年处理19万吨乙醇-水分离精馏塔设计
- 格式:doc
- 大小:1.62 MB
- 文档页数:39
分离乙醇—水混合液的筛板精馏塔设计This model paper was revised by the Standardization Office on December 10, 2020课题名称:化工课程设计任务书系别:化环学院专业:化工2班学号:姓名:指导教师:时间:2011年12月01-16日附化工原理—化工设备机械基础课程设计任务书-1专业化工班级 0409402 设计人一. 设计题目分离乙醇—水混合液的筛板精馏塔设计二. 原始数据及条件生产能力:年处理量8万吨(开工率300天/年),每天工作24小时;原料:乙醇含量为20%(质量百分比,下同)的常温液体;分离要求:塔顶,乙醇含量不低于90%,塔底,乙醇含量不高于 8%;操作条件:三. 设计要求:(一)编制一份设计说明书,主要内容包括:1. 前言2. 设计方案的确定和流程的说明3. 塔的工艺计算4. 塔和塔板主要工艺尺寸的设计a. 塔高、塔径及塔板结构尺寸的确定b. 塔板的流体力学验算c. 塔板的负荷性能图5. 附属设备的选型和计算6. 设计结果一览表7. 注明参考和使用的设计资料8. 对本设计的评述或有关问题的分析讨论。
(二)绘制一个带控制点的工艺流程图(2#图)(三)绘制精馏塔的工艺条件图(1#图纸)四. 设计日期:2011年 12月01日至 2011 年12 月16日五. 指导教师:谭志斗、石新雨推荐教材及主要参考书:1.王国胜, 裴世红,孙怀宇. 化工原理课程设计. 大连:大连理工大学出版社,20052.贾绍义,柴诚敬.化工原理课程设计. 天津:天津科学技术出版社,2002.3、马江权,冷一欣. 化工原理课程设计. 北京:中国石化出版社,2009.4、《化工工艺设计手册》,上、下册;5、《化学工程设计手册》;上、下册;6、化工设备设计全书编辑委员会.化工设备设计全书-塔设备;化学工业出版社:北京. 2004,017、化工设备设计全书编辑委员会.化工设备设计全书-换热器;化学工业出版社:北京. 2004,018、化工设备设计全书编辑委员会.化工设备设计全书-管道;化学工业出版社:北京. 2004,019.陈敏恒. 化工原理(第三版). 北京:化学工业出版社,2006目录第一章设计方案简介精馏的基本原理是根据各液体在混合液中的挥发度不同,采用多次部分汽化和多次部分冷凝的原理来实现连续的高纯度分离。
乙醇水分离板式精馏塔设计方案一、课题名称乙醇——水分离板式精馏塔设计二、课题条件(原始数据)原料:乙醇、水溶液处理量:1550Kg/h原料组成:28%(乙醇的质量分率)料液初温:20℃操作压力、回流比、单板压降:自选进料状态:冷液体进料塔顶产品浓度:93%(质量分率)塔底釜液含乙醇含量不高于0.1%(质量分率)塔顶:全凝器塔釜:饱和蒸汽间接加热塔板形式:筛板生产时间:300天/年,每天24h运行冷却水温度:20℃设备形式:筛板塔厂址:滨州市三、设计容(包括设计、计算、论述、实验、应绘图纸等根据目录列出大标题即可)1 、设计方案的选定2、精馏塔的物料衡算3、塔板数的确定4、精馏塔的工艺条件及有关物性数据的计算(加热物料进出口温度、密度、粘度、比热、导热系数)5、精馏塔塔体工艺尺寸的计算6、塔板主要工艺尺寸的计算7、塔板的流体力学验算8、塔板负荷性能图(精馏段)9、换热器设计10、馏塔接管尺寸计算11、制生产工艺流程图(带控制点、机绘,A2图纸)12、绘制板式精馏塔的总装置图(包括部分构件)(手绘,A1图纸)13、撰写课程设计说明书一份设计说明书的基本容⑴课程设计任务书⑵课程设计成绩评定表⑶中英文摘要⑷目录⑸设计计算与说明⑹设计结果汇总⑺小结⑻参考文献14、有关物性数据可查相关手册15、注意事项●写出详细计算步骤,并注明选用数据的来源●每项设计结束后列出计算结果明细表●设计最终需装订成册上交四、进度计划(列出完成项目设计容、绘图等具体起始日期)1.设计动员,下达设计任务书0.5天2.收集资料,阅读教材,拟定设计进度1-2天3.初步确定设计方案及设计计算容5-6天4.绘制总装置图2-3天5.整理设计资料,撰写设计说明书2天6.设计小结及答辩1天目录摘要 (1)第一章概述 (1)1.1精馏操作对塔设备的要求 (1)1.2板式塔类型 (2)第二章设计方案的确定 (3)2.1操作条件的确定 (3)2.2确定设计方案的原则 (4)第三章塔的工艺尺寸得计算 (6)3.1精馏塔的物料衡算 (6)3.1.1摩尔分率 (6)3.1.2平均摩尔质量 (6)3.1.3 物料衡算 (6)3.1.4 回收率 (7)3.2塔板数的确定 (7)3.2.1理论板层数N的求取 (7)3.3 精馏塔有关物性数据的计算 (11)3.3.1 操作压力计算 (11)3.3.2 操作温度计算 (11)3.3.3 平均摩尔质量计算 (11)3.3.4 平均密度计算 (12)3.3.5 液体平均表面力计算 (13)3.3.6 液体平均黏度计算 (14)3.4 精馏塔的塔体工艺尺寸设计 (14)3.4.1 塔径的计算 (14)3.4.2 精馏塔有效高度的计算 (14)3.5 塔板主要工艺尺寸的计算 (18)3.5.1 溢流装置计算 (18)3.5.2 塔板布置 (21)3.6 筛板的流体力学验算 (24)3.6.1 塔板压降 (24)3.6.2液面落差 (26)3.6.3 液沫夹带 (26)3.6.4 漏液 (26)3.6.5 液泛 (27)3.7 塔板负荷性能图 (27)3.7.1 漏液线 (28)3.7.2 液沫夹带线 (28)3.7.3 液相负荷下限线 (29)3.7.4 液相负荷上限线 (30)3.7.5 液泛线 (31)第四章塔附属设计 (35)4.1 塔附件设计 (35)4.2 筒体与封头 (38)4.3 塔总体高度设计 (38)4.3.1 塔的顶部空间高度 (38)4.3.2 塔的底部空间高度 (39)4.3.3 塔体高度 (39)4.4 附属设备设计 (39)4.4.1 冷凝器的选择 (39)4.4.2 泵的选择 (40)设计小结 (41)附录 (42)参考文献 (39)摘要化工生产过程中所处理的原料,中间产物,粗产品几乎都是由若干组分组成的混合物,而且其部分都是均相物质。
分离乙醇-水混合液(20万吨/年)的浮阀精馏塔设计第一章绪论1.1概述塔设备是化工、石油化工和炼油等生产中最重要的设备之一。
它可使气(或汽)液或液液两相之间进行紧密接触,达到.相际传质及传热的目的。
可在塔设备中完成的常见的单元操作有:精馏、吸收、解吸和萃取等。
此外,工业气体的冷却与回收、气体的湿法净制和干燥,以及兼有气液两相传质和传热的增湿、减湿等。
在化工厂、石油化工厂、炼油厂等中,塔设备的性能对于整个装置的产品产量、质量、生产能力和消耗定额,以及三废处理和环境保护等各个方面,都有重大的影响。
据有关资料报道,塔设备的投资费用占整个工艺设备投资用的较大比例;它所耗用的钢材重量在各类工艺设备中也属较多。
因此,塔设备的设计和研究,受到化工、炼油等行业的极大重视。
塔设备经过长期发展,形成了形式繁多的结构,以满足各方面的特殊需要。
为了便于研究和比较,人们从不同的角度对塔设备进行分类。
例如:按操作压力分为加压塔、常压塔和减压塔;按单元操作分为精馏塔、吸收塔、解吸塔、萃取塔、反应塔和干燥塔;按形成相际接触界面的方式分为具有固定相界面的塔和流动过程中形成相界面的塔;也有按塔釜形式分类的。
但是长期以来,最常用的分类是按塔的内件结构分为板式塔和填料塔两大类,还有几种装有机械运动构件的塔。
在板式塔中,塔内装有一定数量的塔盘,气体以鼓泡或喷射的形式穿过塔盘上的液层使两相密切接触,进行传质。
两相的组分浓度沿塔高呈阶梯式变化。
在填料塔中,塔内装填一定段数和一定高度的填料层,液体沿填料表面呈膜状向下流动,作为连续相的气体自下而上流动,与液体逆流传质。
两相的组分浓度沿塔高呈连续变化。
随着塔设备技术的发展,各工业国家还陆续制订了多种气液接触元件及有关塔盘制造、安装、验收的标准、规范和技术条件等,以保证塔设备运行的质量和缩短其制造、安装周期,进而减少设备的投资费用。
当然,盲目地套用标准或是忽视标准等的修订工作,也会对技术的发展起到阻碍作用。
