中考数学热点专题之统计与概率
- 格式:doc
- 大小:269.00 KB
- 文档页数:9
数学中考概率与统计知识点整理与解题技巧分享概率与统计是数学中考试中的重要一部分,它涉及到了我们日常生活中的众多实际问题。
掌握好概率与统计的知识点,不仅可以帮助我们更好地理解和分析数据,还可以在解题过程中提高我们的应变能力。
本文将对概率与统计的知识点进行整理,并分享一些解题技巧。
一、概率1. 事件与样本空间在概率中,我们要先确定一个实验的所有可能结果所构成的集合,这个集合被称为样本空间。
而样本空间中的每一个元素,则是一个可能的结果,被称为事件。
通过定义事件和样本空间,我们可以更好地描述我们关注的问题。
2. 概率的计算概率的计算是通过事件发生的可能性来进行的。
对于一个样本空间中的事件来说,其概率的计算可以通过以下公式得到:概率 = 事件发生的次数 / 样本空间中的元素个数在实际应用中,为了更好地描述概率,我们通常使用分数、百分数或小数来表示。
3. 互斥事件与对立事件互斥事件指的是两个事件不能同时发生,即它们的交集为空集。
对立事件指的是两个事件互为对方的补集。
在解题过程中,我们可以利用互斥事件和对立事件的性质,简化计算和分析。
二、统计1. 数据的整理与分析在统计中,我们需要对大量的数据进行整理和分析。
常见的数据整理方法包括制表法、绘制统计图表等。
通过数据的整理与分析,我们可以更好地了解数据的规律和特征,从而为问题的解决提供支持。
2. 随机抽样与调查随机抽样是指从总体中随机地选择一部分个体作为样本,通过对样本的调查与分析,得出对总体的推断。
在进行随机抽样时,我们需要注意抽样误差的控制和样本的代表性。
3. 相关与回归分析相关与回归分析是统计中的重要工具,它们可以帮助我们探索和建立变量之间的关系。
相关分析主要研究变量之间的线性关系,而回归分析则更进一步,可以根据样本数据建立数学模型,用于预测和分析。
三、解题技巧1. 思维逻辑的清晰在解概率与统计的题目时,思维逻辑的清晰十分重要。
我们需要先明确问题,确定所求,并找到适当的思维方法和模型。
中考数学概率与统计的重要公式及应用概率与统计是数学的一个重要分支,广泛应用于各个领域。
在中考数学中,概率与统计也是一个重点考察的内容。
本文将介绍一些中考概率与统计中的重要公式及其应用。
一、概率公式1. 事件的概率公式概率是一个事件发生的可能性,通常用P(A)表示。
对于一个随机试验,若事件A有m种情况中的一种,总的可能情况有n种,那么事件A的概率可以用以下公式表示:P(A) = m / n2. 互斥事件的概率公式互斥事件指的是两个事件不能同时发生的情况。
若事件A和事件B 是互斥事件,那么事件A或事件B发生的概率可以用以下公式表示:P(A或B) = P(A) + P(B)3. 独立事件的概率公式独立事件指的是两个事件的发生不会相互影响的情况。
若事件A和事件B是独立事件,那么事件A和事件B同时发生的概率可以用以下公式表示:P(A且B) = P(A) × P(B)二、统计公式1. 众数众数指的是一组数据中出现次数最多的数值。
对于一组数据集合,若某个数值出现的次数最多,那么这个数值就是众数。
2. 中位数中位数指的是一组数据中处于中间位置的数值。
对于一组有序的数据集合,若数据个数为奇数,则中位数为排序后处于中间位置的数值;若数据个数为偶数,则中位数为排序后位于中间的两个数值的平均值。
3. 平均数平均数指的是一组数据的总和除以数据的个数所得到的值。
对于一组数据集合,设数据的个数为n,数据之和为sum,则平均数可以用以下公式表示:平均数 = sum / n三、应用1. 概率应用概率在现实生活中有广泛应用。
例如,在购买彩票时,我们可以利用概率计算中奖的可能性;在赌场游戏中,可以通过概率来决策;在投资时,可以利用概率评估风险和回报等。
2. 统计应用统计在现实生活中也有广泛应用。
例如,在调查民意时,可以利用统计方法对样本数据进行分析,从而推断出整个人群的情况;在质量控制中,可以利用统计方法对生产过程中的数据进行分析,从而进行质量改进;在市场调研中,可以利用统计方法对市场需求进行预测。
中考数学总复习概率与统计知识点梳理概率与统计是中考数学中的重要内容,考查的主要知识点包括:概率、统计、抽样调查和相关性等。
以下是对这些知识点的详细梳理。
1.概率:概率是描述件事情发生可能性大小的数值,是随机试验结果的度量标准。
概率的计算方法包括:理论概率、几何概率和频率概率。
-理论概率:根据随机试验的全部可能结果进行计算,概率值范围为0到1之间。
-几何概率:通过对随机试验的几何模型进行分析,计算几何概率。
-频率概率:通过重复实验来估计事件发生的概率,概率值近似于实验中事件发生的频率。
2.统计:统计是收集、整理和分析数据,从而得出有关事物规律的学科。
统计的主要目的是对研究对象进行客观的描述和分析。
-数据的收集和整理:对于给定的研究对象,要通过合理的方法收集数据并进行整理,包括调查问卷、实验、采样等方法。
-数据的分析和表示:使用图表、统计量等方法对收集到的数据进行分析和表示,主要包括频数表、频率分布表、直方图、折线图等。
-数据的描述性统计:通过描述性统计指标,如均值、中位数、众数、极差、方差、标准差等,对数据的特征进行描述。
3.抽样调查:为了对整个群体进行研究,使用抽样调查的方法从群体中抽取一部分样本进行调查。
抽样调查的方法包括概率抽样和非概率抽样。
-概率抽样:每个样本被抽取的概率相等,可以使用简单随机抽样、系统抽样、分层抽样和整群抽样等方法。
-非概率抽样:每个样本被抽取的概率不等,可以使用方便抽样、判断抽样、专家抽样和雪球抽样等方法。
4.相关性:相关性是用来衡量两个变量之间关系的指标,包括正相关、负相关和不相关。
中考数学中的概率与统计问题解题方法总结概率与统计是中考数学中重要的考点之一,掌握相关解题方法对于获得高分至关重要。
本文将总结中考数学中的概率与统计问题解题方法,帮助同学们更好地备考。
一、概率问题解题方法1.1 随机事件的概率计算在解决概率问题时,首先要明确问题中所涉及的随机事件,然后确定事件的样本空间和事件的可能数。
计算概率时,可采用“有利结果数与总结果数比”或“频率”两种方法。
1.2 事件的排列与组合当问题中涉及的事件是有序排列或无序组合时,可以使用排列组合的方法来计算概率。
对于有序排列的事件,可以使用全排列的方法,对于无序组合的事件,可使用组合数的方法。
1.3 复合事件的概率计算当问题中的事件是复杂的复合事件时,可以使用独立事件的概率乘法原理或互斥事件的概率加法原理来计算概率。
需要注意确定事件之间的独立性或互斥性。
二、统计问题解题方法2.1 数据的整理与描述在解决统计问题时,首先需要对给定的数据进行整理和描述。
可通过制表、绘图等方式对数据进行整理,计算出均值、中位数、众数、极差等统计量,从而有助于进一步分析和解决问题。
2.2 统计规律的探究通过观察和分析给定的统计数据,寻找其中的规律和趋势,可以通过绘制直方图、折线图等来展示数据的变化趋势和分布情况。
这有助于深入理解数据的特点,并根据规律解决问题。
2.3 数据的分析与推理在统计问题中,常常需要根据已经给定的数据进行推理和判断。
这时需要通过归纳、分析,利用已知的统计规律和统计方法来判断未知的事物或问题的解答。
三、应用举例3.1 概率问题的应用例如,某次抽奖活动,参与抽奖的人数为100人,其中60人是女性,40人是男性。
如果从中随机抽取一人,求抽中女性的概率。
解题时,可根据女性人数占总人数的比例,得出概率为60/100=0.6。
3.2 统计问题的应用例如,某班级同学的考试成绩如下:74, 68, 82, 90, 76, 84, 78, 86, 92, 80。
【选择题】必考重点08 统计与概率统计与概率主要包括三部分内容:数据的收集与整理、数据分析和概率。
统计与概率是历年江苏省各地市中考的必考点,选择、填空以及解答均有考查。
其中在数据的收集与整理方面,主要考查全面调查与抽样调查的判断,总体、个体、样本、样本容量的概念,各类统计图表的判读,考查难度较低考生只要掌握基本的概念即可;在数据的分析方面,考点主要为平均数、中位数、众数的概念和计算、极差、方差、标准差的计算,以及数据稳定性和波动性的判断,考查难度较低。
概率方面,在选择题的考查一般为基本概念、事件发生的可能性大小、几何概率等。
