zx第六章-相对论
- 格式:ppt
- 大小:6.18 MB
- 文档页数:69
第6章-狭义相对论第六章狭义相对论1、证明牛顿定律在伽利略交换下是协变的,麦克斯韦方程在伽利略变换下不是协变的。
证明:根据题意,不妨分别取固着于两参考系的直角坐标系,且令t =0时,两坐标系对应轴重合,计时开始后,'∑系沿∑系的x 轴以速度v 作直线运动,根据伽利略变换有:'x x vt =-,'y y =,'z z =,'t t =I 、牛顿定律在伽利略变换下是协变的,以牛顿第二定律22d d xF m t=r r 为例。
在Σ系下,22d d xF m t=r r 在Σ系下,'x x vt =-,'y y =,'z z =,'t t =于是,22222222d 'd [',',']d [,,]d 'd d 'd d x x vt y z x y z xF m m m m F t t t t+=====r r r r II 、麦克斯韦方程在伽利略变换下不是协变的,以真空中的麦氏方程BE t=-?rr 为例。
设有一正电荷q 位于O 点并随'∑系运动。
在'∑系中q 是静止的故: 20'4'r qE e r πε=r r ,'0B =r ;于是方程''0B E t '=-=?rr 成立在∑中有:3332222222222220{}4[()][()][()]x y z q x vt y zE e e e x vt y z x vt y z x vt y z πε-=++-++-++-++r r r r于是方程3222203[()()()]4[()]x y z q E y z e z x vt e x vt y e x vt y z πε??=--+-++---++rr r r不一定为02、设有两根互相平行的尺,在各自静止的参考系中的长度均为,它们以相同速率v 相对于某一参考系运动,但运动方向相反,且平行于尺子。
大学物理学习指导详细答案————————————————————————————————作者:————————————————————————————————日期:2第六章 相对论【例题精选】例6-1 当惯性系S 和S ′的坐标原点O 和O ′重合时,有一点光源从坐标原点发出一光脉冲,在S 系中经过一段时间t 后(在S ′系中经过时间t ′),此光脉冲的球面方程(用直角坐标系)分别为:S 系 ; S ′系 .22222t c z y x =++ 22222t c z y x '='+'+'例6-2 下列几种说法中正确的说法是: (1) 所有惯性系对物理基本规律都是等价的.(2) 在真空中,光的速度与光的频率、光源的运动状态无关. (3) 在任何惯性系中,光在真空中沿任何方向的传播速率都相同.(A) 只有(1)、(2) 正确. (B) 只有(1)、(3) 正确. (C) 只有(2)、(3) 正确. (D) (1)、(2)、(3)都正确. [ D ] 例6-3 经典的力学相对性原理与狭义相对论的相对性原理有何不同?答:经典力学相对性原理是指对不同的惯性系,牛顿定律和其它力学定律的形式都是相同的.狭义相对论的相对性原理指出:在一切惯性系中,所有物理定律的形式都是相同的,即指出相对性原理不仅适用于力学现象,而且适用于一切物理现象。
也就是说,不仅对力学规律所有惯性系等价,而且对于一切物理规律,所有惯性系都是等价的. 例6-4 有一速度为u 的宇宙飞船沿x 轴正方向飞行,飞船头尾各有一个脉冲光源在工作,处于船尾的观察者测得船头光源发出的光脉冲的传播速度大小为 ;处于船头的观察者测得船尾光源发出的光脉冲的传播速度大小为 . c c 例6-5 关于同时性的以下结论中,正确的是(A) 在一惯性系同时发生的两个事件,在另一惯性系一定不同时发生.(B) 在一惯性系不同地点同时发生的两个事件,在另一惯性系一定同时发生.(C) 在一惯性系同一地点同时发生的两个事件,在另一惯性系一定同时发生.(D) 在一惯性系不同地点不同时发生的两个事件,在另一惯性系一定不同时发生. [ C ] 例6-6静止的μ子的平均寿命约为 τ0 =2×10-6 s .