课程设计课程名称:化工原理题目名称:分离乙醇—水板式精馏塔设计学生学院:轻工化工学院专业班级:学生学号:学生姓名:指导教师:2010 年 6月20 日2.工艺流程图 (8)3.设计方案 (8)3.1设计方案的确定 (8)3.1.1塔型的选择 (8)3.1.2操作压力 (8)3.1.3进料方式 (9)3.1.4加热方式 (9)3.1.5热能的利用 (9)3.1.6回流方式 (10)3.2实验方案的说明 (10)4、板式塔的工艺计算 (11)4.1物料衡算 (11)4.2最小回流比RMIN和操作回流比R的确定 (12)4.3操作线的确定 (14)4.3.1精馏段操作曲线方程 (14)4.3.2提馏段操作曲线方程 (14)4.4确定理论板层数NT (15)4.5确定全塔效率ET 和实际塔板层数NP (15)4.5.1相对挥发度 (15)4.5.2物系黏度 (16)4.5.3全塔效率和实际塔板数 (16)4.6操作压强的计算 (17)4.7平均分子量的计算 (18)4.8平均密度的计算 (18)4.9表面张力的计算 (20)4.10平均流量的计算 (21)5、塔体和塔板的工艺尺寸计算 (22)5.1塔径 (22)5.2溢流装置 (25)5.3塔板布置及筛板塔的主要结构参数 (30)5.4塔板流体力学验算 (32)5.4.2降液管泡沫层高度 (34)5.4.3液体在降液管内的停留时间 (35)5.4.4雾沫夹带量校核 (35)5.4.5漏液点 (37)5.5操作负荷性能图 (38)5.6设计结果 (43)6、辅助设备的计算与选型 (45)6.1料液储罐的选型 (45)6.2换热器的选型 (46)6.2.1预热器 (47)6.2.2再沸器 (48)6.2.3全凝器热负荷及冷却水消耗量 (49)6.2.4产品冷却器 (50)6.3各接管尺寸的确定 (51)6.3.1进料管 (51)6.3.2釜残液出料管 (51)6.3.3回流液管 (51)6.3.4塔顶上升蒸汽管 (52)6.3.5水蒸汽进口管 (52)6.4塔高 (53)6.5法兰 (54)6.6人孔 (56)6.7视镜 (56)6.8塔顶吊柱 (56)6.9泵的计算及选型 (57)7、经济横算 (58)7.1成产成本 (58)7.2水蒸汽费用CS (58)7.3冷却水费用CW (58)7.4设备投资费CD (59)7.5总费用 (59)7.6利润 (59)8心得体会 (60)符号说明:英文字母Aa---- 塔板的开孔区面积,m2Af---- 降液管的截面积, m2Ao---- 筛孔区面积, m2A T----塔的截面积m2△P P----气体通过每层筛板的压降C----负荷因子无因次t----筛孔的中心距C20----表面张力为20mN/m的负荷因子do----筛孔直径u’o----液体通过降液管底隙的速度D----塔径m Wc----边缘无效区宽度e v----液沫夹带量kg液/kg气Wd----弓形降液管的宽度E T----总板效率Ws----破沫区宽度R----回流比Rmin----最小回流比M----平均摩尔质量kg/kmolt m----平均温度℃g----重力加速度9.81m/s2Z----板式塔的有效高度Fo----筛孔气相动能因子kg1/2/(s.m1/2)hl----进口堰与降液管间的水平距离m θ----液体在降液管内停留时间h c----与干板压降相当的液柱高度mυ----粘度hd----与液体流过降液管的压降相当的液注高度m ρ----密度hf----塔板上鼓层高度m σ----表面张力h L----板上清液层高度mΨ----液体密度校正系数h1----与板上液层阻力相当的液注高度m 下标ho----降液管的义底隙高度m max----最大的h ow----堰上液层高度m min----最小的h W----出口堰高度m L----液相的h’W----进口堰高度m V----气相的hσ----与克服表面张力的压降相当的液注高度mH----板式塔高度mH B----塔底空间高度mHd----降液管内清液层高度mH D----塔顶空间高度mH F----进料板处塔板间距mH P----人孔处塔板间距mH T----塔板间距mH1----封头高度mH2----裙座高度mK----稳定系数l W----堰长mLh----液体体积流量m3/hLs----液体体积流量m3/sn----筛孔数目P----操作压力KPa△P---压力降KPa△Pp---气体通过每层筛的压降KPaT----理论板层数u----空塔气速m/su0,min----漏夜点气速m/su o’ ----液体通过降液管底隙的速度m/s V h----气体体积流量m3/hV s----气体体积流量m3/sW c----边缘无效区宽度mW d----弓形降液管宽度mW s ----破沫区宽度mZ ---- 板式塔的有效高度m希腊字母δ----筛板的厚度mθ----液体在降液管内停留的时间sυ----粘度mPa.sρ----密度kg/m3σ----表面张力N/mφ----开孔率无因次α----质量分率无因次下标Max---- 最大的Min ---- 最小的L---- 液相的V---- 气相的1.设计任务1.1题目:分离乙醇—水板式塔精馏塔设计1.2生产原始数据:1)原料:乙醇—水混合物,含乙醇35%(质量分数),温度35℃;2)产品:馏出液含乙醇93%(质量分数),温度38℃,残液中含酒精浓度≤0.5%;3)生产能力:原料液处理量55000t/年,每年实际生产天数330t,一年中有一个月检修;4)热源条件:加热蒸汽为饱和蒸汽,其表压为2.5Kgf/cm2;5)当地冷却水水温25℃;6)操作压力:常压101.325kp a;1.3设计任务及要求1)设计方案的选定,包括塔型的选择及操作条件确定等;2)确定该精馏的流程,绘出带控制点的生产工艺流程图,标明所需的设备、管线及其有关观测或控制所必需的仪表和装置;3)精馏塔的有关工艺计算计算产品量、釜残液量及其组成;最小回流比及操作回流比的确定;计算所需理论塔板层数及实际板层数;确定进料板位置。
分离乙醇水精馏塔设计含工艺流程图和塔设备图集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]分离乙醇-水的精馏塔设计设计人员:所在班级:化学工程与工艺成绩:指导老师:日期:化工原理课程设计任务书一、设计题目:乙醇---水连续精馏塔的设计二、设计任务及操作条件(1)进精馏塔的料液含乙醇35%(质量分数,下同),其余为水;(2)产品的乙醇含量不得低于90%;(3)塔顶易挥发组分回收率为99%;(4)生产能力为50000吨/年90%的乙醇产品;(5)每年按330天计,每天24小时连续运行。
(6)操作条件a)塔顶压强 4kPa (表压)b)进料热状态自选c)回流比自选d)加热蒸汽压力低压蒸汽(或自选)e)单板压降 kPa。
三、设备形式:筛板塔或浮阀塔四、设计内容:1、设计说明书的内容1)精馏塔的物料衡算;2)塔板数的确定;3)精馏塔的工艺条件及有关物性数据的计算;4)精馏塔的塔体工艺尺寸计算;5)塔板主要工艺尺寸的计算;6)塔板的流体力学验算;7)塔板负荷性能图;8)精馏塔接管尺寸计算;9)对设计过程的评述和有关问题的讨论;2、设计图纸要求;1)绘制生产工艺流程图(A2 号图纸);2)绘制精馏塔设计条件图(A2 号图纸);五、设计基础数据:1.常压下乙醇---水体系的t-x-y 数据;2.乙醇的密度、粘度、表面张力等物性参数。
一、设计题目:乙醇---水连续精馏塔的设计二、设计任务及操作条件:进精馏塔的料液含乙醇35%(质量分数,下同),其余为水;产品的乙醇含量不得低于90%;塔顶易挥发组分回收率为99%,生产能力为50000吨/年90%的乙醇产品;每年按330天计,每天24小时连续运行。
塔顶压强 4kPa (表压)进料热状态自选回流比自选加热蒸汽压力低压蒸汽(或自选)单板压降≤。
三、设备形式:筛板塔四、设计内容:1)精馏塔的物料衡算:原料乙醇的组成 xF==原料乙醇组成塔顶易挥发组分回收率90%平均摩尔质量 MF =由于生产能力50000吨/年,.则 qn,F所以,qn,D2)塔板数的确定:甲醇—水属非理想体系,但可采用逐板计算求理论板数,本设计中理论塔板数的计算采用图解法。