【2022·江苏徐州·中考母题】我国近十年的人口出生率及人口死亡率如图所示.已知人口自然增长率=人口出生率—人口死亡率,下列判断错误的是()A.与2012年相比,2021年的人口出生率下降了近一半B.近十年的人口死亡率基本稳定C.近五年的人口总数持续下降D.近五年的人口自然增长率持续下降【考点分析】本题考查了折线统计图,从统计图获取信息是解题的关键.【思路分析】根据折线统计图逐项分析判断即可求解.【2022·江苏徐州·中考母题】将一枚飞镖任意投掷到如图所示的正六边形镖盘上,若飞镖落在镖盘上各点的机会相等,则飞镖落在阴影区域的概率为( )A .14B .13C .12D 【考点分析】本题主要考查几何概率,根据正六边形的性质得到图中每个小三角形的面积都相等是解题的关键.【思路分析】如图,将阴影部分分割成图形中的小三角形,令小三角形的面积为a ,分别表示出阴影部分的面积和正六边形的面积,根据概率公式求解即可.【2022·江苏常州·中考母题】某汽车评测机构对市面上多款新能源汽车的0~100/h km 的加速时间和满电续航里程进行了性能评测,评测结果绘制如下,每个点都对应一款新能源汽车的评测数据.已知0~100/h km 的加速时间的中位数是s m ,满电续航里程的中位数是nkm ,相应的直线将平面分成了①、②、③、④四个区域(直线不属于任何区域).欲将最新上市的两款新能源汽车的评测数据对应的点绘制到平面内,若以上两组数据的中位数均保持不变,则这两个点可能分别落在( )A .区域①、②B .区域①、③C .区域①、④D .区域③、④【考点分析】本题考查了中位数的概念,根据中位数的值不变可知新添加的一组数据分别处在中位数的左右两侧或刚好都等于该中位数,理解这一点是解答本题的关键. 【思路分析】根据中位数的性质即可作答.【2022·江苏镇江·中考母题】第1组数据为:0、0、0、1、1、1,第2组数据为:00,0,,0m 个、11,1,,1n 个,其中m 、n 是正整数.下列结论:①当m n =时,两组数据的平均数相等;②当m n >时,第1组数据的平均数小于第2组数据的平均数;③当m n <时,第1组数据的中位数小于第2组数据的中位数;④当m n =时,第2组数据的方差小于第1组数据的方差.其中正确的是( ) A .①②B .①③C .①④D .③④【考点分析】此题考查了平均数、中位数、方差的求法,熟练掌握求解方法是解题的关键. 【思路分析】根据平均数、中位数、方差的求法分别求解后即可进行判断.1.(2022·江苏苏州·二模)如图,若随机向88⨯正方形网格内投针,则针尖落在阴影部分的概率为( )A .12B .58C .9π64D .25642.(2022·江苏·靖江市教师发展中心二模)甲、乙两个学校统计男女生人数,分别绘制了扇形统计图(如图),下列说法正确的是( )A .甲校的男生人数比乙校的男生人数多B .甲、乙两个学校的人数一样多C .乙校的女生人数比甲校的女生人数多D .甲校的男女生人数一样多3.(2022·江苏徐州·模拟预测)抗击新冠肺炎疫情期间,为了避免人员大量聚集,某公司复工后采取分时段上、下班方式,以错开高峰.小刘为了解本公司员工上下班情况,将考勤表中某天的相关数据制成条形统计图,已知该公司员工上下班各时段分别为:(8:0016:30)A -,(8:3017:00)B -,(9:0017:30)C -,(9:3018:00)D -,由图可知,下列说法错误的是( )A .统计图反映了该公司员工上下班各时段内的人数情况B .该公司共有870人C .该公司员工上下班在时段C 内的人数占总人数的30%D .该公司员工上下班在时段B 内的人数比时段A 内的人数多1倍 4.(2022·江苏泰州·一模)下列说法正确的是( ) A .“清明时节雨纷纷”是必然事件B .为了解某灯管的使用寿命,可以采用普查的方式进行C .两组身高数据的方差分别是2S =甲0.01,2S =乙0.02,那么乙组的身高比较整齐 D .一组数据3,5,4,5,6,7的众数、中位数和平均数都是5 5.(2022·江苏盐城·一模)下列说法错误的是( ) A .为了统计实验中学的学生人数,应采用抽样调查B .从一个只装有黄球和白球的不透明的袋子中,“摸出红球”是不可能事件C .想要了解盐城地区2021年第一季度的气温变化趋势,应选择折线统计图D .甲乙两组数据,若20.2S =甲,20.23S =乙,则甲组数据更为稳定6.(2022·江苏徐州·一模)下图是第七次全国人口普查的部分结果.下列判断正确的是( )A.江苏0-14岁人口比重高于全国B.徐州15-59岁人口比重高于江苏C.江苏60岁以上人口比重低于徐州D.徐州15岁以上人口比重低于江苏7.(2022·江苏苏州·模拟预测)有一个摊位游戏,先旋转一个转盘的指针,如果指针箭头停在奇数的位置,玩的人可以从袋子里抽出一个弹珠,当摸到黑色的弹珠就能得到奖品,转盘和弹珠如下图所示,小明玩了一次这个游戏,则小明得奖的可能性为()A.不可能B.不太可能C.非常有可能D.一定可以8.(2022·江苏徐州·模拟预测)九年级一班数学老师对全班学生在模拟考试中A卷成绩进行统计后,制成如下的统计表:则该班学生A卷成绩的众数和中位数分别是()A.82分,82分B.82分,83分C.80分,82分D.82分,84分9.(2022·江苏无锡·一模)下列说法正确的是()A.任意抛掷一枚质地均匀的硬币10次,则“5次正面朝上”是必然事件B.某市天气预报明天的降水概率为90%,则“明天下雨”是确定事件C.小丽买一张体育彩票中“一等奖”是随机事件D.若a是实数,则“|a|≥0”是不可能事件10.(2022·江苏·苏州市振华中学校模拟预测)一组不完全相同的数据a1,a2,a3,…,an的平均数为m,把m加入这组数据,得到一组新的数据a1,a2,a3,…,an,m,把新、旧数据的平均数、中位数,众数、方差这四个统计量分别进行比较,一定发生变化的统计量的个数是()A.1B.2C.3D.411.(2022·江苏徐州·二模)某校组织了一分钟跳绳比赛活动,体育组随机抽取了10名参赛学生的成绩,将这组数据整理后制成统计表:则关于这组数据的结论正确的是()A.平均数是160B.众数是165C.中位数是167.5D.方差是2 12.(2022·江苏连云港·二模)某校九年级学生在男子50米跑测试中,第一小组8名同学的测试成绩如下(单位:秒):7.0,7.2,7.5,7.0,7.4,7.5,7.0,7.8,则下列说法正确的是()A.这组数据的中位数是7.4B.这组数据的众数是7.5C.这组数据的平均数是7.3D.这组数据极差的是0.513.(2022·江苏·兴化市教师发展中心一模)如图,过圆心且互相垂直的两条直线将两个同心圆分成了若干部分,在该图形区域内任取一点,则该点取自阴影部分的概率是()A.18B.14C.13D.1214.(2022·江苏徐州·一模)五一期间,某地相关部门对观光游客的出行方式进行了随机抽样调查,整理后绘制了两幅统计图(尚不完整),下列结论错误的是()A .本次抽样调查的样本容量是5000B .扇形统计图中的m 为10%C .若五一期间观光的游客有50万人,则选择自驾方式出行的大约有20万人D .样本中选择公共交通出行的有2400人15.(2022·江苏南京·模拟预测)某餐厅规定等位时间达到30分钟(包括30分钟)可享受优惠.现统计了某时段顾客的等位时间t (分钟),数据分成6组:1015t ≤<,1520t ≤<,2025t ≤<,2530t ≤<,3035t ≤<,如图是根据数据绘制的统计图.下列说法正确的是( )A .此时段有1桌顾客等位时间是40分钟B .此时段平均等位时间小于20分钟C .此时段等位时间的中位数可能是27D .此时段有6桌顾客可享受优惠16.(2022·江苏·江阴市祝塘第二中学一模)一组数据:3,4,4,4,5.若拿掉一个数据4,则发生变化的统计量是( )A.极差B.方差C.中位数D.众数17.(2022·江苏·苏州市第十六中学一模)学校为了丰富学生课余活动开展了一次“爱我学校,唱我学校”的歌咏比赛,共有18名同学入围,他们的决赛成绩如下表:则入围同学决赛成绩的中位数和众数分别是()A.9.70,9.60B.9.60,9.60C.9.60,9.70D.9.65,9.6018.(2022·江苏扬州·一模)某同学要统计本校图书馆最受学生欢迎的图书种类,以下是排乱的统计步骤:①从扇形图中分析出最受学生欢迎的种类②去图书馆收集学生借阅图书的记录③绘制扇形图来表示各个种类所占的百分比④整理借阅图书记录并绘制频数分布表正确统计步骤的顺序是()A.②→③→①→④B.③→④→①→②C.①→②→④→③D.②→④→③→①19.(2022·江苏·扬州中学教育集团树人学校一模)去年某果园随机从甲、乙、丙、丁四个品种的葡萄树中各采摘了10棵,每棵产量的平均数x(单位:千克)及方差2S(单位:千克2)如下表所示:今年准备从四个品种中选出一种产量既高又稳定的葡萄树进行种植,应选的品种是()A.甲B.乙C.丙D.丁20.(2022·江苏泰州·一模)如图是小刚进入中考复习阶段以来参加的10次物理水平测试成绩(满分70分)的统计图,那么关于这10次测试成绩,下列说法错误的是()A.中位数是55B.众数是60C.方差是26D.平均数是5421.(2022·江苏扬州·一模)某学校足球队23人年龄情况如下表:则下列结论正确的是()A.极差为3B.众数为15C.中位数为14D.平均数为1422.(2022·江苏苏州·二模)为了了解某初中学校学生的视力情况,需要抽取部分学生进行调查.下列抽取学生的方法最合适的是()A.随机抽取该校一个班级的学生B.随机抽取该校一个年级的学生C.随机抽取该校一部分男生D.分别从该校初一、初二、初三年级中各随机抽取10%的学生23.(2022·江苏·靖江外国语学校一模)多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是()A.极差是47B.众数是42C.中位数是58D.每月阅读数量超过40的有4个月24.(2022·江苏·扬州中学教育集团树人学校一模)如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是()A.23B.16C.13D.1225.(2022·江苏·无锡市天一实验学校三模)某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是()A.10,15B.13,15C.13,20D.15,15【选择题】必考重点08 统计与概率统计与概率主要包括三部分内容:数据的收集与整理、数据分析和概率。
