最新直线与圆题型总结
- 格式:docx
- 大小:103.61 KB
- 文档页数:3
高中数学圆的方程典型例题类型一:圆的方程1 求过两点、且圆心在直线上的圆的标准方程并判断点与圆的关系.2、设圆满足:(1)截轴所得弦长为2;(2)被轴分成两段弧,其弧长的比为,在满足条件(1)(2)的所有圆中,求圆心到直线的距离最小的圆的方程.类型二:切线方程、切点弦方程、公共弦方程1 已知圆,求过点与圆相切的切线.2 两圆与相交于、两点,求它们的公共弦所在直线的方程.3、过圆122=+y x 外一点)3,2(M ,作这个圆的两条切线MA 、MB ,切点分别是A 、B ,求直线AB 的方程。
练习:1.求过点(3,1)M ,且与圆22(1)4x y -+=相切的直线l 的方程2、过坐标原点且与圆0252422=++-+y x y x 相切的直线的方程为 3、已知直线0125=++a y x 与圆0222=+-y x x 相切,则a 的值为.类型三:弦长、弧问题1、求直线063:=--y x l 被圆042:22=--+y x y x C 截得的弦AB 的长2、直线0323=-+y x 截圆422=+y x 得的劣弧所对的圆心角为3、求两圆0222=-+-+y x y x 和522=+y x 的公共弦长类型四:直线与圆的位置关系1、若直线m x y +=与曲线24x y -=有且只有一个公共点,实数m 的取值范围 2圆上到直线的距离为1的点有个?3、直线1=+y x 与圆)0(0222>=-+a ay y x 没有公共点,则a 的取值范围是4、若直线2+=kx y 与圆1)3()2(22=-+-y x 有两个不同的交点,则k 的取值范围是.5、 圆上到直线的距离为的点共有().(A )1个(B )2个(C )3个(D )4个6、 过点作直线,当斜率为何值时,直线与圆有公共点 类型五:圆与圆的位置关系1、判断圆02662:221=--++y x y x C 与圆0424:222=++-+y x y x C 的位置关系2圆0222=-+x y x 和圆0422=++y y x 的公切线共有条。
直线和圆的方程题型总结1. 直线的方程题型1.1 点斜式点斜式方程的形式为:y - y1 = k(x - x1)其中(x1, y1)是直线上已知的一点,k是直线的斜率。
常见的题型包括:例题:已知直线过点 A(2, 3),斜率为 2. 求直线方程。
解答:根据点斜式方程,直线方程为y - 3 = 2(x - 2)。
1.2 截距式截距式方程的形式为:x/a + y/b = 1其中a是 x 轴截距,b是 y 轴截距。
常见的题型包括:例题:直线与 x 轴和 y 轴的截距分别为 4 和 2. 求直线方程。
解答:根据截距式方程,直线方程为x/4 + y/2 = 1。
1.3 两点式两点式方程的形式为:(y - y1)/(x - x1) = (y - y2)/(x - x2)其中(x1, y1)和(x2, y2)是直线上已知的两点。
常见的题型包括:例题:已知直线通过点 A(-2, 1) 和 B(3, 4). 求直线方程。
解答:根据两点式方程,直线方程为(y - 1)/(x - (-2)) = (y - 4)/(x - 3)。
2. 圆的方程题型2.1 标准式标准式方程的形式为:(x - h)^2 + (y - k)^2 = r^2其中(h, k)是圆心坐标,r是半径。
常见的题型包括:例题:圆心坐标为 (-1, 2),半径为 3. 求圆的方程。
解答:根据标准式方程,圆的方程为(x - (-1))^2 + (y - 2)^2 = 3^2。
2.2 一般式一般式方程的形式为:x^2 + y^2 + Dx + Ey + F = 0其中D, E, F是圆心坐标和半径的函数表达式。
常见的题型包括:例题:圆心坐标为 (2, -1),半径为 5. 求圆的方程。
解答:根据一般式方程,圆的方程为(x - 2)^2 + (y - (-1))^2 - 5^2 = 0。
结语本文总结了直线和圆的常见方程题型,包括点斜式、截距式、两点式、标准式和一般式。
直线与圆题型及做题技巧
一、直线与圆题型
1、求圆与直线的位置关系,即直线是否与圆相交,相交的情况有几种;
2、求直线与圆的交点;
3、求圆与直线的切线;
4、求直线与圆的关系,即圆是否在直线内部,圆是否完全包含在直线外面;
5、求直线上一点到圆的距离;
6、求圆上一点到直线的距离;
7、求圆心到直线的距离;
8、求圆的切点;
9、求圆的外切线;
10、求圆的内切线;
二、做题技巧
1、首先应该判断出圆与直线的位置关系,其次才能确定
解题思路;
2、要分析圆的参数方程和直线的参数方程,并将它们进
行比较;
3、从圆的数学定义出发,可以把问题转化为求解二元一
次方程组;
4、可以利用圆心到直线的距离公式求解;
5、可以利用圆上一点到直线的距离公式求解;
6、可以利用圆的切点求解,如果圆与直线不相交,可以
求出两个切点;
7、可以利用圆的外切线求解,此时可以求出一条外切线;
8、可以利用圆的内切线求解,此时可以求出一条内切线;
9、可以利用圆的半径求解,如果圆与直线不相交,可以
求出直线与圆的距离;