毕业设计分离乙醇—水板式精馏塔设计设计说明书课程设计课程名称:化工原理题目名称:分离乙醇—水板式精馏塔设计学生学院:轻工化工学院专业班级:学生学号:学生姓名:指导教师:2010 年 6月20 日1.设计任务 (5)2.工艺流程图 (8)3.设计方案 (8)3.1设计方案的确定 (8)3.1.1塔型的选择 (8)3.1.2操作压力 (8)3.1.3进料方式 (9)3.1.4加热方式 (9)3.1.5热能的利用 (9)3.1.6回流方式 (10)3.2实验方案的说明 (10)4、板式塔的工艺计算 (11)4.1物料衡算 (11)4.2最小回流比RMIN和操作回流比R的确定 (12)4.3操作线的确定 (14)4.3.1精馏段操作曲线方程 (14)4.3.2提馏段操作曲线方程 (14)4.4确定理论板层数NT (15)4.5确定全塔效率ET 和实际塔板层数NP (15)4.5.1相对挥发度 (15)4.5.2物系黏度 (16)4.5.3全塔效率和实际塔板数 (16)4.6操作压强的计算 (17)4.7平均分子量的计算 (18)4.8平均密度的计算 (18)4.9表面张力的计算 (20)4.10平均流量的计算 (21)5、塔体和塔板的工艺尺寸计算 (22)5.1塔径 (22)5.2溢流装置 (25)5.3塔板布置及筛板塔的主要结构参数 (30)5.4塔板流体力学验算 (32)5.4.1塔板阻力HP (32)5.4.2降液管泡沫层高度 (34)5.4.3液体在降液管内的停留时间 (35)5.4.4雾沫夹带量校核 (35)5.4.5漏液点 (37)5.5操作负荷性能图 (38)5.6设计结果 (43)6、辅助设备的计算与选型 (45)6.1料液储罐的选型 (45)6.2换热器的选型 (46)6.2.1预热器 (47)6.2.2再沸器 (48)6.2.3全凝器热负荷及冷却水消耗量 (49)6.2.4产品冷却器 (50)6.3各接管尺寸的确定 (51)6.3.1进料管 (51)6.3.2釜残液出料管 (51)6.3.3回流液管 (51)6.3.4塔顶上升蒸汽管 (52)6.3.5水蒸汽进口管 (52)6.4塔高 (53)6.5法兰 (54)6.6人孔 (56)6.7视镜 (56)6.8塔顶吊柱 (56)6.9泵的计算及选型 (57)7、经济横算 (58)7.1成产成本 (58)7.2水蒸汽费用CS (58)7.3冷却水费用CW (58)7.4设备投资费CD (59)7.5总费用 (59)7.6利润 (59)8心得体会 (60)符号说明:英文字母Aa---- 塔板的开孔区面积,m2Af---- 降液管的截面积, m2Ao---- 筛孔区面积, m2A T----塔的截面积m2△P P----气体通过每层筛板的压降C----负荷因子无因次t----筛孔的中心距C20----表面张力为20mN/m的负荷因子do----筛孔直径u’o----液体通过降液管底隙的速度D----塔径m Wc----边缘无效区宽度e v----液沫夹带量kg液/kg气Wd----弓形降液管的宽度E T----总板效率Ws----破沫区宽度R----回流比Rmin----最小回流比M----平均摩尔质量kg/kmolt m----平均温度℃g----重力加速度9.81m/s2Z----板式塔的有效高度Fo----筛孔气相动能因子kg1/2/(s.m1/2)hl----进口堰与降液管间的水平距离m θ----液体在降液管内停留时间h c----与干板压降相当的液柱高度mυ----粘度hd----与液体流过降液管的压降相当的液注高度m ρ----密度hf----塔板上鼓层高度m σ----表面张力h L----板上清液层高度mΨ----液体密度校正系数h1----与板上液层阻力相当的液注高度m 下标ho----降液管的义底隙高度m max----最大的h ow----堰上液层高度m min----最小的h W----出口堰高度m L----液相的h’W----进口堰高度m V----气相的hσ----与克服表面张力的压降相当的液注高度mH----板式塔高度mH B----塔底空间高度mHd----降液管内清液层高度mH D----塔顶空间高度mH F----进料板处塔板间距mH P----人孔处塔板间距mH T----塔板间距mH1----封头高度mH2----裙座高度mK----稳定系数l W----堰长mLh----液体体积流量m3/hLs----液体体积流量m3/sn----筛孔数目P----操作压力KPa△P---压力降KPa△Pp---气体通过每层筛的压降KPaT----理论板层数u----空塔气速m/su0,min----漏夜点气速m/su o’ ----液体通过降液管底隙的速度m/s V h----气体体积流量m3/hV s----气体体积流量m3/sW c----边缘无效区宽度mW d----弓形降液管宽度mW s ----破沫区宽度mZ ---- 板式塔的有效高度m希腊字母δ----筛板的厚度mθ----液体在降液管内停留的时间sυ----粘度mPa.sρ----密度kg/m3σ----表面张力N/mφ----开孔率无因次α----质量分率无因次下标Max---- 最大的Min ---- 最小的L---- 液相的V---- 气相的1.设计任务1.1题目:分离乙醇—水板式塔精馏塔设计1.2生产原始数据:1)原料:乙醇—水混合物,含乙醇35%(质量分数),温度35℃;2)产品:馏出液含乙醇93%(质量分数),温度38℃,残液中含酒精浓度≤0.5%;3)生产能力:原料液处理量55000t/年,每年实际生产天数330t,一年中有一个月检修;4)热源条件:加热蒸汽为饱和蒸汽,其表压为2.5Kgf/cm2;5)当地冷却水水温25℃;6)操作压力:常压101.325kp a;1.3设计任务及要求1)设计方案的选定,包括塔型的选择及操作条件确定等;2)确定该精馏的流程,绘出带控制点的生产工艺流程图,标明所需的设备、管线及其有关观测或控制所必需的仪表和装置;3)精馏塔的有关工艺计算计算产品量、釜残液量及其组成;最小回流比及操作回流比的确定;计算所需理论塔板层数及实际板层数;确定进料板位置。
分离乙醇-水的精馏塔设计设计人员:所在班级:化学工程与工艺成绩:指导老师:日期:化工原理课程设计任务书一、设计题目:乙醇---水连续精馏塔的设计二、设计任务及操作条件(1)进精馏塔的料液含乙醇35%(质量分数,下同),其余为水;(2)产品的乙醇含量不得低于90%;(3)塔顶易挥发组分回收率为99%;(4)生产能力为50000吨/年90%的乙醇产品;(5)每年按330天计,每天24小时连续运行。
(6)操作条件a)塔顶压强 4kPa (表压)b)进料热状态自选c)回流比自选d)加热蒸汽压力低压蒸汽(或自选)e)单板压降 kPa。
三、设备形式:筛板塔或浮阀塔四、设计内容:1、设计说明书的内容1)精馏塔的物料衡算;2)塔板数的确定;3)精馏塔的工艺条件及有关物性数据的计算;4)精馏塔的塔体工艺尺寸计算;5)塔板主要工艺尺寸的计算;6)塔板的流体力学验算;7)塔板负荷性能图;8)精馏塔接管尺寸计算;9)对设计过程的评述和有关问题的讨论;2、设计图纸要求;1)绘制生产工艺流程图(A2 号图纸);2)绘制精馏塔设计条件图(A2 号图纸);五、设计基础数据:1.常压下乙醇---水体系的t-x-y 数据;2.乙醇的密度、粘度、表面张力等物性参数。
一、设计题目:乙醇---水连续精馏塔的设计二、设计任务及操作条件:进精馏塔的料液含乙醇35%(质量分数,下同),其余为水;产品的乙醇含量不得低于90%;塔顶易挥发组分回收率为99%,生产能力为50000吨/年90%的乙醇产品;每年按330天计,每天24小时连续运行。
塔顶压强 4kPa (表压)进料热状态自选回流比自选加热蒸汽压力低压蒸汽(或自选)单板压降≤0.7kPa。
三、设备形式:筛板塔四、设计内容:1)精馏塔的物料衡算:原料乙醇的组成 xF==0.1740原料乙醇组成 xD0.7788塔顶易挥发组分回收率90%平均摩尔质量 MF =由于生产能力50000吨/年,.则 qn,F所以,qn,D2)塔板数的确定:甲醇—水属非理想体系,但可采用逐板计算求理论板数,本设计中理论塔板数的计算采用图解法。
乙醇-水溶液连续精馏塔设计目录1.设计任务书 (3)2.英文摘要前言 (4)3.前言 (4)4.精馏塔优化设计 (5)5.精馏塔优化设计计算 (5)6.设计计算结果总表 (22)7.参考文献 (23)8.课程设计心得 (23)精馏塔设计任务书一、设计题目乙醇—水溶液连续精馏塔设计二、设计条件1.处理量: 15000 (吨/年)2.料液浓度: 35 (wt%)3.产品浓度: 93 (wt%)4.易挥发组分回收率: 99%5.每年实际生产时间:7200小时/年6. 操作条件:①间接蒸汽加热;②塔顶压强:1.03 atm(绝对压强)③进料热状况:泡点进料;三、设计任务a) 流程的确定与说明;b) 塔板和塔径计算;c) 塔盘结构设计i. 浮阀塔盘工艺尺寸及布置简图;ii. 流体力学验算;iii. 塔板负荷性能图。