中考数学概率与数理统计必考知识点有哪些一、随机事件与概率1、随机事件必然事件:在一定条件下必然会发生的事件。
不可能事件:在一定条件下必然不会发生的事件。
随机事件:在一定条件下,可能发生也可能不发生的事件。
2、概率的定义概率:一般地,如果一个试验有 n 种等可能的结果,事件 A 包含其中的 m 种结果,那么事件 A 发生的概率为 P(A) = m / n 。
概率的取值范围:0 ≤ P(A) ≤ 1 。
3、列举法求概率直接列举法:当试验的结果较少时,可以直接列举出所有可能的结果,计算所求事件发生的概率。
列表法:当试验涉及两个因素,并且可能出现的结果较多时,为不重不漏地列出所有可能的结果,通常采用列表法。
画树状图法:当试验涉及三个或更多因素时,通常采用画树状图法求事件发生的概率。
二、用频率估计概率1、大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率。
2、用频率估计概率的方法:进行大量重复试验,计算事件发生的频率,当试验次数足够大时,频率稳定于概率。
三、数据的收集、整理与描述1、数据的收集普查:为了一定的目的而对考察对象进行的全面调查。
抽样调查:从总体中抽取部分个体进行调查,这种调查称为抽样调查。
2、数据的整理分组:将数据按照一定的范围进行分组。
频数:落在各个小组内的数据的个数。
频率:频数与数据总数的比值。
3、数据的描述频数分布表:将数据的分组、频数和频率整理成表格形式。
频数分布直方图:用小长方形的面积来表示频数分布的情况。
频数折线图:在频数分布直方图的基础上,取每个小长方形上边的中点,然后依次用线段连接起来。
四、数据的分析1、平均数算术平均数:一组数据的总和除以数据的个数。
加权平均数:若 n 个数 x₁,x₂,…,xₙ 的权分别是 w₁,w₂,…,wₙ,则\(\overline{x} =\frac{x₁w₁+ x₂w₂+\cdots + xₙwₙ}{w₁+ w₂+\cdots + wₙ}\)叫做这 n 个数的加权平均数。
考点06 数据统计与概率知识点一:统计的基本要素1. 常用的统计调查方式:全面调查、抽样调查.2. 所要考察的对象的全体称为总体.组成总体的每一个对象称为个体.3. 从总体中抽取的一部分各体叫做总体的一个样本,样本中的个体的数目叫做样本容量.4. 在抽取样本的过程中,总体中的每个个体都以相等的机会被抽到,像这样的抽样方法叫做简单随机抽样. 知识点二:平均数,中位数,众数1. 平均数:x 1,x 2,…,x n的平均数n x 1=(x 1+x 2+…+x n ). 2. 加权平均数:如果n 个数据中,x 1出现f 1次,x 2出现f 2次,…,x R 出现f R 次(这里f 1+f 2+…+f R =n ), 则nx 1=(x 1f 1+x 2f 2+…+x R f R ). 3. 中位数:将一组数据按大小顺序排列,处在最中间位置上的数据叫做这组数据的中位数;如果数据的个数为偶数,中位数就是处在中间位置上的两个数据的平均数.4. 众数:在一组数据中,出现次数最多的数据叫做这组数据的众数.知识点三:方差1. 方差:x 1,x 2,…,x n 的方差s 2=n1[(x 1-x )2+(x 2-x )2+…+(x n -x )2]. 2. 方差是衡量一组数据波动大小的量,方差越小,数据的波动越小;方差越大,数据的波动越大.知识点四:频数、频率1. 频数:在我们研究的对象中,每个对象出现的次数叫做频数.2. 频率:每个对象出现的次数与总次数的比值叫做频率.知识归纳3. 绘制频数分布直方图的步骤:① 计算最大值与最小值的差;② 决定组距与组数;③ 列频数分布表;④ 画频数分布直方图.知识点五:常见的统计图1. 常见的统计图有条形统计图、扇形统计图、折线统计图.条线统计图能显示每组中的具体数据;扇形统计图能显示部分在总体中所占百分比;折线统计图能显示数据的变化趋势.2. 扇形统计图的制作步骤:①根据有关数据先算出各部分在总体中所占的百分比(即部分数据÷总体数据),再算出各部分圆心角的度数,公式:各部分扇形圆心角的度数=部分占总体的百分比×360;②按比例,取适当半径画一个圆;③按扇形圆心角的度数用量角器在圆内量出各个扇形的圆心角的度数;④在各扇形内写上相应的名称及百分比;⑤写出统计图的名称、制作日期.知识点六:事件、概率1. 事件的分类生活中的事件分为确定事件和不确定事件,确定事件又分为必然事件和不可能事件.2. 概率(1)表示一个事件发生的可能性大小的数叫做该事件的概率.(2)概率的性质① 必然事件发生的概率为1,即P(必然事件)=1;② 不可能事件发生的概率为0,即P(不可能事件)=0;③ 如果A 为不确定事件,那么0<P(A)<1;④ P(A)的范围是0≤P(A)≤1.3.概率的计算方法(1)一步事件的概率:P=nk (k 表示关注结果的次数,n 表示所有可能出现结果的次数).(2)两步事件的概率:① 计算简单事件发生的概率的方法有列举法(包括列表格、画树状图);② 通过大量的重复试验时,频率可视为事件发生概率的估计值.1. 调查方式的选择方法:(1)适合采用全面调查的是:① 调查结果要求非常准确;② 所要调查的个体数量较少调查难度相对不大;③ 调查无破坏性;④ 考查经费和时间都非常有限,全面调查受到限制2. 统计量的计算与应用(1)平均数的计算所涉及的一个重要的量是数据的个数,样本容量与统计图有关的计算,往往要用到方程的思想(2)应用统计量分析问题时要针对题目的要求合理选择,考虑问题要全面,不要顾此失彼,3. 列表法和树形图法适用的范围(1)在一次试验中,如果包括两个步马聚或两个因素,列表法和树形图法都可以用来分析事件发生的可能性(2)在一次试验中如果包括两个以上或两个以上因素,为了直观地分析事件发生的可能性,一般采用树状图法4. 概率的应用(1)用概率知识判断游戏的公平性。
热点03 统计与概率中考数学中《统计与概率》部分主要考向分为三类:一、数据的收集与处理(每年1~2道,8~12分)二、数据分析(每年1~2道,3~6分)三、概率(每年1题,3~4分)统计与概率是中考数学中的必考考点,内容包含数据的收集与处理、数据分析、概率三个考点,对应知识点都比较好理解识记,整体难度不大。
但是这部分的分值在中考占比较大。
题型方面则是选择、填空题、解答题都有。
并且,由于其特有的计算类型,易错点也比较的统一,所以需要考生在审题和计算上要特别留心。
整体来说,这个考点的考题属于中考中的中档考题,但要做到越是容易拿分的考点越要细心。
考向一:数据的收集与整理【题型1 调查与样本等概念及其作用】满分技巧1、全面调查和抽样调查的适用范围:调查总数很少的可以全面调查,如一个班的身高情况;调查总数多的选择抽样调查,如一个学校的作业完成情况;比较重要或影响比较大的事情必须全面调查,如疫情期间,某市感染人数、第7次全国人口普查等。
2、理解样本、样本总量、个体、总体间的关系在统计中,要考察的对象的全体叫做总体;把组成总体的每一个考察对象叫做个体;从总体中抽取一部分个体的集体叫做这个总体的一个样本,样本中个体的数目叫做样本容量。
1.(2023•浙江)在下面的调查中,最适合用全面调查的是()A.了解一批节能灯管的使用寿命B.了解某校803班学生的视力情况C.了解某省初中生每周上网时长情况D.了解京杭大运河中鱼的种类2.(2023•聊城)4月15日是全民国家安全教育日.某校为了摸清该校1500名师生的国家安全知识掌握情况,从中随机抽取了150名师生进行问卷调查.这项调查中的样本是()A.1500名师生的国家安全知识掌握情况B.150C.从中抽取的150名师生的国家安全知识掌握情况D.从中抽取的150名师生3.(2023•金昌)据统计,数学家群体是一个长寿群体,某研究小组随机抽取了收录约2200位数学家的《数学家传略辞典》中部分90岁及以上的长寿数学家的年龄为样本,对数据进行整理与分析,统计图表(部分数据)如下,下列结论错误的是()年龄范围(岁)人数(人)90﹣912592﹣93■94﹣95■96﹣971198﹣9910100﹣101mA.该小组共统计了100名数学家的年龄B.统计表中m的值为5C.长寿数学家年龄在92﹣93岁的人数最多D.《数学家传略辞典》中收录的数学家年龄在96﹣97岁的人数估计有110人【题型2 频数分布直方图和折线图】满分技巧1、频数分布直方图和频数分布折线图可以更直观、更方便的表示出各数据的多少和变化2、各组数量之和=样本容量;各组频率之和=1;数据总数×相应的频率=相应的频数;1.(2023•北京)某厂生产了1000只灯泡.