第8章 杆件结构的内力及计算
- 格式:ppt
- 大小:997.00 KB
- 文档页数:55
截面法1截面法可以快速求出某一内力,通常取结构 的一部分为隔离体,其上力系为平面一般力系。
每个隔离体上有3个独立平衡方程。
一般表示 为: ∑ FX = 0 投影法 ∑ FY = 0 力矩法 ∑M = 0 计算要点: 尽量使一个方程解一个未知数,避免求解 联立方程。
一. 力矩法例:求图示桁架1、2、3杆的轴力。
2VAVB解:由整体平衡条件求得支座反力 VA=VB HA=0作Ⅰ--Ⅰ截面,截开1、2、3杆的轴力 取截面以左为隔离体。
Ⅰ3Ⅰ(1)求1杆轴力N1K14选取未知力N2和N3 延长线的交点K1作 为取矩点。
N1 对K1点取矩,由 ∑MK1 = 0 从而求出所求未知 力N1。
VA(2)求2杆轴力N2N2 K2 VAY252X2由∑MK2 = 0 ,比例关系从而求出所求未知力Y2。
2杆轴力N2(3)求3杆轴力N3Y3 N3 X3K3 VA6由 ∑MK3 = 0比例关系从而求出所求未知力X3。
3杆轴力N3力矩法要点:7欲求某指定杆内力,则作一截面,截开待求 杆; 隔离体上除所求未知力外,其余未知力的延 长线均交于某一点K。
对K点取矩,从而求出所求未知力 。
(1)选择其余未知力延长线的交点K作为取矩 点,从而用∑MK=0,求出指定杆内力。
(2)将斜杆的内力放在某一个合适的点上分 解,使其一个分力通过取矩点K。
例1. 求图示桁架杆件a、b、c的轴力890kN30kN作Ⅰ—Ⅰ截面Ⅰ9Ⅰ求NaNa 求Na时,对另 外两个未知力的 交点C取矩,10C由 ΣMc=0,得 Na×4+30×8=030kN解得: Na =- 60kN求NbD Xb E Yb Nb30kN11求Nb时,对点D取矩。
将Nb 其在E点处分解 为水平和竖向分量。
由ΣMD=0,得 Yb×12+40×4 - 30×12=0 解得 Yb=16.67 kN由比例关系得到:N b = 2Yb = 2 × 16.67 = 23.57kN求NcYc XcD Nc12求Nc时,对点E取矩。
杆件受力分析杆件的内力计算和受力平衡杆件受力分析是工程力学中一个重要的内容,能够帮助我们了解和计算杆件内力以及保证杆件的受力平衡。
本文将介绍杆件受力分析的基本概念和计算方法,并根据实际例子进行说明和分析。
一、杆件受力分析概述杆件,指的是工程结构中的长条形构件,常用于支撑和传递力量。
在实际应用中,杆件往往会受到多方向的力的作用,因此需要进行受力分析,计算出杆件内部的力,以保证其受力平衡。
在进行杆件受力分析时,我们需要明确以下几个概念:1. 受力点:指的是外力作用到杆件上的点,也是进行受力分析的起点。
2. 内力:指的是杆件内部存在的力,可以是拉力或压力。
3. 受力平衡:指的是杆件上所有受力的合力和合力矩为零的状态,保证了杆件受力的平衡。
二、杆件内力计算方法1. 自由体图法:自由体图法是杆件受力分析的基本方法,通过将杆件与外界切割开来,分析切割面上的受力情况,进而计算出杆件内力。
过程:选择合适的切割面,画出自由体图,分析受力平衡条件,解方程计算内力。
2. 杆件法:杆件法是将整个杆件视为一个整体,通过利用杆件的几何关系和受力条件进行计算。
过程:根据杆件的几何形状和受力情况,建立方程组求解。
三、杆件受力分析实例为了更好地理解和应用杆件受力分析的方法,下面以一个实际例子进行说明:假设有一根长度为L的杆件,一端固定在墙上,另一端悬挂一个质量为m的物体。
我们需要计算杆件的内力以及保证受力平衡。
首先,我们选择杆件的中点作为切割面,并画出自由体图。
根据受力平衡条件,我们可以得出以下方程:∑Fx = 0: T - F = 0 (水平方向受力平衡)∑Fy = 0: N - mg = 0 (竖直方向受力平衡)其中,T代表杆件的张力,F代表杆件所受悬挂物体的重力,N代表杆件与墙壁接触点的支撑力,g代表重力加速度。
通过解以上方程组,我们可以计算出T和N的数值,进而得到杆件内部的力。
根据实际情况,可以通过杆件截面积和材料的力学性质,计算出杆件的应力和变形情况。
理论力学中的杆件受力分析与应力计算杆件在力学中是一种常见的结构元件,广泛应用于工程领域。
在使用杆件的过程中,对其受力分析与应力计算是十分重要的,这有助于了解杆件的工作状态和承受外部力的能力。
在理论力学中,杆件的受力分析和应力计算是相互关联的,通过分析杆件上的受力情况可以计算出其内部所受的应力。
一、杆件受力分析杆件在受力时一般会存在拉力、压力和剪力等力的作用,为了分析杆件上的受力情况,我们首先需要了解以下几个概念:1. 内力:杆件内部产生的相互作用力被称为内力,包括拉力、压力和剪力等。
内力可以分为轴向力、弯矩和剪力三种类型。
2. 外力:杆件受到的外部施加的力被称为外力,可以分为集中力和分布力。
集中力是沿杆件轴线方向的作用力,可以通过杆件两端的连接点传递;分布力是沿杆件长度方向分布的作用力。
3. 杆件端点的支座条件:杆件连接点的支座条件可以分为固定支座、铰接支座和滑动支座。
固定支座可以防止杆件端点的位移和旋转;铰接支座只能防止位移,而滑动支座只能防止垂直位移。
通过分析杆件上的受力情况,可以得出杆件内部所受的内力大小和方向。
具体的受力分析方法包括静力平衡方程和弹性力学原理等。
二、应力计算杆件在受力时会发生变形,产生应力。
应力是指杆件内力对杆件截面积的比值,常用符号表示为σ。
杆件所受的应力可以分为轴向应力、剪应力和弯曲应力。
1. 轴向应力:杆件受到拉力或压力时,在截面上会产生轴向应力。
轴向应力可以通过杆件所受的轴向力与截面面积的比值来计算,即σ= F/A,其中F为轴向力,A为截面面积。
2. 剪应力:杆件在受到剪力时会产生剪应力。
剪应力可以通过杆件所受的剪力与截面面积的比值来计算,即τ = V/A,其中V为剪力,A 为截面面积。
3. 弯曲应力:杆件在受到弯矩作用时会产生弯曲应力。
弯曲应力可以通过弯矩对截面矩型模量的比值来计算,即σ_b = M/W,其中M为弯矩,W为截面矩型模量。
根据杆件所受的外力和材料的性质,可以计算出杆件所受的内力和应力。