第三章 水动力学基础
- 格式:ppt
- 大小:1.42 MB
- 文档页数:76
第一章绪论1-2.20℃的水2.5m3,当温度升至80℃时,其体积增加多少?[解] 温度转变前后质量守恒,即又20℃时,水的密度80℃时,水的密度那么增加的体积为1-4.一封锁容器盛有水或油,在地球上静止时,其单位质量力为假设干?当封锁容器从空中自由下落时,其单位质量力又为假设干?[解] 在地球上静止时:自由下落时:第二章流体静力学2-1.一密闭盛水容器如下图,U形测压计液面高于容器内液面h=1.5m,求容器液面的相对压强。
[解]2-3.密闭水箱,压力表测得压强为4900Pa。
压力表中心比A点高0.5m,A点在液面下1.5m。
求液面的绝对压强和相对压强。
[解]绘制题图中面上的压强散布图。
Bh 1h 2A Bh 2h 1hAB解:Bρgh 1ρgh 1ρgh 1ρgh 2AB ρgh2-14.矩形平板闸门AB一侧挡水。
已知长l=2m,宽b=1m,形心点水深h c=2m,倾角=45,闸门上缘A处设有转轴,忽略闸门自重及门轴摩擦力。
试求开启闸门所需拉力。
[解] 作用在闸门上的总压力:作用点位置:2-15.平面闸门AB 倾斜放置,已知α=45°,门宽b =1m ,水深H 1=3m ,H 2=2m ,求闸门所受水静压力的大小及作用点。
45°h 1h 2BA[解] 闸门左侧水压力:作用点:闸门右边水压力:作用点:总压力大小:对B 点取矩:2-13.如下图盛水U 形管,静止时,两支管水面距离管口均为h ,当U 形管绕OZ 轴以等角速度ω旋转时,求维持液体不溢出管口的最大角速度ωmax 。
[解] 由液体质量守恒知,I 管液体上升高度与 II 管液体下降高度应相等,且二者液面同在一等压面上,知足等压面方程:液体不溢出,要求, 以别离代入等压面方程得2-16.如图,,上部油深h1=1.0m,下部水深h2=2.0m,油的重度=m3,求:平板ab单位宽度上的流体静压力及其作用点。
[解] 合力作用点:一弧形闸门,宽2m,圆心角=,半径=3m,闸门转轴与水平齐平,试求作用在闸门上的静水总压力的大小和方向。
武汉⼤学⽔⼒学教材答案第三章第三章⽔动⼒学基础1、渐变流与急变流均属⾮均匀流。
( )2、急变流不可能是恒定流。
( )3、总⽔头线沿流向可以上升,也可以下降。
( )4、⽔⼒坡度就是单位长度流程上的⽔头损失。
( )5、扩散管道中的⽔流⼀定是⾮恒定流。
( )6、恒定流⼀定是均匀流,⾮恒定流⼀定是⾮均匀流。
( )7、均匀流流场内的压强分布规律与静⽔压强分布规律相同。
( )8、测管⽔头线沿程可以上升、可以下降也可不变。
( )9、总流连续⽅程 v1A1 = v2A2对恒定流和⾮恒定流均适⽤。
( )10、渐变流过⽔断⾯上动⽔压强随⽔深的变化呈线性关系。
( )11、⽔流总是从单位机械能⼤的断⾯流向单位机械能⼩的断⾯。
( )12、恒定流中总⽔头线总是沿流程下降的,测压管⽔头线沿流程则可以上升、下降或⽔平。
( )13、液流流线和迹线总是重合的。
( )14、⽤毕托管测得的点流速是时均流速。
( )15、测压管⽔头线可⾼于总⽔头线。
( )16、管轴⾼程沿流向增⼤的等直径管道中的有压管流,其管轴压强沿流向增⼤。
( )17、理想液体动中,任意点处各个⽅向的动⽔压强相等。
( )18、恒定总流的能量⽅程z1+ p1/g +v12/2g = z2+p2/g + v22/2g +h w1- 2 ,式中各项代表( ) (1) 单位体积液体所具有的能量;(2) 单位质量液体所具有的能量;(3) 单位重量液体所具有的能量;(4) 以上答案都不对。