为了解这1000只灯泡的使用寿命,从中随机抽取了50只灯泡进行检测,获得了它们的使用寿命(单位:小时),数据整理如下:使用寿命x<10001000≤x<16001600≤x<22002200≤x<2800x≥2800灯泡只数51012176根据以上数据,估计这1000只灯泡中使用寿命不小于2200小时的灯泡的数量为只.2.(2023•温州)某校学生“亚运知识”竞赛成绩的频数分布直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中成绩在80分及以上的学生有人.3.(2023•赤峰)2023年5月30日,神舟十六号载人飞船成功发射,成为我国航天事业的里程碑.某校对全校1500名学生进行了“航空航天知识”了解情况的调查,调查结果分为A,B,C,D四个等级(A:非常了解;B:比较了解;C:了解;D:不了解).随机抽取了部分学生的调查结果,绘制成两幅不完整的统计图.根据统计图信息,下列结论不正确的是()A.样本容量是200B.样本中C等级所占百分比是10%C.D等级所在扇形的圆心角为15°D.估计全校学生A等级大约有900人【题型3 三大统计图的应用】如图是各时间段的小车与公车的车流量,则下列说法正确的是()A.小车的车流量比公车的车流量稳定B.小车的车流量的平均数较大C.小车与公车车流量在同一时间段达到最小值D.小车与公车车流量的变化趋势相同2.(2023•大连)2023年5月18日,《大连日报》公布《下一站,去博物馆!》问卷调查结果.本次调查共收回3666份有效问卷,其中将“您去博物馆最喜欢看什么?”这一问题的调查数据制成扇形统计图,如图所示.下列说法错误的是()A.最喜欢看“文物展品”的人数最多B.最喜欢看“文创产品”的人数占被调查人数的14.3%C.最喜欢看“布展设计”的人数超过500人D.统计图中“特效体验及其他”对应的圆心角是23.76°3.(2023•鞍山)在第六十个学雷锋纪念日到来之际,习近平总书记指出:实践证明,无论时代如何变迁,雷锋精神永不过时,某校为弘扬雷锋精神,组织全校学生开展了手抄报评比活动.评比结果共分为四项:A.非凡创意;B.魅力色彩;C,最美设计:D.无限潜力.参赛的每名学生都恰好获得其中一个奖项,活动结束后,学校数学兴趣小组随机调查了部分学生的获奖情况,将调查结果绘制成如下两幅不完整的统计图.请根据统计图提供的信息,解答下列问题:(1)本次共调查了名学生.(2)请补全条形统计图.(3)本次评比活动中,全校有800名学生参加,根据调查结果,请你估计在评比中获得“A.非凡创意”奖的学生人数.考向二:数据分析【题型4 四大统计量及其选择】满分技巧四大统计量:平均数、中位数、众数、方差;其中:平均数反应一组数据的平均水平,容易受极端值的影响;中位数反应一组数学的中等水平;众数反应数据的集中水平;方差反应一组数据的波动性,方差越大,数据的波动性越大。
中考数学高频考点《统计与概率》专题训练-带答案一.选择题(共15小题)1.(2024•新华区二模)已知三个数﹣3、5、7,若添加一个数组成一组新数据,且这组新数据唯一的众数与中位数相等,则这个新数据为( )A .3B .4C .5D .72.(2024•新华区二模)某校八年级学生参加每分钟跳绳的测试,并随机抽取部分学生的成绩制成了频数分布直方图(如图),若取每组的组中值作为本小组的均值,则抽取的部分学生每分钟跳绳次数的平均数(结果取整数)为( )A .87次B .110次C .112次D .120次3.(2024•长安区二模)班主任邀请甲、乙、丙三位同学参加圆桌会议.如图,班主任坐在D 座位,三位同学随机坐在A 、B 、C 三个座位,则甲、乙两位同学座位相邻的概率是( )A .23B .13C .14D .12 4.(2024•桥西区二模)如图,某十字路口有交通信号灯,在东西方向上,红灯开启27秒后,紧接着绿灯开启30秒,再紧接着黄灯开启3秒,然后接着又是红灯开启27秒…按这样的规律循环下去,在不考虑其他因素的前提下,当一辆汽车沿东西方向随机行驶到该路口时,遇到绿灯开启的概率是( )A .920B .1019C .13D .12 5.(2024•裕华区二模)为深入开展全民禁毒宣传教育,某校举行了禁毒知识竞赛,嘉嘉说:“我们班100分的同学最多,一半同学成绩在96分以上”,嘉嘉的描述所反映的统计量分别是( )A .众数和中位数B .平均数和中位数C .众数和方差D .众数和平均数6.(2024•裕华区二模)某班开展了两次跳绳比赛,从班级里随机抽取了20名学生两次跳绳的成绩(单位:个/分钟),并对数据进行整理、描述和分析.如图是这些学生第一次和第二次比赛成绩情况统计图,设每名学生两次跳绳的平均成绩是x 个/分钟,落在130<x ⩽140的范围内的数据有( )A .6个B .5个C .4个D .3个7.(2024•石家庄二模)一个不透明盒子里,共装有10个白球,5个红球,5个黄球,这些球仅颜色不同.小明从中任取一球,下列说法错误的是( )A .摸到白球的可能性最大B .摸到红球和黄球的可能性相同C .摸到白球的可能性为12D .摸到白球、红球、黄球的可能性都为13 8.(2024•藁城区二模)从分别写有“大”“美”“江”“汉”汉字的四张卡片中,随机抽出两张,抽出的卡片上的汉字能组成“江汉”的概率是( )A .18B .16C .14D .12 9.(2024•新华区二模)2024年河北省初中学业水平体育与健康科目考试的抽考项目包含①②③④共四项,由各市教育行政部门抽签决定.某市教育行政部门从四个项目中随机抽取一项,抽到项目①的概率为( )A .12B .13C .14D .15 10.(2024•新乐市二模)在一次体育课上,小明随机调查了30名同学投篮20次投中的次数,数据如表所示:投篮20次投中的次数67 9 12人数 6 7 10 7 则投篮20次投中的次数的中位数和众数分别是( )A .8,9B .10,9C .7,12D .9,911.(2024•裕华区二模)七位评委对参加普通话比赛的选手评分,比赛规则规定要去掉一个最高分和一个最低分,然后计算剩下了5个分数的平均分作为选手的比赛分数,规则“去掉一个最高分和一个最低分”一定不会影响这组数据的( )A .平均数B .中位数C .极差D .众数12.(2024•新华区二模)掷两枚质地均匀的骰子,下列事件是随机事件的是( )A .点数的和为1B .点数的和为6C .点数的和大于12D .点数的和小于1313.(2024•新华区二模)如图,桌面上有3张卡片,1张正面朝上.任意将其中1张卡片正反面对调一次后,这3张卡片中出现2张正面朝上的概率是( )A .1B .23C .13D .19 14.(2024•桥西区二模)有数字4,5,6的三张卡片,将这三张卡片任意摆成一个三位数,摆出的三位数是5的倍数的概率是( )A .16B .14C .13D .12 15.(2024•石家庄二模)下列说法正确的是( )A .了解一批灯泡的使用寿命,应采用抽样调查的方式B .如果某彩票的中奖概率是1%,那么一次购买100张这种彩票一定会中奖C .若甲、乙两组数据的平均数相同,S 甲2=2.5,S 乙2=8.7,则乙组数据较稳定D .“任意掷一枚质地均匀的骰子,掷出的点数是7”是必然事件二.填空题(共2小题)16.(2024•平山县二模)已知一个不透明的袋子中装有4个只有颜色不同的小球,其中1个白球,3个红球.(1)从袋子中随机摸出1个小球是红球的概率是 ;(2)若在原袋子中再放入m 个白球和m 个红球(m >1),搅拌均匀后,使得随机从袋子中摸出1个小球是白球的概率为25,则m 的值为 . 17.(2024•石家庄二模)经过某T 字路口的汽车,可能向左转或向右转,如果两种可能性大小相同,则两辆汽车经过这个T 字路口时,“行驶方向相同”的概率是 .三.解答题(共14小题)18.(2024•石家庄二模)为了解甲、乙两个茶园种植的“龙井”茶叶的品质,现从两个茶园里分别随机抽取了20份茶叶样本,对它们的品质进行评分(满分100分,分数越高代表品质越好)评分用x 表示,共分为四组,A 组:60≤x <70,B 组:70≤x <80,C 组:80≤x <90,D 组:90≤x ≤100.甲茶园20份茶叶的评分从小到大分别为:65,68,72,75,78,80,82,85,85,88,90,90,90,92,95,95,95,95,98,100;乙茶园20份茶叶中有3份的评分为100分,评分在C 组中的数据是:85,88,80,85,82,83. 甲、乙两茶园随机抽取的茶叶评分数据统计分析如下表所示,乙茶园抽取的茶叶评分扇形统计图如图所示:甲茶园 乙茶园 平均数 85.9 87.6中位数89 b众数a95根据以上信息解答下列问题:(1)直接写出统计表中a,b的值;(2)若甲、乙两茶园的茶叶总共有2400份,请估计甲、乙两茶园评分在D组的茶叶共有多少份;(3)本次抽取的40份茶叶样本中,评分为100分的视为“精品茶叶”.茶农要在“精品茶叶”中任选两份参加茶叶展销会,用列表法(或画树状图)求这两份茶叶全部来自乙茶园的概率.19.(2024•裕华区二模)某中学为了解初三同学的体育中考准备情况,随机抽取该年级某班学生进行体育模拟测试(满分30分),根据测试成绩(单位:分)绘制成两幅不完整的统计图(如图1和图2),已知图2中得28分的人数所对圆心角为90°,回答下列问题:(1)条形统计图有一部分污损了,求得分27分的人数;直接写出所调查学生测试成绩中位数和众数.