d) 其它i. 加热蒸汽消耗量;ii. 冷凝器的传热面积及冷却水的消耗量e) 有关附属设备的设计和选型,绘制精馏塔系统工艺流程图和精馏塔装配图,编写设计说明书。
乙醇——水溶液连续精馏塔优化设计前言乙醇在工业、医药、民用等方面,都有很广泛的应用,是很重要的一种原料。
在很多方面,要求乙醇有不同的纯度,有时要求纯度很高,甚至是无水乙醇,这是很有困难的,因为乙醇极具挥发性,也极具溶解性,所以,想要得到高纯度的乙醇很困难。
要想把低纯度的乙醇水溶液提升到高纯度,要用连续精馏的方法,因为乙醇和水的挥发度相差不大。
精馏是多数分离过程,即同时进行多次部分汽化和部分冷凝的过程,因此可使混合液得到几乎完全的分离。
化工厂中精馏操作是在直立圆形的精馏塔内进行的,塔内装有若干层塔板或充填一定高度的填料。
为实现精馏分离操作,除精馏塔外,还必须从塔底引入上升蒸汽流和从塔顶引入下降液。
可知,单有精馏塔还不能完成精馏操作,还必须有塔底再沸器和塔顶冷凝器,有时还要配原料液预热器、回流液泵等附属设备,才能实现整个操作。
浮阀塔与20世纪50年代初期在工业上开始推广使用,由于它兼有泡罩塔和筛板塔的优点,已成为国内应用最广泛的塔型,特别是在石油、化学工业中使用最普遍。
化工原理课程设计乙醇-水填料精馏塔设计学生姓名学院名称学号班级专业名称指导教师年月日化工原理课程设计任务书摘要乙醇是生活中一种常见的化学品,它是一种有机物,俗称酒精。
它是带有一个羟基的饱和一元醇,在常温、常压下是一种易燃、易挥发的无色透明液体,它的水溶液具有酒香的气味,并略带刺激性。
有酒的气味和刺激的辛辣滋味。
乙醇液体密度比水小,能与水以任意比互溶。
乙醇的生产离不开精馏、萃取等化工流程。
氧化钙脱水法、共沸精馏、吸附精馏、渗透汽化、吸附法、萃取精馏法和真空脱水法等多用在乙醇的回收和提纯的方面。
实际生产中较成熟的方法是共沸精馏和萃取精馏,这2 种分离方法多以连续操作的方式出现。
在一些领域生产乙醇设备简单、投资小,可单塔分离多组分混合物,或同一塔可处理种类和组成频繁更换的物系。
塔设备是使气液成两相通过精密接触达到相际传质和传热目的的气液传质设备之一,一般分为级间接触式和连续接触式两大类。
前者的代表是板式塔,后者的代表则为填料塔。
本次课程设计就是针对乙醇-水体系而进行的常压二元填料精馏塔的设计及相关设备选型。
关键词:乙醇;水;填料塔;精馏1.1 物料性质 (1)1.2 塔设备简介 (1)2流程的确定及说明 (1)2.1.加料 (1)2.2.进料 (1)2.3 塔顶冷凝方式 (2)2.4 回流方式 (2)2.5 加热方式 (2)2.6 加热器 (2)3精馏塔的设计计算 (2)3.1物料衡算 (2)3.2塔顶气相、液相,进料和塔底的温度分别为:VD t、LD t、F t、W t 3 3.3平均相对挥发度α (4)3.4回流比的确定 (4)3.5热量衡算 (5)3.5.1加热介质的选择 (5)3.5.2冷却剂的选择 (5)3.5.3热量衡算 (5)3.6理论塔板数计算 (7)3.6.1板数计算 (7)3.6.2塔板效率 (8)3.7 精馏塔主要尺寸的设计计算 (9)3.7.1流量和物性参数的计算 (9)3.7.2塔径设计计算 (11)4附属设备及主要附件的选型计算 (15)4.1.冷凝器 (15)4.3塔内其他构件 (17)4.3.1.塔顶蒸汽管 (17)4.3.2.回流管 (17)4.3.3.进料管 (18)4.3.4.塔釜出料管 (18)4.3.5除沫器 (18)4.3.6液体分布器 (19)4.3.7液体再分布器 (20)4.3.8填料支撑板的选择 (20)4.3.9塔釜设计 (21)4.3.10塔的顶部空间高度 (21)4.3.11手孔的设计 (21)4.3.12.裙座的设计 (22)5精馏塔高度计算 (22)6总结 (24)附录 (24)参考文献 (26)第一部分概述1.1物料性质乙醇易燃,具刺激性。
目录(一)设计方案简介.................................................................................................................. - 1 - (二)工艺计算及主体设备设计计算...................................................................................... - 1 - 1.精馏流程的确定............................................................................................................ - 1 - 2.塔的物料恒算................................................................................................................ - 1 -2.1料液及塔顶、塔底产品的摩尔分数....................................................................... - 1 -2.2 料液及塔顶、塔底产品的平均摩尔质量.............................................................. - 2 -2.3 物料恒算.................................................................................................................. - 2 -3.塔板数的确定................................................................................................................ - 2 -3.1理论塔板数的求取................................................................................................... - 2 -3.1.1绘制相平衡图................................................................................................... - 2 -3.1.2 求最小回流比、操作回流比.......................................................................... - 3 -3.1.3 求理论塔板数.................................................................................................. - 3 -3.2全塔效率................................................................................................................... - 5 -3.3实际塔板数............................................................................................................... - 5 -4.