今在8 km 的高空,由于π介子的衰变产生一个速度为v = 0.998 c (c 为真空中光速)的μ子,试论证此μ子有无可能到达地面. 证明:考虑相对论效应,以地球为参照系,μ子的平均寿命:62106.31)/(1-⨯=-=c v ττ s则μ 子的平均飞行距离: =⋅=τv L 9.46 km .μ 子的飞行距离大于高度,有可能到达地面.例6-7 两惯性系中的观察者O 和O ′以0.6 c (c 为真空中光速)的相对速度互相接近.如果O 测得两者的初始距离是20 m ,则O 相对O ′运动的膨胀因子γ= ;O ′测得两者经过时间∆t ′= s 后相遇.1.25(或5/4) 8.89×10-8例6-8 两个惯性系S 和S ′,沿x (x ′)轴方向作匀速相对运动. 设在S ′系中某点先后发生两个事件,用静止于该系的钟测出两事件的时间间隔为τ0 ,而用固定在S 系的钟测出这两个事件的时间间隔为τ .又在S ′系x ′轴上放置一静止于该系、长度为l 0的细杆,从S 系测得此杆的长度为l, 则 (A) τ < τ0;l < l 0. (B) τ < τ0;l > l 0.(C) τ > τ0;l > l 0. (D) τ > τ0;l < l 0. [ D ]例6-9 α 粒子在加速器中被加速,当其质量为静止质量的3倍时,其动能为静止能量的(A) 2倍. (B) 3倍. (C) 4倍. (D) 5倍. [ A ] 例6-10 匀质细棒静止时的质量为m 0,长度为l 0,当它沿棒长方向作高速的匀速直线运动时,测得它的长为l ,那么,该棒的运动速度v = ;该棒所具有的动能E K = .c)(020lll c m - 例6-11 观察者甲以0.8c 的速度(c 为真空中光速)相对于静止的观察者乙运动,若甲携带一长度为l 、截面积为S ,质量为m 的棒,这根棒安放在运动方向上,则甲测得此棒的密度为 ;乙测得此棒的密度为 .lSm925 例6-12 根据相对论力学,动能为0.25 MeV 的电子,其运动速度约等于(A) 0.1c (B) 0.5 c (C) 0.75 c (D) 0.85 c (c 表示真空中的光速,电子的静能m 0c 2 = 0.51 MeV) [ C ] 例6-13 令电子的速率为v ,则电子的动能E K 对于比值v / c 的图线可用下列图中哪一个图表示? (c 表示真空中光速)OE K v /c1.0(A)OE K v /c 1.0(B)OE K v /c1.0(C)OE K v /c1.0(D)[ D ]【练习题】6-1 在某地发生两件事,静止位于该地的甲测得时间间隔为4 s ,若相对于甲作匀速直线运动的乙测得时间间隔为5 s ,则乙相对于甲的运动速度是(c 表示真空中光速) (A) (4/5) c . (B) (3/5) c . (C) (2/5) c . (D) (1/5) c . [ B ] 6-2 假定在实验室中测得静止在实验室中的μ+子(不稳定的粒子)的寿命为2.2×10-6 s ,当它相对于实验室运动时实验室中测得它的寿命为1.63×10-5s .则 μ+子相对于实验室的速度是真空中光速的多少倍?为什么? 答:设μ+子相对于实验室的速度为v μ+子的固有寿命τ0 =2.2×10-6 s μ+子相对实验室作匀速运动时的寿命τ0 =1.63×10-5 s按时间膨胀公式:20)/(1/c v -=ττ移项整理得: 202)/(τττ-=c v 20)/(1ττ-=c = 0.99c则 μ+子相对于实验室的速度是真空中光速的0.99倍.6-3 在S 系中的x 轴上相隔为∆x 处有两只同步的钟A 和B ,读数相同.在S '系的x '轴上也有一只同样的钟A ',设S '系相对于S 系的运动速度为v , 沿x 轴方向, 且当A '与A 相遇时,刚好两钟的读数均为零.那么,当A '钟与B 钟相遇时,在S 系中B 钟的读数是 ;此时在S '系中A '钟的读数是 .x /v 2)/(1)/(c x v v -∆6-4 两个惯性系K 与K '坐标轴相互平行,K '系相对于K 系沿x 轴作匀速运动,在K '系的x '轴上,相距为L '的A '、B '两点处各放一只已经彼此对准了的钟,试问在K 系中的观测者看这两只钟是否也是对准了?