(2)一同学因病错过考试,补测后与之前成绩汇总,发现中位数变大了,求该名同学的补测成绩.(3)已知体育测试的选考项目有:①足球运球绕杆:②篮球运球绕杆;③排球正面双手垫球,求小明和小亮选择同一项目的概率.20.(2024•石家庄二模)某班组织开展课外体育活动,在规定时间内,进行定点投篮,对投篮命中数量进行了统计,并制成下面的统计表和如图不完整的折线统计图(不含投篮命中个数为0的数据).投篮命中数量/个 1 2 3 4 5 6学生人数 1 2 3 7 6 1 根据以上信息,解决下面的问题:(1)在本次投篮活动中,投篮命中的学生共有人,并求投篮命中数量的众数和平均数;(2)补全折线统计图;(3)嘉淇在统计投篮命中数量的中位数时,把统计表中相邻两个投篮命中的数量m,n错看成了n,m (m<n)进行计算,结果错误数据的中位数与原数据的中位数相比发生了改变,求m,n的值.21.(2024•新华区二模)“惜餐为荣,敛物为耻.”为了解落实“光盘行动”的情况,某校调研了七、八年级部分班级某一天的厨余垃圾质量,并作出如下统计分析.【收集数据】七、八年级各随机抽取10个班厨余垃圾质量的数据(单位:kg).【整理数据】进行整理和分析(厨余垃圾质量用x表示,共分为四个等级:A.x<1;B.1≤x<1.5;C.1.5≤x<2;D.x≥2).【描述数据】下面给出了部分信息,绘制如下统计图:七年级10个班厨余垃圾质量:0.6,0.7,0.7,0.7,1.3,1.3,1.6,1.7,2,2.4.八年级10个班厨余垃圾质量中B等级包含的所有数据为:1.1,1.1,1.1,1.3.【分析数据】七、八年级抽取的班级厨余垃圾质量统计表如下:年级平均数中位数众数方差A等级所占百分比七年级 1.3 1.3 a0.352 40%八年级 1.3 b 1.1 0.24 m%根据以上信息,解答下列问题:(1)填空:a=,b=,m=;(2)该校八年级共有30个班,估计八年级这一天厨余垃圾质量符合A等级的班级数;(3)根据以上信息,请你任选一个统计量,分析在此次“光盘行动”中,该校七、八年级的哪个年级落实得更好?并说明理由.22.(2024•桥西区二模)小亮所在的学校共有900名初中学生,小亮同学想了解本校全体初中学生的年龄构成情况、他从全校学生中随机选取了部分学生,调查了他们的年龄(单位:岁),绘制出如图所示的学生年龄扇形统计图.(1)直接写出m的值,并求全校学生中年龄不低于15岁的学生大约有多少人;(2)利用该扇形统计图,你能求出样本的平均数、众数和中位数中的哪些统计量?请直接写出相应的结果;(3)小红认为无法利用该扇形统计图求出样本的方差.你认同她的看法吗?若认同,请说明理由;若不认同,请求出方差.23.(2024•裕华区二模)2024年3月20日,天都一号、二号通导技术试验星由长征八号遥三运载火箭在中国文昌航天发射场成功发射升空,卫星作为深空探测实验室的首发星,将为月球通导技术提供先期验证!临邑县某中学为了解学生对航天知识的掌握情况,学校随机抽取了部分学生进行问卷调查,并将调查结果绘制成了下列两幅统计图(不完整),请根据图中信息,解答下列问题:(1)本次调查一共抽取了名学生,扇形统计图中“比较了解”所对应的圆心角度数是.(2)请你将条形统计图补充完整;(3)若该学校共有1200名学生,根据抽样调查的结果,请问该学校选择“不了解”项目的学生约有多少名?(4)在本次调查中,张老师随机抽取了4名学生进行感悟交流,其中“非常了解”的1人,“比较了解”的2人,“了解”的1人.若从这4人中随机抽取2人,请用画树状图或列表法,求抽取的2人全是“比较了解”的概率.24.(2024•正定县二模)某市教育局以“学习强国”学习平台知识内容为依托,要求市直辖学校利用“豫事办”手机客户端开展“回顾二十大”全民知识竞赛活动,市教育局随机抽取了两所学校各10名教师进行测试(满分10分),并对相关数据进行了如下整理:收集数据:一中抽取的10名教师测试成绩:9.1,7.8,8.5,7.5,7.2,8.4,7.9,7.2,6.9,9.5二中抽取的10名教师测试成绩:9.2,8.0,7.6,8.4,8.0,7.2,8.5,7.4,7.5,8.2分析数据:两组数据的相关统计量如下(规定9.0分及其以上为优秀):平均数中位数方差优秀率一中8.0 7.85 0.666 c二中8.0 b0.33 10%问题解决:根据以上信息,解答下列问题:(1)若绘制分数段频数分布表,则一中分数段0≤x<8.0的频数a=;(2)填空:b=,c=;(3)若一中共有教师280人,二中共有教师350人,估计这两个学校竞赛成绩达到优秀的教师总人数为多少人?(4)根据以上数据,请你对一、二中教师的竞赛成绩做出分析评价.(写出两条即可)25.(2024•新华区二模)在“书香进校园”读书活动中,为了解学生课外读物的阅读情况,随机调查了部分学生的课外阅读量.绘制成不完整的扇形统计图(图1)和条形统计图(图2),其中条形统计图被墨汁污染了一部分.(1)条形统计图中被墨汁污染的人数为人.“8本”所在扇形的圆心角度数为°;(2)求被抽查到的学生课外阅读量的平均数和中位数;(3)随后又补查了m名学生,若已知他们在本学期阅读量都是10本,将这些数据和之前的数据合并后,发现阅读量的众数没改变,求m的最大值.26.(2024•平山县二模)某班进行中考体育适应性练习,球类运动可以在篮球、足球、排球中选择一种.该班体委将测试成绩进行统计后,发现选择足球的同学测试成绩均为7分、8分、9分、10分中的一种(满分为10分),并依据统计数据绘制了如下不完整的扇形统计图(如图1)和条形统计图(如图2).(1)该班选择足球的同学共有人,其中得8分的有人;(2)若小宇的足球测试成绩超过了参加足球测试的同学半数人的成绩,则他的成绩是否超过了所有足球测试成绩的平均分?通过计算说明理由.27.(2024•裕华区二模)为了保护学生视力,防止学生沉迷网络和游戏,促进学生身心健康发展,某学校团委组织了“我与手机说再见”为主题的演讲比赛,根据参赛同学的得分情况绘制了如图所示的两幅不完整的统计图(其中A表示“一等奖”,B表示“二等奖”,C表示“三等奖”,D表示“优秀奖”).请你根据统计图中所提供的信息解答下列问题:(1)获奖总人数为人,m=,A所对的圆心角度数是°;(2)学校将从获得一等奖的4名同学(其中有一名男生,三名女生)中随机抽取两名参加全市的比赛,请利用树状图或列表法求抽取同学中恰有一名男生和一名女生的概率.28.(2024•藁城区二模)甲、乙两个不透明的袋子中,分别装有大小材质完全相同的小球,其中甲口袋中小球编号分别是1、2、3、4,乙口袋中小球编号分别是2、3、4,先从甲口袋中任意摸出一个小球,记下编号为m,再从乙袋中摸出一个小球,记下编号为n.(1)请用画树状图或列表的方法表示(m,n)所有可能情况;(2)规定:若m、n都是方程x2﹣5x+6=0的解时,小明获胜;m、n都不是方程x2﹣5x+6=0的解时,小刚获胜,请说明此游戏规则是否公平?29.(2024•新华区二模)如图,A,B两个带指针的转盘分别被分成三个面积相等的扇形,转盘A上的数字分别是﹣6,﹣1,5,转盘B上的数字分别是6,﹣7,4(两个转盘除表面数字不同外,其他完全相同).小聪和小明同时转动A,B两个转盘,使之旋转(规定:指针恰好停留在分界线上,则重新转一次).(1)转动转盘,转盘A指针指向正数的概率是;(2)若同时转动两个转盘,转盘A指针所指的数字记为a,转盘B指针所指的数字记为b,若a+b>0,则小聪获胜;若a+b<0,则小明获胜;请用列表法或树状图法说明这个游戏是否公平.30.(2024•新乐市二模)打造书香文化,培养阅读习惯.崇德中学计划在各班建图书角,开展“我最喜欢的书籍”为主题的调查活动,学生根据自己的爱好选择一类书籍(A:科技类,B:文学类,C:政史类,D:艺术类,E:其他类).张老师组织数学兴趣小组对学校部分学生进行了问卷调查,根据收集到的数据,绘制了两幅不完整的统计图(如图所示).根据图中信息,请回答下列问题;(1)条形图中的m=,n=,文学类书籍对应扇形圆心角等于度;(2)若该校有2000名学生,请你估计最喜欢阅读政史类书籍的学生人数;(3)甲同学从A,B,C三类书籍中随机选择一种,乙同学从B,C,D三类书籍中随机选择一种,请用画树状图或者列表法求甲乙两位同学选择相同类别书籍的概率.31.(2024•桥西区二模)为加强体育锻炼,某校体育兴趣小组,随机抽取部分学生,对他们在一周内体育锻炼的情况进行问卷调查,根据问卷结果,绘制成如下统计图.请根据相关信息,解答下列问题:某校学生一周体育锻炼调查问卷以下问题均为单选题,请根据实际情况填写(其中0~4表示大于等于0同时小于4)问题:你平均每周体育锻炼的时间大约是A.0~4小时B.4~6小时C.6~8小时D.8小时及以上问题2:你体育锻炼的动力是_____E.家长要求F.学校要求G.自己主动H.其他(1)参与本次调查的学生共有人,选择“自己主动”体育锻炼的学生有人;(2)已知该校有2600名学生,若每周体育锻炼8小时以上(含8小时)可评为“运动之星”,请估计全校可评为“运动之星”的人数;(3)请写出一条你对同学体育锻炼的建议.