塔的工艺条件及物性数据计算[2]................................................................................. - 5 -4.1操作压力................................................................................................................... - 5 -4.2温度[1] ....................................................................................................................... - 5 -4.3平均摩尔质量........................................................................................................... - 6 -4.4平均密度................................................................................................................... - 6 -4.5液体表面张力........................................................................................................... - 7 -4.6液体黏度................................................................................................................... - 7 -5.精馏段气液负荷计算[2]................................................................................................. - 7 - 6.塔和塔板主要工艺尺寸计算[3],[4] ............................................................................... - 8 -6.1塔径........................................................................................................................... - 8 -6.2溢流装置................................................................................................................... - 8 -6.3塔板布置................................................................................................................... - 9 -6.4筛孔数与开孔率..................................................................................................... - 10 -6.5塔的有效高度(精馏段)......................................................................................... - 10 -6.6塔高计算................................................................................................................. - 10 -7.筛板的流体力学验算[5]................................................................................................. - 10 -7.1塔板压降................................................................................................................. - 10 -7.2液面落差................................................................................................................. - 11 -7.3.液沫夹带................................................................................................................ - 11 -7.4漏液......................................................................................................................... - 11 -7.5液泛......................................................................................................................... - 11 -8.塔板负荷性能图[6]......................................................................................................... - 12 -8.1漏液线..................................................................................................................... - 12 -8.2液沫夹带线............................................................................................................. - 12 -8.3液相负荷下限线..................................................................................................... - 13 -8.4液相负荷上限线..................................................................................................... - 13 -8.5液泛线..................................................................................................................... - 14 -9.附图................................................................................................................................ - 16 -10.本设计的评价或有关问题的分析讨论...................................................................... - 18 - 附:参考文献符号说明.......................................................................................................... - 18 -(一)设计方案简介塔设备是炼油、化工、石油化工、生物化工和制药等生产中广泛应用的气液传质设备。