为什么?答:没对准.根据相对论同时性,如题所述在K '系中同时发生,但不同地点(x '坐标不同)的两事件(即A '处的钟和B '处的钟有相同示数),在K 系中观测并不同时;因此,在K 系中某一时刻同时观测,这两个钟的示数必不相同. 6-5 边长为a 的正方形薄板静止于惯性系K 的Oxy 平面内,且两边分别与x ,y 轴平行.今有惯性系K '以 0.8c (c 为真空中光速)的速度相对于K 系沿x 轴作匀速直线运动,则从K '系测得薄板的面积为 (A) 0.6a 2. (B) 0.8 a 2. (C) a 2. (D) a 2/0.6 . [ A ] 6-6 狭义相对论确认,时间和空间的测量值都是 ,它们与观察者的 密切相关.相对的 运动6-7 地球的半径约为R 0 = 6376 km ,它绕太阳的速率约为=v 30 km ·s -1,在太阳参考系中测量地球的半径在哪个方向上缩短得最多?缩短了多少? (假设地球相对于太阳系来说近似于惯性系) 答:在太阳参照系中测量地球的半径在它绕太阳公转的方向缩短得最多.20)/(1c R R v -=其缩短的尺寸为: ∆R = R 0- R ))/(11(20c R v --= 220/21c R v ≈∆R =3.2 cm6-8 有一直尺固定在K ′系中,它与Ox ′轴的夹角θ′=45°,如果K ′系以匀速度沿Ox 方向相对于K 系运动,K 系中观察者测得该尺与Ox 轴的夹角(A) 大于45°. (B) 小于45°. (C) 等于45°.(D) K ′系沿Ox 正方向运动时大于45°,K ′系沿Ox 负方向运动时小于45°. [ A ]6-9 在狭义相对论中,下列说法中哪些是错误的? (A) 一切运动物体相对于观察者的速度都不能大于真空中的光速.(B) 质量、长度、时间的测量结果都是随物体与观察者的相对运动状态而改变的. (C) 在一惯性系中发生于同一时刻,不同地点的两个事件在其他一切惯性系中也是同时发生的. (D) 惯性系中的观察者观察一个与他作匀速相对运动的时钟时,会看到这只时钟比与他相对静止的相同的时钟走得慢些. [ C ] 6-10 观察者甲以 0.8c 的速度(c 为真空中光速)相对于静止的观察者乙运动,若甲携带一质量为1 kg 的物体,则甲测得此物体的总能量为 ;乙测得此物体的总能量为 .9×1016 J 1.5×1017 J 6-11 一个电子以0.99 c 的速率运动,电子的静止质量为9.11×10-31 kg ,则电子的总能量是 J ,电子的经典力学的动能与相对论动能之比是 .5.8×10-13 8.04×10-2 6-12 一匀质矩形薄板,在它静止时测得其长为a ,宽为b ,质量为m 0.由此可算出其面积密度为m 0 /ab .假定该薄板沿长度方向以接近光速的速度v 作匀速直线运动,此时再测算该矩形薄板的面积密度则为(A) ab c m 20)/(1v - (B) 20)/(1c ab m v - (C) ])/(1[20c ab m v - (D) 2/320])/(1[c ab m v - [ C ] 6-13 一体积为V 0,质量为m 0的立方体沿其一棱的方向相对于观察者A 以速度v 运动.观察者A 测得其密度是多少?为什么? 答:设立方体的长、宽、高分别以x 0,y 0,z 0表示,观察者A 测得立方体的长、宽、高分别为2201c x x v -=,0y y =,0z z =. 相应体积为 2201cV xyz V v -==∵质量 2201cm m v -=故相应密度为 V m /=ρ2222011/cV c m v v --=)1(2200c V m v -=6-14 质子在加速器中被加速,当其动能为静止能量的4倍时,其质量为静止质量的(A) 4倍. (B) 5倍. (C) 6倍. (D) 8倍. [ B ]。
Chapter 6 相對論1. 相對性原則:伽利略觀察到在平穩移動的船艙中,並無法藉由實驗觀察,知道船在移動與否。
因此在以等速相對移動的兩個慣性座標系中,物理定律必定具有相同的形式。