参考答案与试题解析一.选择题(共15小题)1.(2024•新华区二模)已知三个数﹣3、5、7,若添加一个数组成一组新数据,且这组新数据唯一的众数与中位数相等,则这个新数据为()A.3 B.4 C.5 D.7【解答】解:∵﹣3<5<7∴若添加一个数组成一组新数据,且这组新数据唯一的众数与中位数相等,则这个新数据为5.故选:C.2.(2024•新华区二模)某校八年级学生参加每分钟跳绳的测试,并随机抽取部分学生的成绩制成了频数分布直方图(如图),若取每组的组中值作为本小组的均值,则抽取的部分学生每分钟跳绳次数的平均数(结果取整数)为()A .87次B .110次C .112次D .120次【解答】解:x =62×2+87×8+112×12+137×6+162×22+8+12+6+2≈110次 故选:B .3.(2024•长安区二模)班主任邀请甲、乙、丙三位同学参加圆桌会议.如图,班主任坐在D 座位,三位同学随机坐在A 、B 、C 三个座位,则甲、乙两位同学座位相邻的概率是( )A .23B .13C .14D .12【解答】解:画树状图如下:共有6种等可能的结果,其中甲、乙两位同学座位相邻的结果有4种,即AB 、BA 、BC 、CB ∴甲、乙两位同学座位相邻的概率为46=23故选:A .4.(2024•桥西区二模)如图,某十字路口有交通信号灯,在东西方向上,红灯开启27秒后,紧接着绿灯开启30秒,再紧接着黄灯开启3秒,然后接着又是红灯开启27秒…按这样的规律循环下去,在不考虑其他因素的前提下,当一辆汽车沿东西方向随机行驶到该路口时,遇到绿灯开启的概率是()A.920B.1019C.13D.12【解答】解:由题意得,当一辆汽车沿东西方向随机行驶到该路口时,遇到绿灯开启的概率是3027+30+3= 12.故选:D.5.(2024•裕华区二模)为深入开展全民禁毒宣传教育,某校举行了禁毒知识竞赛,嘉嘉说:“我们班100分的同学最多,一半同学成绩在96分以上”,嘉嘉的描述所反映的统计量分别是()A.众数和中位数B.平均数和中位数C.众数和方差D.众数和平均数【解答】解:在一组数据中出现次数最多的数是这组数据的众数,中位数即位于中间位置的数故选:A.6.(2024•裕华区二模)某班开展了两次跳绳比赛,从班级里随机抽取了20名学生两次跳绳的成绩(单位:个/分钟),并对数据进行整理、描述和分析.如图是这些学生第一次和第二次比赛成绩情况统计图,设每名学生两次跳绳的平均成绩是x个/分钟,落在130<x⩽140的范围内的数据有()A .6个B .5个C .4个D .3个【解答】解:观察统计图,可以发现两次活动平均成绩在130<x ⩽140的范围内的数据有5个 故选:B .7.(2024•石家庄二模)一个不透明盒子里,共装有10个白球,5个红球,5个黄球,这些球仅颜色不同.小明从中任取一球,下列说法错误的是( ) A .摸到白球的可能性最大 B .摸到红球和黄球的可能性相同 C .摸到白球的可能性为12D .摸到白球、红球、黄球的可能性都为13【解答】解:∵一个不透明盒子里,共装有10个白球,5个红球,5个黄球 ∴共有20个球 ∴摸到白球的概率为1020=12,摸到红球的概率为520=14,摸到黄球的概率为520=14∵12>14∴摸到白球的可能性最大,摸到红球和黄球的可能性相同,摸到白球的可能性为12故选:D .8.(2024•藁城区二模)从分别写有“大”“美”“江”“汉”汉字的四张卡片中,随机抽出两张,抽出的卡片上的汉字能组成“江汉”的概率是( ) A .18B .16C .14D .12【解答】解:列表如下:大 美 江 汉 大 美大 江大 汉大 美 大美 江美 汉美 江 大江 美江 汉江 汉大汉美汉江汉由表知,共有12种等可能结果,其中抽出的卡片上的汉字能组成“江汉”的有2种结果 所以抽出的卡片上的汉字能组成“江汉”的概率为212=16故选:B .9.(2024•新华区二模)2024年河北省初中学业水平体育与健康科目考试的抽考项目包含①②③④共四项,由各市教育行政部门抽签决定.某市教育行政部门从四个项目中随机抽取一项,抽到项目①的概率为( ) A .12B .13C .14D .15【解答】解:∵市教育行政部门从四个项目中随机抽取一项的可能结果共有4种,抽到项目①的可能结果只有1种∴抽到项目①的概率为14.故选:C .10.(2024•新乐市二模)在一次体育课上,小明随机调查了30名同学投篮20次投中的次数,数据如表所示:投篮20次投中的次数 679 12人数67 10 7 则投篮20次投中的次数的中位数和众数分别是( ) A .8,9B .10,9C .7,12D .9,9【解答】解:将这30人投篮20次投中的次数从小到大排列后,处在之间位置的两个数的平均数为9+92=9(次),因此中位数是9次这30人投篮20次投中的次数是9次的出现的次数最多,共有10人,因此众数是9次 综上所述,中位数是9,众数是9故选:D .11.(2024•裕华区二模)七位评委对参加普通话比赛的选手评分,比赛规则规定要去掉一个最高分和一个最低分,然后计算剩下了5个分数的平均分作为选手的比赛分数,规则“去掉一个最高分和一个最低分”一定不会影响这组数据的( ) A .平均数B .中位数C .极差D .众数【解答】解:去掉一个最高分和一个最低分一定会影响到平均数、极差,可能会影响到众数 一定不会影响到中位数 故选:B .12.(2024•新华区二模)掷两枚质地均匀的骰子,下列事件是随机事件的是( ) A .点数的和为1 B .点数的和为6 C .点数的和大于12D .点数的和小于13【解答】解:A 、两枚骰子的点数的和为1,是不可能事件,故不符合题意;B 、两枚骰子的点数之和为6,是随机事件,故符合题意;C 、点数的和大于12,是不可能事件,故不符合题意;D 、点数的和小于13,是必然事件,故不符合题意;故选:B .13.(2024•新华区二模)如图,桌面上有3张卡片,1张正面朝上.任意将其中1张卡片正反面对调一次后,这3张卡片中出现2张正面朝上的概率是( )A .1B .23C .13D .19【解答】解:∵任意将其中1张卡片正反面对调一次,有3种对调方式,其中只有对调反面朝上的2张卡片才能使3张卡片中出现2张正面朝上 ∴P =23 故选:B .14.(2024•桥西区二模)有数字4,5,6的三张卡片,将这三张卡片任意摆成一个三位数,摆出的三位数是5的倍数的概率是( )A .16B .14C .13D .12【解答】解:三位数有6个,是5的倍数的三位数是:465,645; 三位数是5的倍数的概率为:26=13;故选:C .15.(2024•石家庄二模)下列说法正确的是( ) A .了解一批灯泡的使用寿命,应采用抽样调查的方式B .如果某彩票的中奖概率是1%,那么一次购买100张这种彩票一定会中奖C .若甲、乙两组数据的平均数相同,S 甲2=2.5,S 乙2=8.7,则乙组数据较稳定 D .“任意掷一枚质地均匀的骰子,掷出的点数是7”是必然事件【解答】解:A .了解一批灯泡的使用寿命,应采用抽样调查的方式,是正确的,因此选项A 符合题意;B .如果某彩票的中奖概率是1%,那么一次购买100张这种彩票也不一定会中奖,因此选项B 不符合题意;C .若甲、乙两组数据的平均数相同,S 甲2=2.5,S 乙2=8.7,则甲组数据较稳定,因此选项C 不符合题意;D .“任意掷一枚质地均匀的骰子,掷出的点数是7”是不可能事件,因此选项D 不符合题意;故选:A .二.填空题(共2小题)16.(2024•平山县二模)已知一个不透明的袋子中装有4个只有颜色不同的小球,其中1个白球,3个红球.(1)从袋子中随机摸出1个小球是红球的概率是34;(2)若在原袋子中再放入m 个白球和m 个红球(m >1),搅拌均匀后,使得随机从袋子中摸出1个小球是白球的概率为25,则m 的值为 3 .【解答】解:(1)由题意可得从袋子中随机摸出1个小球是红球的概率是31+3=34故答案为:34;(2)由题意可得1+m 1+m +3+m =25解得m =3 故答案为:3.17.(2024•石家庄二模)经过某T 字路口的汽车,可能向左转或向右转,如果两种可能性大小相同,则两辆汽车经过这个T 字路口时,“行驶方向相同”的概率是 12.【解答】解:画树状图为:共有4种等可能的结果数,其中行驶方向相同的有2种 ∴“行驶方向相同”的概率是 24=12故答案为:12.三.解答题(共14小题)18.(2024•石家庄二模)为了解甲、乙两个茶园种植的“龙井”茶叶的品质,现从两个茶园里分别随机抽取了20份茶叶样本,对它们的品质进行评分(满分100分,分数越高代表品质越好)评分用x 表示,共分为四组,A 组:60≤x <70,B 组:70≤x <80,C 组:80≤x <90,D 组:90≤x ≤100.甲茶园20份茶叶的评分从小到大分别为:65,68,72,75,78,80,82,85,85,88,90,90,90,92,95,95,95,95,98,100;乙茶园20份茶叶中有3份的评分为100分,评分在C 组中的数据是:85,88,80,85,82,83. 甲、乙两茶园随机抽取的茶叶评分数据统计分析如下表所示,乙茶园抽取的茶叶评分扇形统计图如图所示:甲茶园乙茶园平均数85.9 87.6中位数89 b众数a95根据以上信息解答下列问题:(1)直接写出统计表中a,b的值;(2)若甲、乙两茶园的茶叶总共有2400份,请估计甲、乙两茶园评分在D组的茶叶共有多少份;(3)本次抽取的40份茶叶样本中,评分为100分的视为“精品茶叶”.茶农要在“精品茶叶”中任选两份参加茶叶展销会,用列表法(或画树状图)求这两份茶叶全部来自乙茶园的概率.【解答】解:(1)由题意可得,a=95.由扇形统计图可知,乙茶园评分在A组有20×10%=2(份),在B组有20×20%=4(份).将乙茶园评分按照从小到大的顺序排列,排在第10和11的分数为85分和85分∴b=(85+85)÷2=85.(2)乙茶园评分在D组的茶叶有(1﹣10%﹣20%﹣30% )×20=8(份)甲茶园评分在D组的茶叶有10份∴估计甲、乙两茶园评分在D组的茶叶共约有2400×8+1020+20=1080(份).(3)由题意知,甲茶园评分为100分的有1个,乙茶园评分为100分的有3个.将甲茶园“精品茶叶”记为a,乙茶园“精品茶叶”分别记为b,c,d列表如下:a b c da(a,b)(a,c)(a,d)b(b,a)(b,c)(b,d)。