《分离乙醇-水精馏塔设计》说明书学生姓名学号所属学院专业化学工程与工艺班级指导教师目录化工原理课程设计任务书 (4)摘要 (5)前言 (6)第一章绪论 (7)1.1设计的目的 (7)1.2设计方案 (7)1.3设计思路 (7)1.4设计依据 (8)1.4.1 操作压力 (8)1.4.2 进料状况 (8)1.4.3加热方式 (8)1.4.4热能的利用 (8)1.5. 塔型选择 (8)第二章塔的工艺计算 (9)2.1工艺过程 (9)2.1.1精馏塔全塔物料衡算 (9)2.1.2理论及实际塔板数的确定 (9)2.1.3 塔的结构的设计 (13)2.2精馏塔的塔体工艺尺寸计算 (18)2.2.1塔径的计算 (18)2.2.2精馏塔有效高度的计算 (19)2.2.3溢流装置计算 (19)2.2.4 塔板布置 (20)第三章流体力学验算 (22)3.1气相通过浮阀塔板的压降: (22)3.2淹塔 (22)3.3. 雾沫夹带验算 (23)3.4 操作性能负荷图 (23)3.4.1 气相负荷下限图(漏液线) (23)3.4.2 过量液沫夹带线 (24)3.4.3 液相负荷下限线 (24)3.4.4 液相负荷上限线 (24)3.4.5 液泛线 (24)第四章精馏塔设备设计 (26)4.1精馏塔塔体材料、内径、壁厚和强度校核 (26)4.1.1精馏塔塔体材料的选择 (26)4.1.2精馏塔的内径 (26)4.1.3壁厚的计算 (26)4.1.4强度校核 (27)4.2封头的选型依据,材料及尺寸规格 (27)4.2.1封头的选型依据 (27)4.2.2封头材料的选择 (27)4.2.3封头的高 (27)4.2.4封头的壁厚 (28)4.3精馏塔的塔板类型选择 (28)4.4塔板结构及与塔体的连接形式 (28)4.5塔节的设计 (29)4.6塔体各部分高度设计 (29)4.7开孔补强结构设计 (29)4.8塔体各接管设计 (30)4.9塔体手孔及人孔的设计 (31)4.10除沫器的设计 (32)4.11支座设计 (32)4.11.1 精馏塔塔体质量: (32)4.11.2封头质量: (32)第五章设备的计算及选型 (32)5.1冷凝器负荷 (32)5.2 再沸器热负荷 (33)参考文献 (34)课程设计心得 (34)附录 (35)化工原理课程设计任务书一、设计题目:分离乙醇---水混合液的板式精馏塔工艺设计原始数据及条件:生产能力:年处理乙醇-水混合液19万吨(开工率300天/年)原料:乙醇含量为25%(质量百分比,下同)的常温液体分离要求:塔顶乙醇含量不低于90%塔底乙醇含量不高于1%建厂地址:阿克苏地区库车县二、设计参数(1)设计规模:乙醇---水混合液处理量_625.353 kmol/h(2)生产制度:年开工300天,每天三班8小时连续生产(3)原料组成:乙醇含量为25%(质量百分率,下同)(4)进料状况:含乙醇25%(质量百分比,下同)乙醇---水的混合溶液(泡点进料)(5)分离要求:塔顶乙醇含量不低于_90__%,塔底乙醇含量不大于__1___%,塔顶压力: 0.101325MPa (绝压),塔釜采用0.5 MPa饱和蒸汽间接加热(表压)(6)建厂地区:大气压为760mmHg、自来水年平均温度为20℃的库车县。
指导教师(签名):2012 年月日学科部(系)主任(签名):2012 年月日化工生产常需进行液体混合物的分离以达到提纯或回收有用组分的目的,精馏是利用液体混合物中各组分挥发度的不同并借助于多次部分汽化和部分冷凝达到轻重组分分离的方法。
精馏操作在化工、石油化工、轻工等工业生产中中占有重要的地位。
为此,掌握气液相平衡关系,熟悉各种塔型的操作特性,对选择、设计和分析分离过程中的各种参数是非常重要的。
塔设备是化工、炼油生产中最重要的设备类型之一。
本次设计的筛板塔是化工生产中主要的气液传质设备。
此设计针对二元物系的精馏问题进行分析、选取、计算、核算、绘图等,是较完整的精馏设计过程,该设计方法被工程技术人员广泛的采用。
精馏设计包括设计方案的选取,主要设备的工艺设计计算——物料衡算xF=0.25 xD=0.9 xW=0.01 F=100kmo l/h 实际塔板数精馏段22块,提馏段7块。
工艺参数的选定泡点进料、泡点回流。
设备的结构设计和工艺尺寸的设计计算塔高为11.35m,筛孔数目为3425个,辅助设备的选型,工艺流程图,主要设备的工艺条件图等内容。
通过对精馏塔的运算,可以得出精馏塔的各种设计如塔的工艺流程、生产操作条件及物性参数是合理的,各种接管尺寸是合理的,以保证精馏过程的顺利进行并使效率尽可能的提高。
关键词:乙醇水精馏段提馏段筛板塔精馏塔是进行精馏的一种塔式汽液接触装置,又称为蒸馏塔。
有板式塔与填料塔两种主要类型。
根据操作方式又可分为连续精馏塔与间歇精馏塔。
蒸气由塔底进入,与下降液进行逆流接触,两相接触中,下降液中的易挥发(低沸点)组分不断地向蒸气中转移,蒸气中的难挥发(高沸点)组分不断地向下降液中转移,蒸气愈接近塔顶,其易挥发组分浓度愈高,而下降液愈接近塔底,其难挥发组分则愈富集,达到组分分离的目的。
由塔顶上升的蒸气进入冷凝器,冷凝的液体的一部分作为回流液返回塔顶进入精馏塔中,其余的部分则作为馏出液取出。
塔底流出的液体,其中的一部分送入再沸器,热蒸发后,蒸气返回塔中,另一部分液体作为釜残液取出。
精馏塔的工作原理是根据各混合气体的汽化点(或沸点)的不同,控制塔各节的不同温度,达到分离提纯的目的。
化工生产常需进行液体混合物的分离以达到提纯或回收有用组分的目的,精馏操作在化工、石油化工、轻工等工业生产中中占有重要的地位。
为此,掌握气液相平衡关系,熟悉各种塔型的操作特性,对选择、设计和分析分离过程中的各种参数是非常重要的。
要想把低纯度的乙醇水溶液提升到高纯度,要用连续精馏的方法,因为乙醇和水的挥发度相差不大。
精馏是多数分离过程,即同时进行多次部分汽化和部分冷凝的过程,因此可使混合液得到几乎完全的分离。
化工厂中精馏操作是在直立圆形的精馏塔内进行的,塔内装有若干层塔板或充填一定高度的填料。
为实现精馏分离操作,除精馏塔外,还必须从塔底引入上升蒸汽流和从塔顶引入下降液。
可知,单有精馏塔还不能完成精馏操作,还必须有塔底再沸器和塔顶冷凝器,有时还要配原料液预热器、回流液泵等附属设备,才能实现整个操作。
本次设计的筛板塔是化工生产中主要的气液传质设备。
此设计针对二元物系的精馏问题进行分析、选取、计算、核算、绘图等,是较完整的精馏设计过程。
本设计包括设计方案的选取,主要设备的工艺设计计算——物料衡算、热量衡算、工艺参数的选定、设备的结构设计和工艺尺寸的设计计算,辅助设备的选型,工艺流程图,主要设备的工艺条件图等内容。
通过对精馏塔的运算,调试出塔的工艺流程、生产操作条件及物性参数,以保证精馏过程的顺利进行并使效率尽可能的提高。
第一章绪论1.1设计的目的课程设计是“化工原理”课程的一个总结性教学环节,是培养学生综合运用本门课程及有关先修课程的基础知识去解决某以设计任务的一次训练,在整个教学计划中起着培养学生独立工作能力的重要作用,通过课程设计就以下几方面要求学生加强训练。
(1)查阅资料选用公式和收集数据的能力。
(2)树立既考虑技术上的先进性与可行性,又考虑经济上的合理性,并注意到操作上的劳动条件和环境保护的正确设计思路,在这种设计思路的指导下去分析和解决实际问题的能力。
(3)迅速准确的进行工程计算和计算机绘图的能力。
1.2设计方案本设计任务为分离乙醇-水混合物。
对于二元混合物的分离,应采用连续精馏流程。
设计中采用泡点进料,将原料液通过预热器加热至泡点后送入精馏塔内。
塔顶上升蒸气采用全凝器冷凝,冷凝液在泡点下一部分回流至塔内,其余部分经产品冷凝器冷却后送至储罐。
塔釜采用间接蒸汽加热,塔底产品经冷却后送至储罐。
图1-1 流程图1.3设计思路首先,乙醇和水的原料混合物进入原料罐,在里面停留一定的时间之后,通过泵进入原料预热器,在原料预热器中加热到泡点温度,然后,原料从进料口进入到精馏塔中。
因为被加热到泡点,混合物中既有气相混合物,又有液相混合物,这时候原料混合物就分开了,气相混合物在精馏塔中上升,而液相混合物在精馏塔中下降。
气相混合物上升到塔顶上方的冷凝器中,这些气相混合物被降温到泡点,其中的液态部分进入到塔顶产品冷却器中,停留一定的时间然后进入乙醇的储罐,而其中的气态部分重新回到精馏塔中,这个过程就叫做回流。