2. 伽利略轉換:在這兩個以等速v 相對移動的座標系中,觀察到的物理量並不相同,其間的關係,可以用一個轉換來表示。
假設座標系O ′係以定速v 相對於座標系O 移動,座標系O ′上所測量得一個事件的位置x ′與時間t ′,依據經驗及直覺,與座標系O 上所測量的位置x 與時間t ,有如下的關係:t't y 'y ,vt x 'x ==-= 因此相對性原則的意涵是:在這樣的變換下,物理定律必須是不變的。
以地表附近的拋體為例,其運動方程式為mg dty d ,dt x d -==22220,將此式中的座標x ,y ,t 以上述的變換式',',''t t y y vt x x ==+=改寫成移動座標系x ′,y ′,t ′座標,很容易推得同樣形式的式子在相對移動座標系中也正確:mg 'dt 'y d ,'dt 'x d -==22220。
所以由地表的拋體運動,靜止的觀察者與移動的觀察者會歸納出一模一樣的物理定律。
事實上這對任何現象都是對的,所以沒有任何實驗可以讓你分辨實驗者的絕對運動速度!這就稱為相對性原則。
3. 再舉一個例子,在伽利略轉換下,將y y vt x x =-=','對時間微分,物體的速度在兩個觀察座標系中的測量值,滿足如下關係:y y x x u 'u ,v u 'u =-=。
利用這個式子,可以看出動量守恆定律是滿足相對性原則。
在座標系O 中total total f i P P =或是∑∑=jj j j j j u m u m final initial ,如果以座標系O ’上所測量的速度表示,上式則寫成:∑∑∑∑+=+jj j j j j j j j j v m 'u m v m u m final initial ',可得total total f i 'P 'P =。
2018学年高中物理第6章相对论相对论简介学案教科版选修3-4 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018学年高中物理第6章相对论相对论简介学案教科版选修3-4)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018学年高中物理第6章相对论相对论简介学案教科版选修3-4的全部内容。
相对论简介【学习目标】1.理解经典的相对性原理.2.理解光的传播与经典的速度合成法则之间的矛盾.3.理解狭义相对论的两个基本假设.4.理解同时的相对性.5.知道时间间隔的相对性和长度的相对性.6.知道时间和空间不是脱离物质而单独存在的7.知道相对论的速度叠加公式.8.知道相对论质量.9.知道爱因斯坦质能方程.10.知道广义相对性原理和等效原理.11.知道光线在引力场中的弯曲及其验证.【要点梳理】要点一、相对论的诞生1.惯性系和非惯性系牛顿运动定律能够成立的参考系叫惯性系,匀速运动的汽车、轮船等作为参考系就是惯性系.牛顿运动定律不成立的参考系称为非惯性系.例如我们坐在加速的车厢里,以车厢为参考系观察路边的树木房屋向后方加速运动,根据牛顿运动定律,房屋树木应该受到不为零的合外力作用,但事实上没有,也就是牛顿运动定律不成立.这里加速的车厢就是非惯性系.相对于一个惯性系做匀速直线运动的另一个参考系也是惯性系.2.伽利略相对性原理力学规律在任何惯性系中都是相同的.即任何惯性参考系都是平权的.这一原理在麦克尔逊—莫雷实验结果面前遇到了困惑,麦克尔逊—莫雷实验和观测表明:不论光源与观察者做怎样的相对运动,光速都是一样的.3.麦克尔逊-莫雷实验(1)实验装置,如图所示.(2)实验内容:转动干涉仪,在水平面内不同方向进行光的干涉实验,干涉条纹并没有预期移动.(3)实验原理:如果两束光的光程一样,或者相差波长的整数倍,在观察屏上就是亮的;若两束光的光程差不是波长的整数倍,就会有不同的干涉结果.由于1M 和2M 不能绝对地垂直,所以在观察屏上可以看到明暗相间的条纹.如果射向1M 和2M 的光速不相同,就会造成干涉条纹的移动.我们知道地球的运动速度是很大的,当我们将射向M 的光路逐渐移向地球的运动方向时,应当看到干涉条纹的移动,但实际结果却看不到任何干涉条纹的移动.