数学中考统计与概率题型解题方法总结统计与概率是数学中考试中常出现的题型之一,通过掌握一些解题方法和技巧,能够帮助我们更好地应对这类题目。
本文将对中考统计与概率题型的解题方法进行总结,希望对同学们的备考有所帮助。
一、频数统计题频数统计题是统计与概率题型中最为基础和常见的一类题目。
在这类题目中,通常会给出一组数据,要求我们统计某个数值或某个范围内数据出现的次数。
解题方法:1. 仔细读题,理解题意。
确定需要统计的数值或范围,并分析给定数据的特点。
2. 建立频数统计表格。
将给定数据按照一定的顺序排列,并在表格中记录每个数值或范围的出现次数。
3. 统计频数。
根据数据进行计数,并记录在频数统计表格中。
4. 统计完成后,根据题目要求回答相关问题。
举例说明:例如,某题目给出以下一组数据:3, 4, 3, 2, 5, 4, 3, 1, 2, 4。
题目要求统计数据中各个数字出现的次数。
解题步骤:1. 建立频数统计表格如下:数字 | 1 | 2 | 3 | 4 | 5 |------|---|---|---|---|---|频数 | | | | | |2. 对数据进行计数:数字1出现1次,数字2出现2次,数字3出现3次,数字4出现3次,数字5出现1次。
3. 填入频数统计表格:数字 | 1 | 2 | 3 | 4 | 5 |------|---|---|---|---|---|频数 | 1 | 2 | 3 | 3 | 1 |4. 统计完成后,根据需要回答相关问题,比如出现次数最多的数字是3,共出现了3次。
二、频率与百分数计算题在统计与概率题型中,频率与百分数计算题目是针对概率进行计算和比较的题目。
通常会给出一组数据,并要求我们计算某个数值或范围的频率或百分数。
解题方法:1. 读题,理解题意。
确定频率或百分数的计算对象,并分析给定数据的特点。
2. 计算频率或百分数。
使用给定数据和统计结果计算所需的频率或百分数。
3. 根据题目要求,回答相关问题或进行比较。
统计与概率(时间:100分钟总分:100分)一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个是符合题目要求的)1.一组数据5,5,6,x,7,7,8,已知这组数据的平均数是6,则这组数据的中位数是()A.7 B.6 C.5.5 D.52.检测1 000名学生的身高,从中抽出50名学生测量,在这个问题中,50名学生的身高是()A.个体 B.总体 C.样本容量 D.总体的样本3.下列事件为必然事件的是()A.买一张电影票,座位号是偶数; B.抛掷一枚普通的正方体骰子1点朝上C.百米短跑比赛,一定产生第一名; D.明天会下雨4.一次抽奖活动中,印发的奖券有10 000张,其中特等奖2张,一等奖20张,•二等奖98张,三等奖200张,鼓励奖680张,那么第一位抽奖者(仅买一张奖券)•中奖的概率为()A.110B.150C.1500D.150005.某校把学生的笔试、实践能力、成长记录三项成绩分别按50%、20%、30%•的比例计入学期总评成绩,90分以上为优秀,甲、乙、丙三人的各项成绩(单位:分)如下表,学期总评成绩优秀的是()A.甲 B.乙、丙 C.甲、乙 D.甲、丙6.甲、乙两个样本的方差分别是s甲2=6.06,s乙2=14.31,由此可反映出()A.样本甲的波动比样本乙的波动大;B.样本甲的波动比样本乙的波动小;C.样本甲的波动与样本乙的波动大小一样;D.样本甲和样本乙的波动大小关系不确定7.已知一组数据x1,x2,x3,x4,x5的平均数是2,方差为13,那么另一组数据3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的平均数和方差分别是()A.2,13B.2,1 C.4,23D.4,38.某班一次数学测验,其成绩统计如下表:则这个班此次测验的众数为()A.90分 B.15 C.100分 D.50分9.一组数据1,-1,0,-1,1的方差和标准差分别是()A.0,0 B.0.8,0.64 C.1,1 D.0.810.由小到大排列一组数据y1,y2,y3,y4,y5,其中每个数都小于-2,则对于样本1,y1,•-y2,y3,-y4,y5的中位数是()A .212y + B .232y y - C .512y + D .342y y -二、填空题(本大题共8题,每题3分,共24分) 11.•若你想设计一个月内你家里丢弃塑料袋数目的情况•,•你一定不能选择_______统计图(填扇形、折线和条形).12.如图,是世界人口扇形统计图,关系中国部分的圆心角的度数为______. 13.在100件产品中有5件次品,则从中任取一件次品的概率为________.14.要了解全市中考生的数学成绩在某一范围内的学生所占比例的大小,需知道相应样本的________(填“平均数”“方差”或“频率分布”).15.随机掷一枚均匀的硬币两次,至少有一次正面朝上的概率是_____.16.在一个有10万人的小镇上,随机调查了2 000人,其中有250•人看中央电视台的早间新闻,在该镇随便问一人,他看早间新闻的概率大约是________. 17.已知一组数据的方差是s 2=125[(x 1-2.5)2+(x 2-2.5)2+(x 3-2.5)2+…+(x 25-2.5)2],则这组数据的平均数是_________.18.一组数据的方差为s 2,将这组数据的每个数据都乘2,•所得到的一组新数据的方差是________. 三、解答题(本大题共46分,19~23题每题6分,24题、25题每题8分.解答题应写出文字说明、证明过程或演算步骤)19.已知一组数据6,2,4,2,3,5,2,4.(1)这组数据的样本容量是多少?(2)写出这组数据的众数和平均数.20.请你设计一个转盘游戏,使获一等奖的机会为112,获二等奖的机会为16,获得三等奖的机会为14,并说明你的转盘游戏的中奖概率.21.根据下表制作扇形统计图,表示各种果树占果园总树木的百分比. (1)计算各种果树面积与总面积的百分比; (2)计算各种果树对应的圆心角的度数; (3)制作扇形统计图.22.某餐厅共有7名员工,所有员工的工资情况如下表所示(单位:元).•解答下列问题.(1 (2)用平均数还是用中位数描述所有员工的工资的一般水平比较恰当?(3)去掉经理工资以后,其他员工的平均工资是多少?•是否也能反映员工工资的一般水平?23.下表是某校九年级(1)班20名学生某次数学测验的成绩统计表:(1)若这20名学生的平均分是84分,求x 和y 的值.(2)这20名学生的本次测验成绩的众数和中位数分别是多少?24.有三面小旗,分别为红、黄、蓝三种颜色.(1)把三面小旗按不同顺序排列,共有多少种不同排法?把它们排列出来.(2)如果把小旗从左至右排列,红色小旗排在最左端的概率是多少?25.中小学生的视力状况受到社会的关注,某市有关部门对全市4•万名初中生的视力状况进行了一次抽样调查,统计所得到的有关数据绘制成频率分布直方图,如图10-2,从左至右五个小组的频率之比依次是2:4:9:7:3,第五小组的频率是30.(1)本次调查共抽测了多少名学生?(2)本次调查抽测的数据的中位数应在哪个小组?说明理由.(3)如果视力在4.9~5.1(包括4.9、5.1)均属正常,那么全市初中生视力正常约有多少人?频率组距视力5.455.154.854.554.253.95统计与概率的应用(时间:100分钟 总分:100分)一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个是符合题目要求的)1.数学老师对小明在参加高考前的5次数学模拟考试进行统计分析,判断小明的数学成绩是否稳定,则老师需要知道小明这5次数学成绩的( )A .平均数或中位数B .方差或极差C .众数或频率D .频数或众数 2.下列调查,比较容易用普查方式的是( )A .了解某市居民年人均收入B .了解某市初中生体育中考成绩C .了解某市中小学生的近视率D .了解某一天离开贵阳市的人口流量 3.