液相混合物就从塔底一部分进入到塔底产品冷却器中,一部分进入再沸器,在再沸器中被加热到泡点温度重新回到精馏塔。
塔里的混合物不断重复前面所说的过程,而进料口不断有新鲜原料的加入。
最终,完成乙醇和水的分离。
1.4设计依据课程设计方案选定所涉及的主要内容有:操作压力、进料状况、加热方式及其热能的利用。
1.4.1 操作压力精馏常在常压,加压或减压下进行,确定操作压力主要是根据处理物料的性质,技术上的可行性和经济上的合理性来考虑的。
一般来说,常压精馏最为简单经济,若无特殊要求,应尽量在常压下操作。
加压操作可提高平衡温度,有利于塔顶蒸汽冷凝热的利用,或可以使用较便宜的冷却剂,减少冷凝,冷却费用。
在相同的塔径下,适当提操作压力还可以提高塔德处理能力。
所以我们采用塔顶压力为1.03atm进行操作。
1.4.2 进料状况进料状态有多种,但一般都是将料液预热到泡点或接近泡点才送入塔中,这样,进料温度不受季节,气温变化和前道工序波动的影响,塔的操作也比较好控制。
此外,泡点进料时,精馏段和提馏的塔径相同,设计制造比较方便。
1.4.3加热方式精馏塔通常设置再沸器,采用间接蒸汽加热,以提供足够的能量,若待分离的物系为某种轻组分和水的混合物,往往可采用直接蒸汽加热方式,但在塔顶轻组分回收率一定时,由于蒸汽冷凝水的稀释作用,使残液轻组分浓度降低,所需塔板数略有增加。
1.4.4热能的利用精馏过程的原理是多次进行部分汽化和冷凝,因此热效率很低,通常进入再沸器的能量仅有5%左右被利用。
塔顶蒸汽冷凝放出的热量是大量的。
但其位能较低,不可能直接用来做塔釜的热源,但可用作低温热源,供别处使用。
或可采用热泵技术,提高温度后在用于加热釜液。
1.5. 塔型选择根据生产任务,若按年工作日300天,每天开动设备24小时计算,由于产品粘度较小,流量较大,为减少造价,降低生产过程中压降和塔板液面落差的影响,提高生产效率,选用筛板塔。
筛板塔是现今应用最广泛的一种塔型,设计比较成熟,具体优点如下:(1)结构简单、金属耗量少、造价低廉.(2)气体压降小、板上液面落差也较小.(3)塔板效率较高.改进的大孔筛板能提高气速和生产能力,且不易堵塞塞孔第二章塔的工艺计算2.1工艺过程2.1.1精馏塔全塔物料衡算W F =25﹪ WD=90﹪ WW=1﹪ M乙醇=46g/mol M水=18g/molX F =1875.04625.04625.0+=0.1153X D =181.0469.0469.0+=0.7788X W =1899.04601.04601.0+=0.003937MF=0.1153×46+(1-0.1153)×18=21.2284mol/gMD=0.7788×46+(1-0.7788)×18=39.8064mol/gMW=0.003937×46+(1-0.003937)×18=18.110236mol/g由QF =QD+QW得 QF=625.353 kmol/h + QW①由Qn,XF=Qn,XD+Qn,XW得Q F×0.1153=625.353kmol/h×0.7788 + Q W×0.003937②由①②式解得QF=4351.226 kmol/hQW=3725.873 kmol/h表1 物料衡算数据记录2.1.2理论及实际塔板数的确定2.1.2.1 确定最小回流比用Origin作图得:常压下乙醇-水气液平衡组成关系图YX由X f =X q 得X f =X q =0.1153则最小回流比98302.01153.044989.044989.07788.0min =--=--=ee ex y y x R D由工艺条件取R=1.6R min =1.6×0.98302=1.57282.1.2.2确定理论塔板数由理论塔板数图解法可得20406080100YX如图所示:该塔的理论塔板数为13.35块,其中: 精馏段塔板数为9.15块 提馏段塔板数为4.1块 则第10层理论板为进料板 精馏段操作线方程为x y x 11D RR R =+++=0.6113x+0.3027 提馏段操作线方程为y=3.316x-0.009122.1.2.3相对挥发度 由相平衡方程式y=xa ax )1(1-+,可得ɑ=)1()1(--y x x y根据乙醇-水体系的相平衡数据由逐差法可得: Y 1=X D =0.7788 X 1=0.7397 ɑD =1.24 Y F =0.44989 X F =0.1153 ɑF =6.275 Y W =0.04307 X W =0.003937 ɑw =11.4527精馏段的相对挥发度为789.2275.624.11=⨯==F D ααα 提馏段的相对挥发度为477.84527.11275.61=⨯==W F ααα 则全塔平均相对挥发度为:4667.44527.11275.624.133=⨯⨯==W F D αααα2.1.2.4温度Y A x i s T i t l eX Axis Title常压下乙醇和水液相平衡组成(摩尔)与温度的关系曲线 故由此图可以读出不同摩尔分数下对应的温度155.78D =T ℃ 71.85T F =℃ 89.99T W =℃ 精馏段的平均温度:9325.81271.85155.781=+=t ℃提馏段的平均温度:8.92289.9971.852=+=t ℃2.1.2.5实际塔板数(1)精馏段:t 1=81.9325℃ 查表得:=水μ0.3487mpa.s ;=乙醇μ0.4483mpa.s()9322.0)4776.0789.2(49.049.0245.0245.0=⨯⨯==--L T E αμ=ENTT=N 96.16539.015.9= (块)实17=N (2)提馏段:t 2=92.8℃ 查表得:=水μ0.307mpa.s ; =乙醇μ0.386 mpa.s()79.0)3087.0477.8(49.049.0245.0245.0=⨯==--ET L αμ924.379.011.4===-E N N T T (块)实4=N全部实际塔板数:(块)21174N P =+=(3)全塔效率: %%-N N E P T T 81.5810021135.13=⨯==2.1.3 塔的结构的设计 2.1.3.1 操作压强塔顶压强:P D =101.3 kpa 取每层塔板压降:ΔP=0.7 kpa则 进料板压力: a kp 2.113177.03.101=⨯+=F P 塔釜 压力: a kp 116217.03.101=⨯+=W P 则 精馏段的平均操作压强: a m kp 25.10722.1133.1011=+=P提馏段的平均操作压强: a m kp 6.11421162.1132=+=P 2.1.3.2各阶段的平均摩尔质量 (1)精馏段:塔顶 7788.01==y x D ;查气液平衡曲线,可得7397.01=xkmol kg M VDm /8064.3918)7788.01(467788.0=⨯-+⨯= kmol kg M LDm /712.3818)73972.01(4673972.0=⨯-+⨯=进料板 即查气液平衡曲线,可得44989.0=F y 1153.0=F xkmol kg M VDm /5969.3018)44989.01(4644989.0=⨯-+⨯= kmol kg M LDm /2284.2118)1153.01(461153.0=⨯-+⨯=则精馏段平均摩尔质量:kmol kg M Vm /3877.3525969.308064.39(=+=精)kmol kg M Lm /9702.2922284.21712.38(=+=精)(2)提馏段:塔底003937.0=w x ; 查气液平衡曲线,可得04307.0=w y ()kmol kg w m /20596.1904307.014604307.0=-+⨯=Mv kmol kg M LDm /1102.1818003937.01(46003937.0=⨯+⨯=)- 则提馏段平均摩尔质量: kmol kg M vw /9013.24220596.195969.30)(=+=提kmol kg M lm /6693.1921102.182284.21)(=+=提2.1.3.3平均密度的计算: (1)气相平均密度 由 PMRTρ=计算: 精馏段的气相平均密度:1111m Vm Vm m p M RT ρ=()3/2856.115.2739325.81314.83877.3525.107m kg =+⨯⨯= 提馏段的气相平均密度: 2222m Vm Vm m p M RT