因此,说明光在任何参考系中的速度是不变的,它的速度的合成不满足经典力学的法则,因此需要新的假设出现,为光速不变原理的提出提供有力的实验证据.(4)实验结论:光沿任何方向传播时,相对于地球的速度是相同的.4.狭义相对论的两个基本假设(1)狭义相对性原理.在不同的惯性参考系中,一切物理定律总是相同的.(2)光速不变原理.真空中的光速在不同的惯性参考系中都是相同的.要点二、时间和空间的相对性1.“同时”是相对的A B、两个事件是否同时发生,与参考系的选择有关.汽车以较快的速度匀速行驶,车厢中央的光源发出的闪光,对车上的观察者,这个闪光照到车厢前壁和后壁的这两个事件是同时发生的.对车下的观察者,他观察到闪光先到达后壁后到达前壁.这两个事件是不同时发生的.2.长度的相对性(尺缩效应)长度的测量方法:同时测出杆的两端M N、的位置坐标.坐标之差就是测出的杆长.如果与杆相对静止的人认为杆长为l.与杆相对运动的人认为杆长为l.则21v l lc⎛⎫=- ⎪⎝⎭一根沿自身长度方向运动的杆,其长度总比杆静止时的长度小,而在垂直于运动方向上,杆的长度没有变化.3.时间间隔的相对性(钟慢效应)某两个事件在不同的惯性参考系中观察,它们的时间间隔不一样.在与事件发生者相对静止的观察者测出两事件发生的时间间隔为τ∆,与事件发生者相对运动的观察者测得两事件发生的时间间隔为t ∆.21t v c ∆=⎛⎫- ⎪⎝⎭.4.相对论的时空观相对论认为空间和时间与物质的运动状态有关.经典物理则认为空间和时间是脱离物质而存在的,是绝对的,空间与时间之间没有什么联系.虽然相对论更具有普遍性,但是经典物理学作为相对论在低速运动时的特例,在自己的适用范围内还将继续发挥作用.要点三、狭义相对论的其他结论1.相对论速度变换公式相对论认为,如果一列沿平直轨道高速运行的火车对地面的速度为v ,车上的人以速度u '沿着火车前进的方向相对火车运动,那么这个人相对地面的速度2''1u v u u v c+=+. 理解这个公式时请注意:(1)如果车上的人的运动方向与火车的运动方向相反,则u '取负值.(2)如果v c ,'u c ,这时2'u v c可忽略不计,这时相对论的速度合成公式可近似变为u u v =+' (3)如果u '与v 的方向相垂直或成其他角度时,情况比较复杂,上式不适用.2.相对论质量相对论中质量和速度的关系为m =理解这个公式时请注意:(1)式中0m 是物体静止时的质量(也称为静质量),m 是物体以速度v 运动时的质量.这个关系式称为相对论质速关系,它表明物体的质量会随速度的增大而增大.(2)v c 时,近似地0m m =.(3)微观粒子的运动速度很高,它的质量明显地大于光子质量.例如回旋加速器中被加速的粒子质量会变大,导致做圆周运动的周期变大后,它的运动与加在D 形盒上的交变电压不再同步,回旋加速器的加速能量因此受到了限制.3.质能方程爱因斯坦质能关系式:2E mc =.理解这个公式请注意:(1)质能方程表达了物体的质量和它所具有的能量的关系:一定的质量总是和一定的能量相对应.(2)静止物体的能量为200E m c =,这种能量叫做物体的静质能.每个有静质量的物体都具有静质能.(3)对于一个以速率v 运动的物体,其动能222001)k E m c mc m c ==-.(4)物体的总能量E 为动能与静质能之和,即20k E E E mc =+=(m 为动质量).(5)由质能关系式可知2E mc ∆=∆.(6)能量与动量的关系式E ∆=要点四、广义相对论、宇宙学简介1.狭义相对论无法解决的问题(1)万有引力理论无法纳入狭义相对论的框架.(2)惯性参考系在狭义相对论中具有特殊的地位.2.广义相对论的基本原理(1)广义相对性原理:爱因斯坦把狭义相对性原理从匀速和静止参考系推广到做加速运动的参考系,认为所有的参考系都是平权的,不论它们是惯性系还是非惯性系,对于描述物理现象来说都是平等的.(2)等效原理:在物理学上,一个均匀的引力场等效于一个做匀加速运动的参考系.3.广义相对论的几个结论(1)光线在引力场中偏转:根据广义相对论,物质的引力会使光线弯曲,引力场越强,弯曲越厉害.通常物体的引力场都太弱,但太阳引力场却能引起光线比较明显的弯曲.