt λλ,其中0>λ为常数.如果任意两相邻的时间间隔内的呼叫次数是相互独立的,求在时间2t 内呼叫n 次的概率)(2n P t14.(10分)—(易)设顾客到某商场的过程是泊松过程,巳知平均每小时有30人到达,求下列事件的概率:两个顾客相继到达的时间间隔超过2 min15.(15分)—(中)设进入中国上空流星的个数是一泊松过程,平均每年为10000个.每个流星能以陨石落于地面的概率为0.0001,求一个月内落于中国地面陨石数W 的EW 、varW 和P{W ≥2}.16.(10分)—(易)通过某十字路口的车流是一泊松过程.设1min 内没有车辆通过的概率为0.2,求2min 内有多于一辆车通过的概率。
17.(10分)—(易)设顾客到某商场的过程是泊松过程,巳知平均每小时有30人到达,求下列事件的概率:两个顾客相继到达的时间间隔短于4 min18.(15分)—(中)某刊物邮购部的顾客数是平均速率为6的泊松过程,订阅1年、2年或3年的概率分别为1/2、l /3和1/6,且相互独立.设订一年时,可得1元手续费;订两年时,可得2元手续费;订三年时,可得3元手续费. 以X(t)记在[0,t]内得到的总手续费,求EX(t)与var X(t)19.(10分)—(易)设顾客到达商场的速率为2个/min ,求 (1) 在5 min 内到达顾客数的平均值;(2) 在5min 内到达顾客数的方差;(3) 在5min 内至少有一个顾客到达的概率. 20.(10分)—(中)设某设备的使用期限为10年,在前5年内平均2.5年需要维修一次,后5年平均2年需维修一次,求在使用期限内只维修过1次的概率.21.(15分)—(难)设X(t)和Y(t) (t ≥0)是强度分别为X λ和Y λ的泊松过程,证明:在X(t)的任意两个相邻事件之间的时间间隔内,Y(t) 恰好有k 个事件发生的概率为kY X Y Y X Xp ⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛+=λλλλλλ。