19、图⽰抽⽔机吸⽔管断⾯A─A动⽔压强随抽⽔机安装⾼度h的增⼤⽽ ( )(1) 增⼤ (2) 减⼩ (3) 不变 (4) 不定20、在明渠恒定均匀流过⽔断⾯上1、2两点安装两根测压管,如图所⽰,则两测压管⾼度h1与h2的关系为 ( )(1) h1>h2 (2) h1<h2 (3) h1 = h2 (4) ⽆法确定21、对管径沿程变化的管道( )(1) 测压管⽔头线可以上升也可以下降(2) 测压管⽔头线总是与总⽔头线相平⾏(3) 测压管⽔头线沿程永远不会上升(4) 测压管⽔头线不可能低于管轴线22、图⽰⽔流通过渐缩管流出,若容器⽔位保持不变,则管内⽔流属 ( )(1) 恒定均匀流 (2) ⾮恒定均匀流 (3) 恒定⾮均匀流 (4) ⾮恒定⾮均匀流23、管轴线⽔平,管径逐渐增⼤的管道有压流,通过的流量不变,其总⽔头线沿流向应 ( )(1) 逐渐升⾼(2) 逐渐降低(3) 与管轴线平⾏(4) ⽆法确定24、均匀流的总⽔头线与测压管⽔头线的关系是( )(1) 互相平⾏的直线; (2) 互相平⾏的曲线; (3) 互不平⾏的直线; (4) 互不平⾏的曲线。
渐变流与急变流均属非均匀流。
急变流不可能是恒定流。
总水头线沿流向可以上升,也可以下降。
水力坡度就是长度流程上的水头损失。
扩散管道中的水流一定是非恒定流。
恒定流一定是均匀流,非恒定流一定是非均匀流。
均匀流流场内的压强分布规律与静水压强分布规律相同。
测管水头线沿程可以上升、可以下降也可不变。
总流连续方程UiAi=呛人2对恒定流和非恒定流均适用。
第三章水动力学基础1、 2、 3、 4、 510.渐变流过水斷面上动水圧强随水深的变化呈线性关系。
( U 、水流总是从《^位机械能大的断Ifli 流向宋位机械能小的斷面。
12、 恒定流中总水头线总是沿流程下降的.测斥管水头线沿流程则可以上升、下降或水平。
(13、 液流流线和迹线总是重合的。
14、 用毕托管测得的点流速是时均流速。
15、 测圧管水头线可商于总水头线。
16、 管轴窩程沿流向增大的等直径管道中的有斥管流•其管轴斥强沿流向増大- 17、 理想液体动中,任意点处各个方向的动水压强相等。
18、恒定总流的能址方21 + P1 / g + / 2g = 22 +P2 / 9 + / 2g +^wl- 2 ,式巾?^页代表( (1)爪位体积液体所具有的能虽;(2)爪位质虽液体所具有的能虽:h⑵减小 ⑶不变(4)不定…:、.、、W.v ••、20、在明渠恒定均匀流过水断面上1. 2两点安装两根测压管•如图所示,则两测斥管禹度虹与力的关系为( (4)无法确定⑴虹> h2 (2) hl < h221、 对管径沿程变化的管道(1)测圧管水头线可以上升也可以下降 (3)测圧管水头线沿程永远不会上升22、 图示水流通过渐缩管流出,若容器水位保持不变,则管内水流属 1)恒定均匀流 (2)非恒定均匀流 (3)恒定非均匀流(2)测压管水头线总是与总水头线相乎行 (4)测压管水头线不可能低于管轴线(4)非恒定非均匀流23、管轴线水平•管径逐渐増大的管道有压流.通过的流fi 不变.其总水头线沿流向应 ⑴逐渐升廊 (2)逐渐降低 ⑶与管轴线平行 ⑷无法确定h□z26.如图断ifii 夹然缩小管道通过粘性恒定流,管路装有U 形管水银差计,判定圧差il •中水银液面为 (1)人商于B ; (2) A 低于8;♦ r “35、 应用恒定"赢能S 方程时,所选的一个断面必须是___________ 断面・但一断面之间可以存在 36、 有一等直径长直管道中产生均匀管流.其管长100m.若水头损失为0・8m,则水力坡度为37>图示为一大容器接一铅直管道.容器内的水通过管道流入大气。
第三章 水动力学基础本章研究液体机械运动的基本规律及其在工程中的初步应用。
根据物理学和理论力学中的质量守恒原律、牛顿运动定律及动量定理等,建立水动力学的基本方程,为以后各章的学习奠定理论基础。