(2)引力红移:按照广义相对论,引力场的存在使得空间不同位置的时间进程出现差别.例如,在强引力的星球附近,时间进程会变慢,因此光振动会变慢,相应的光的波长变长、频率变小,光谱线会发生向红光一端移动的现象.光谱线的这种移动是在引力作用下发生的,所以叫“引力红移”.(3)水星近日点的进动:天文观测显示,行星的轨道并不是严格闭合的,它们的近日点(或远日点)有进动(行星绕太阳一周后,椭圆轨道的长轴也随之有一点转动,叫做“进动"),这个效应以离太阳最近的水星最为显著.广义相对论所作出的以上预言全部被实验观测所证实.还有其他一些事实也支持广义相对论.目前,广义相对论已经在宇宙结构、宇宙演化等方面发挥主要作用.(4)时间间隔与引力场有关,引力场的存在使得空间不同位置时间进程出现差别.(5)杆的长度与引力场有关.空间不是均匀的,引力越大的地方,长度越小.4.大爆炸宇宙学宇宙起源于一个奇点,在该奇点,温度为无穷大,密度为无穷大,空间急剧膨胀,即发生宇宙大爆炸.之后,宇宙不断膨胀,温度不断降低,大约经历200亿年形成我们今天的宇宙.宇宙还处于膨胀阶段,未来将会怎样演化,目前还不能完全确定.要点五、本章知识结构要点六、专题总结1.时空的相对性(1)“同时”的相对性:在经典的物理学上,如果两个事件在一个参考系中认为是同时的,在另一个参考系中一定也是同时的;而根据爱因斯坦的两个假设,同时是相对的.(2)“长度”的相对性:①如果与杆相对静止的人认为杆长是0l ,与杆相对运动的人认为杆长是l ,则两者之间的关系为:l l = ②一条沿自身长度方向运动的杆,其长度总比杆静止时的长度小.(3)“时间间隔”的相对性:运动的人认为两个事件时间间隔为τ∆,地面观察者测得的时间间隔为t ∆,则两者之间关系为:t ∆=.2.质速关系与质能关系(1)质速关系物体以速度v 运动时的质量m 与静止时的质量0m 之间的关系:m =(2)质能关系①相对于一个惯性参考系以速度v 运动的物体其具有的相对论能量2E mc ===.其中200E m c =为物体相对于参考系静止时的能量.②物体的能量变化E ∆与质量变化m ∆的对应关系:2E mc ∆∆=.【典型例题】类型一、相对论的诞生例1、如图所示,在列车车厢的光滑水平面上有一质量为 5 kg m =的小球,正随车厢一起以20 m/s 的速度匀速前进.现在给小球一个水平向前的 5 N F =的拉力作用,求经过10 s 时,车厢里的观察者和地面的观察者看到小球的速度分别是多少?【思路点拨】力学规律在任何惯性系中都是相同的.【答案】见解析【解析】对车上的观察者:物体的初速00v =,加速度21m/s F a m==, 经过10 s 时速度110 m/s v at ==.对地上的观察者解法一:物体初速度020 m/s v =,加速度相同21m/s F a m==. 经过10 s 时速度2030 m/s v v at =+=.解法二:根据速度合成法则()210 1020 m/s 30 m/s v v v =+=+=.【总结升华】在两个惯性系中,虽然观察到的结果并不相同,一个10 m/s ,另一个30 m/s ,但我们却应用了同样的运动定律和速度合成法则.也就是说,力学规律在任何惯性系中都是相同的.例2、考虑几个问题:(1)如图所示,参考系O '相对于参考系O 静止时,人看到的光速应是多少?(2)参考系O '相对于参考系O 以速度v 向右运动,人看到的光速应是多少?(3)参考系O 相对于参考系O '以速度v 向左运动,人看到的光速又是多少?【答案】三种情况都是c .【解析】根据速度合成法则,第一种情况人看到的光速应是c ,第二种情况应是c v +,第三种情况应是c v -,此种解法是不对的,而根据狭义相对论理论知,光速是不变的,都应是c .【总结升华】麦克耳孙——莫雷实验证明了光速在任何惯性参考系中的速度是不变的,对于高速物体,伽利略速度合成法则不再适用.类型二、时间和空间的相对性例3、沿铁道排列的两电杆正中央安装一闪光装置,光信号到达一电杆称为事件1,到达另一电杆称事件为2.从地面上的观察者和运动车厢中的观察者看来.两事件是否都是同时事件?【思路点拨】“同时”具有相对性.光速不变。