在频率分布直方图中,各个小长方形的面积等于( )A .相应各组的频数B .组数C .相应各组的频率D .组距 4.第五次我国人口普查资料显示:2000年某省总人口为780万,图中的“?•”表示某省2000年接受初中教育这一类别的人数数据丢失了,•那么结合图中其他信息,可推知2000年该省接受初中教育的人数为( )A .93.6万B .234万C .23.4万D .2.34万5.把养鸡场的一次质量抽查情况作为样本,样本数据落在1.5~2.0(单位:千克)之间的频率为0.28,于是可估计这个养鸡场的2 000只鸡中,质量在1.5~2.0千克之间的鸡有( )只A .56B .560C .80D .1506.设有50个型号相同的乒乓球,其中一等品40个,二等品8个,三等品2个,从中任取1个乒乓球,抽到非一等品的概率是( ) A .425B .125C .15D .457.某厂家准备投资一批资金生产10万双成人皮鞋,•现对顾客所需鞋的大小号码抽样调查如下:100名顾客中有15人穿36码,20人穿37码,25人穿38码,20人穿39码,…,如果你是厂商你准备在这10万双鞋中生产39码的鞋约( )双A .2万B .2.5万C .1.5万D .5万8下面有三个命题:①甲班学生的平均成绩高于乙班学生的平均成绩;②甲班学生的成绩波动比乙班学生的成绩波动大;•③甲班学生成绩优秀人数不会多于乙班学生的成绩优秀的人数(跳绳次数≥150次为优秀).其中正确的是( )A .①B .②C .③D .②③9.给出下述四个命题:①众数与数据的排列顺序有关;②10个数据中,至少有5个数据大于这10个数据的平均数;③若x 甲>x乙,则s甲2>s乙2;④频率分布直方图中,各长方形的面积和等于1,其中正确命题的个数是( ) A .1 B .2 C .3 D .410.近年来我国国内生产总值增长率的变化情况统计图如图,下列结论中不正确的是( )A.1995─1999年,国内生产总值的年增长率逐年减少; B.2000年,国内生产总值的年增长率回升; C.这7年中,每年的国内生产总值不断增长; D.这8年中,每年的国内生产总值有增有减。
二、填空题(本大题共8题,每题3分,共24分)11.在全年级的375名学生中,有两名学生生日相同的概率是_________.12.从甲、乙两班抽取人数相等的学生参加了同一次数学竞赛,其竞赛成绩的平均分,方差分别为:x甲=x乙=80,s甲2=240;s乙2=180,则成绩较稳定的是________.13.某班50名学生在适应性考试中,分数段在90~100分的频率为0.1,•则该班在这个分数段的学生有_________人.14.用5分评价学生的作业(没有人得0分),然后在班上抽查16名学生的作业质量来估计全班的作业质量,从中抽查的数据中已知其众数是4分,•那么得4•分的至少有_______人.15.从甲、乙、丙三个厂家生产的同一种产品中各抽取8件产品,•对其使用寿命跟踪调查结果如下(单位:年):甲:3,4,6,8,8,8,10,5 乙:4,6,6,6,8,9,12,13丙:3,3,4,7,9,10,11,12三个厂家在广告中都标明产品的使用寿命是8年,请根据结果判断厂家在广告中分别运用了平均数、•众数、•中位数哪一种集中趋势的特征数,•甲:•______.•乙:_______.丙:________.16.抽屉里有尺码相同的3双黑袜子和2双白袜子,混放在一起,•在夜晚不开灯的情况下,你随意拿出2只,它们恰好是1双的可能性是_________.17.某商场5月份随机抽查7天的营业额,结果如下(单位:万元):3.6,3.2,3.4,3.9,3.0,3.1,3.6.试估计该商场5月份(31天)的营业额大约是________万元.18.某公司董事会拨出总额为40万元作为奖金,全部用于奖励本年度做出突出贡献的一、二、三等奖的职工,原来设定一等奖每人5万元,二等奖每人3万元,三等奖每人2万元,后因考虑到获一等奖的职工科技创新已给公司带来的巨大的经济效益,•现在改为一等奖每人15万元,二等奖每人4万元,三等奖每人1万元,•那么该公司本年度获得一、二、三等奖的职工共________人.三、解答题(本大题共46分,19~23题每题6分,24题、25题每题8分,解答题应写出文字说明、证明过程或演算步骤)19.如图,为第27届奥运金牌扇形统计图,•根据图中提供的信息回答下列问题:(1)美国、俄罗斯、中国、德国四国的金牌榜排名如何?(2)哪两个国家金牌数最接近?(3)如果你是中国队的总教练,你在下一次奥运会的追赶目标是谁?20.小文和小颖做游戏,在两个被6等分的转盘上分别写有数字1,2,3,4,5,6.•转动两个转盘,当转盘停止后,如果它们的指针指向数字的积为奇数,则小文胜,如果两个数字的积为偶数,则小颖胜.试问:这个游戏对双方公平吗?请说明你的理由.21.为了解全校学生的身高情况,小明、小华、小刚三个同学分别设计了三个方案:(1)小明:测量出某班每个同学的身高,以此推出全校学生的身高.(2)小华:在校医务室找出了1995年全校各班的体检表,•从中摘录全校学生的身高情况.(3)小刚:在全校每个年级的(一)班中,抽取了学号为5的倍数的10名学生,•测量他们的身高,从而估计全校学生身高的情况.这三种调查方案哪一种较好?为什么?22.投放一个水库的鱼成活了5万条,从水中捕捞了10条,称得它们的质量(单位:kg)为2.5,2.2,2.4,2.3,2.4,2.5,2.8,2.6,2.7,2.6.(1)根据统计结果估计水库有上述这种活鱼多少千克?(2)估计质量在2.35~2.65kg的鱼有多少条?23.将10盒同一品种的花施用甲、乙两种保花肥,随意分成两组,每组5盆,•其花期的记录结果如下(单位:天).(124.某公司10名销售员,去年完成的销售额情况如下表:(1)求销售额的平均数、众数、中位数(单位:万元).(2)今年公司为调动员工积极性,提高年销售额,准备采取超额有奖的措施,请根据(1)的结果,通过比较合理确定今年每个销售员统一的销售额标准是多少万元?25.在学校开展的结合实践活动中,某班进行了小制作评比,作品上交时间为5月1日至31日,评委会把同学们上交作品的件数按5天一组分组统计,绘制成频率分布直方图,如图所示,已知从左至右各长方形高的比为2:3:4:6:4:1,第三组的频数为12,请解答下列各题:(1)本次活动共有多少作品参加评比?(2)哪组上交的作品中数量最多?有多少件?(3)经过评比,第四组和第六组分别有10件、2件作品获奖,问这两组哪组获奖率较高?答案1一、选择题1.B 2.D 3.C 4.A 5.C 6.B 7.D 8.A 9.D 10.C 二、填空题11.扇形 12.72° 13.12014.频率分布 15.3416.1817.2.5 18.4s2三、解答题19.解:(1)8.(2)众数为2,平均数为3.5.20.解:设计略,中奖概率为1111 12642++=.21.解:(1)梨树25%,苹果树50%,葡萄树12.5%,桃树12.5%.(2)梨树90°,苹果树180°,葡萄树45°,桃树45°.(3)图略.22.解:(1)平均工资为810元,中位数为450.(2)中位数.(3)445,能反映员工工资的一般水平.23.解:(1)由题意知12,80901070,x yx y+=⎧⎨+=⎩解得1,11.xy=⎧⎨=⎩(2)众数为90分,中位数为90分.24.解:(1)共有6种不同排法,分别为红黄蓝、红蓝黄、黄红蓝、黄蓝红、•蓝红黄、蓝黄红.(2)13.25.解:(1)设5个小组的频率依次为2x,4x,9x,7x,3x,则2x+4x+9x+7x+3x=1,解得x=125.30÷325=250(人).(2)第三小组,理由略.(3)4×725=1.12万人.答案2一、选择题1.B 2.B 3.C 4.B 5.B 6.C 7.A 8.D 9.B 10.D 二、填空题11.1 12.乙 13.5 14.4 15.众数平均数中位数 16.71517.105.4 •18.17三、解答题19.解:(1)排名榜为:美国、俄罗斯、中国、德国.(2)澳大利亚与德国.(3)俄罗斯.20.解:这个游戏不公平,指向数字的积为奇数的概率为14,积为偶数的概率为34,•故不公平.21.解:第三种方案较好,理由22.解:(1)2.5 2.2 2.4 2.3 2.4 2.5 2.8 2.6 2.7 2.610+++++++++=2.5(千克).2.5×50 000=1125 000(千克).(2)610×50 000=30 000(条).23.解:(1)甲组平均花期与乙组的平均花期均为25天.(2)s甲2=15[(23-25)2+(25-25)2+(27-25)2+(28-25)2+(22-25)2=5.2,s乙2=15[2(24-25)2+2(27-25)2+(23-25)2]=2.8.∵s甲2>s乙2,∴乙种保花肥更可靠.24.解:(1)平均数为5.6万元,众数为4万元,中位数为5万元.(2)5万元.25.解:(1)第三小组频率为4234641+++++=0.2,参加评比的作品的数量为120.2=60件.(2)第四小组参加的数量最多为62060⨯=18件.(3)第六小组参加的数量为120×60=3件.因1018<23.故第六组获奖率高.。