液体的机械运动规律也适用于流速远小于音速(约340 m/s )的低速运动气体。
因为当气体的运动速度不大于约50m/s 时,其密度变化率不超过1%,这种情况下的气体也可认为是不可压缩流体,其运动规律与液体相同。
研究液体的运动规律,也就是要确定描述液体运动状态的物理量,如速度、加速度、压强、切应力等运动要素随空间与时间的变化规律以及相互关系。
由于实际液体存在粘性,使得水流运动分析十分复杂,所以工程上通常先以忽略粘性的理想液体为研究对象,然后进一步研究实际液体。
在某些工程问题上,也可将实际液体近似地按理想液体估算。
§3-1 描述液体运动的两种方法描述液体运动的方法有拉格朗日(grange )法和欧拉(L.Euler )法两种。
1.拉格朗日法(Lagrangian View ) 拉格朗日法是以液体运动质点为对象,研究这些质点在整个运动过程中的轨迹(称为迹线)以及运动要素(Kinematic Parameter)随时间的变化规律。
每个质点运动状况的总和就构成了整个液体的运动。
所以,这种方法与一般力学中研究质点与质点系运动的方法是一样的。
用拉格朗日法描述液体的运动时,运动坐标不是独立变量,设某质点在初始时刻t =t 0时的空间坐标为a 、b 、c (称为起始坐标),则它在任意时刻t 的运动坐标x 、y 、z 可表示为确定这个质点的起始坐标与时间变量的函数,即⎪⎭⎪⎬⎫===),,,(),,,(),,,(t c b a z z t c b a y y t c b a x x(3-1-1)变量a ,b ,c ,t 统称为拉格朗日变量。
显然,对于不同的质点,起始坐标a ,b ,c 是不同的。
根据式(3-1-1),将某质点运动坐标时间历程描绘出来就得到该质点的迹线(Trace)。
水力学教学辅导第三章水动力学基础【教学基本要求】1、了解描述液体运动的拉格朗日法和欧拉法的内容和特点。
2、理解液体运动的基本概念,包括流线和迹线,元流和总流,过水断面、流量和断面平均流速,一元流、二元流和三元流等。
3、掌握液体运动的分类和特征,即恒定流和非恒定流,均匀流和非均匀流,渐变流和急变流。
4、掌握并能应用恒定总流连续性方程。
5、掌握恒定总流的能量方程,理解恒定总流的能量方程和动能修正系数的物理意义,了解能量方程的应用条件和注意事项,能熟练应用恒定总流能量方程进行计算。
6、理解测压管水头线、总水头线、水力坡度与测压管水头、流速水头、总水头和水头损失的关系。
7、掌握恒定总流的动量方程及其应用条件和注意事项,掌握动量方程投影表达式和矢量投影正负号的确定方法,会进行作用在总流上外力的分析。
8、能应用恒定总流的动量方程、能量方程和连续方程联合求解,解决工程实际问题。
9、了解液体运动的基本形式:平移,变形(线变形和角变形),旋转。
10、理解无旋流动(有势流动)和有旋流动的定义。
11、初步掌握流函数、势函数的性质和流网原理。
【学习重点】1、液体运动的分类和基本概念。
2、恒定总流的连续性方程、能量方程和动量方程及其应用是本章的重点,也是本课程讨论工程水力学问题的基础。
3、恒定总流的连续性方程的形式及应用条件。
4、恒定总流能量方程的应用条件和注意事项,并会用能量方程进行水力计算。
5、能应用恒定总流的连续方程和能量方程联解进行水力计算。
6、掌握恒定总流动量方程的矢量形式和投影形式,掌握恒定总流动量方程的应用条件和注意事项。
重点注意和影响水体动量变化的作用力。
7、能应用恒定总流的连续方程、能量方程和动量方程进行水力计算。
8、流函数、势函数的性质及求解方法。
9、流网原理及流网法求解势流问题。
【学习指导】3.1 概述本章讨论液体运动的基本规律,建立恒定总流的基本方程——连续性方程、能量方程和动量方程,作为解决工程实际问题的基础。