ρ=()3/9379.015.2738.92314.89013.246.114m kg =+⨯⨯=(2)液相的平均密度 由11ii i n αρρ==∑ 计算对于塔顶155.78=D T ℃ ; 查文献得3741.83/A kg m ρ= ,3972.9/B kg m ρ= 质量分率 ()0.84346.070.93210.84346.0710.84318.02A α⨯==⨯+-⨯10.0679B A αα=-=则 :1A B DA Bααρρρ=+⇒ABALBD 1L ρααρρ=+31775.2/0.93210.0679763.6972.9m kg ==+ 对于进料板C T o F 71.85=;查文献得: 3739.6/A kg m ρ=,3970.50/B kg m ρ= 质量分率 ()0.215746.070.41270.215746.0710.215718.02A α⨯==⨯+-⨯10.5102B A αα=-=则1A B F A Bααρρρ=+ABALB1FL ρααρρ=+31862.1/0.41270.5873739.6970.5m kg ==+ (3)对于塔釜C T o W 89.97= 003937.0=w x 查文献 3721.2/A kg m ρ=,3955.1/B kg m ρ= 质量分率 ()0.012446.070.03110.012446.0710.012418.02A α⨯==⨯+-⨯10.9689B A αα=-=则1A B WA Bααρρρ=+⇒ABALB1wL ρααρρ=+ w ρ31945.6/0.03110.9689721.2955.1m kg ==+则 精馏段的液相平均密度: 31769.2862.1815.6/22D FLm kg m ρρρ++===提馏段的液相平均密度:32945.6862.1903.8/22F WLm kg m ρρρ++===2.1.3.4液体平均表面张力的计算液体平均表面张力按下式计算:Lm i i x σσ=∑ 塔顶:155.78=D t ℃查附录:17.3/,62.285/A B mN m mN m σσ==11(1)0.8317.3(10.83)62.28524.95/LDm A B x x mN mσσσ=+-=⨯+-⨯=进料板:71.85=F t ℃查附录: 16/,59.578/A B mN m mN m σσ==()()m mN x x B F A F LFm /553.54578.591153.01161153.01=⨯-+⨯=-+=σσσ 塔釜:89.97=w t ℃查附录:16/,59.578/A B mN m mN m σσ==得:0.000039615(10.0000396)57.9757.97/LWm mN m σ=⨯+-⨯= 精馏段液体表面平均张力:24.9551.138.025/22LDm LFmLm mN m σσσ++=== 提馏段液体表面平均张力:51.157.9754.535/22LWm LFmLm mN m σσσ++===2.1.3.5液体平均黏度的计算精馏段液体平均黏度:9325.811=t ℃,查表得:=水μ0.3487mpa.s;=乙醇μ0.4483mpa.ss mpa Dm .2786.03487.0)2997.01(4483.02997.0=⨯-+⨯=L μ提馏段体平均黏度:t 2=92.8℃ 查表得:=水μ0.307mpa.s ; =乙醇μ0.386 mpa.s 得:s mpa m .3087.0307.0)0213.01(386.00213.0=⨯-+⨯=LF μ2.1.3.6气液负荷计算精馏段:L=RD=1.5728×625.353=983.555 kmol/hV=(R+1)D=(1.5728+1)×625.353=1608.908 kmol/h精馏段气液负荷计算: s m VM V vml Vml s /3020.122856.136003877.35908.160836003=⨯⨯==ρs m Vm VMLm Ls /01642.06.81536009702.29908.16081360013=⨯⨯==ρ提馏段:L =L+qF=983.555+1×4351.226=5334.781 kmol/hV =V+(q -1)F=V=1608.908 kmol/h提馏段气液负荷计算: s m VM V vm vm s /8657.119379.036009013.24908.16083600322'=⨯⨯==ρs m VM L Lm Lm s /009726.08.90336006693.19908.16083600322'=⨯⨯==ρ2.2精馏塔的塔体工艺尺寸计算 2.2.1塔径的计算 (1)精馏段塔径的确定03362.02856.16.81536003020.12360001642.0212111=⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛⨯⨯=⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=Vm Lm s s LV V L F ρρ 查史密斯关联图 :20C =0.063 C =0.07168020.12856.12856.16.8150716.0max =-=μ取安全系数为0.7,则空塔气数为:s m u /2614.18020.17.0=⨯= 则精馏塔塔径m u V D s 949.28020.114.33020.1244=⨯⨯==π (2)提馏段塔径的确定:02544.09379.08.90336008657.113600009726.0212122''=⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛⨯⨯=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=Vm Lm s s LV V L F ρρ 查史密斯关联图得:20C =0.065 0794.0'=C4635.29379.09379.08.9030794.0max =-=μ取安全系数为0.7,则空塔气速为s m /7245.14635.27.0'=⨯=μ则精馏塔塔径m u V s 9606.27245.114.38657.1144''=⨯⨯==π'D(3)按标准塔径圆整后,m D 3=塔截面积:22265.74314.34m D A T =⨯==π 精馏段实际空塔气速为:s m A V u T s /608.165.73020.12===提馏段实际空塔气速为:s m A V u T s /5511.165.78657.11''===2.2.2精馏塔有效高度的计算精馏段有效高度为1Z N =-T 精精()H =(17-1)⨯0.5=8m 提馏段有效高度为1Z N =-T 提提()H =(4-1)⨯0.5=1.5m 在进料孔上方在设一人孔,高为0.8m 故精馏塔有效高度为:8+1.5+0.8=10.3m2.2.3溢流装置计算因塔径m D 3=,可选用单溢流弓形降液管 A. 堰长w l单溢流:()0.6~0.8w l D =,取m l w 8.136.0=⨯=B. 出口堰高h w :本设计采用平直堰,堰上液高度 3/2)(100084.2wA ow l L E h =(近似E =1)(a )精馏段:3/2)(100084.2wA ow l L E h ==m 0291.0)8.101642.03600(100084.23/2=⨯⨯ =-=ow L w h h h 0.07-0.0291=0.0409m(b )提馏段:3/2)(100084.2'wA ow l L E h ==m 0205.0)009726.0(100084.23/2=⨯⨯ 1.8 3600 =-=ow L w h h h '''0.07-0.00205=0.0495m (2)方形降液管的宽度和横截面 由=D l w 0.6查表可知09.0=Tf A A 及15.0=D Wd 则:f A =0.09=T A 0.09×1.13=0.102 m 2 ,d W =0.15D =0.15×3=0.45m 验算降液管内停留时间: 精馏段:=⨯==01642.05.0102.01s T f L H A θ42.63s提馏段:=⨯==009726.05.0102.0'2s T f L H A θ31.65s停留时间θ>5s ,故降液管可用。