10、可以利用三角法求解,如果圆与直线不相交,可以求出直线与圆的距离。
总之,在做直线与圆的题目时,首先要分析出圆与直线的位置关系,然后根据圆和直线的数学定义,把问题转化为求解
二元一次方程组的形式,再利用相关公式解出相应的解,最后根据题目要求,得出结果。
高中直线与圆题型归纳总结直线与圆是高中数学中的重要知识点,涉及到的题型较为广泛。
在这篇文章中,我将对高中直线与圆题型进行归纳总结,以帮助同学们更好地掌握和应用这些知识。
一、直线与圆的基本性质在解题过程中,掌握直线与圆的基本性质是非常重要的。
下面列举了一些常见的性质:1. 直线与圆的位置关系:a. 若直线与圆有两个交点,则该直线称为切线;b. 若直线与圆相交于两个不重合的交点,则该直线称为割线;c. 若直线与圆不相交,则该直线称为外切线或外割线;d. 若直线完全在圆内,则该直线称为内切线或内割线。
2. 判定直线与圆的位置关系的方法:可以通过直线的方程与圆的方程进行联立,进而判断位置关系。
二、直线与圆的相交性质1. 两条直线与圆的相交性质:a. 相交弧的性质:两条直线与圆相交,相交的弧度数相等;b. 垂直切线的性质:切线与半径垂直;c. 切线长度的性质:切线长的平方等于切点到圆心的距离与圆半径的乘积。
2. 直线与圆的切线性质:a. 切线定理:切线与半径垂直;b. 外切角性质:切线与半径的夹角等于其对应的弧所对圆心角的一半。
三、直线与圆的方程1. 圆的一般方程:(x-a)² + (y-b)² = r²,其中(a, b)为圆心坐标,r为圆半径。
2. 直线的一般方程:Ax + By + C = 0,其中A、B、C为实数且不全为零。
3. 判定直线与圆的位置关系的方法:将直线方程代入圆的方程,求解该二次方程的判别式,进而判断位置关系。
四、直线与圆的应用题1. 判断两个圆的位置关系:比较两个圆的圆心距离与两个圆半径之和的大小来判断位置关系。
2. 直线与圆的垂直与切线问题:通过证明直线与半径的斜率乘积为-1,判定直线与圆的垂直关系;通过判定直线与圆的切点的情况,判定直线与圆的切线关系。
3. 直线与圆的联立方程求解问题:列出直线方程与圆方程,通过解联立方程,求解直线与圆的交点坐标。
4. 直线与圆的面积问题:求直线与圆所形成的图形的面积,可以通过计算扇形面积与三角形面积之和来完成。
直线与圆的方程一、直线的方程 1、倾斜角:,范围0≤α<π,x l //轴或与x 轴重合时,α=00。
2、斜率: k=tan α α与κ的关系:α=0⇔κ=0已知L 上两点P 1(x 1,y 1) 0<α<02>⇔k πP 2(x 2,y 2) α=κπ⇔2不存在`⇒k=1212x x y y -- 022<⇔<<κππ当1x =2x 时,α=900,κ不存在。
当0≥κ时,α=arctank ,κ<0时,α=π+arctank 3、截距(略)曲线过原点⇔横纵截距都为0。
几种特殊位置的直线 ①x 轴:y=0 ②y 轴:x=0 ③平行于x 轴:y=b!④平行于y 轴:x=a ⑤过原点:y=kx两个重要结论:①平面内任何一条直线的方程都是关于x 、y 的二元一次方程。
②任何一个关于x 、y 的二元一次方程都表示一条直线。
5、直线系:(1)共点直线系方程:p 0(x 0,y 0)为定值,k 为参数y-y 0=k (x-x 0) '特别:y=kx+b ,表示过(0、b )的直线系(不含y 轴)(2)平行直线系:①y=kx+b ,k 为定值,b 为参数。
②AX+BY+入=0表示与Ax+By+C=0 平行的直线系 ③BX-AY+入=0表示与AX+BY+C 垂直的直线系(3)过L 1,L 2交点的直线系A 1x+B 1y+C 1+入(A 2X+B 2Y+C 2)=0(不含L2) 6、三点共线的判定:①AC BC AB =+,②K AB =K BC ,③写出过其中两点的方程,再验证第三点在直线上。
二、两直线的位置关系(说明:当直线平行于坐标轴时,要单独考虑) 2、L 1 到L 2的角为0,则12121tan k k k k •+-=θ(121-≠k k )3、夹角:12121tan kk k k +-=θ4、点到直线距离:2200BA c By Ax d +++=(已知点(p 0(x 0,y 0),L :AX+BY+C=0)①两行平线间距离:L 1=AX+BY+C 1=0 L 2:AX+BY+C 2=0⇒2221B A c c d +-=②与AX+BY+C=0平行且距离为d 的直线方程为Ax+By+C ±022=+B A d③与AX+BY+C 1=0和AX+BY+C 2=0平行且距离相等的直线方程是0221=+++C C BY AX 5、对称:(1)点关于点对称:p(x 1,y 1)关于M (x 0,y 0)的对称)2,2(1010Y Y X X P --':(2)点关于线的对称:设p(a 、b)一般方法:如图:(思路1)设P 点关于L 的对称点为P 0(x 0,y 0) 则Kpp 0﹡K L =-1P , P 0中点满足L 方程:解出P 0(x 0,y 0)(思路2)写出过P ⊥L 的垂线方程,先求垂足,然后用中点坐标公式求出P 0(x 0,y 0)的坐标。
直线与圆的位置关系题型归纳引言在几何学中,直线和圆是基本的几何元素。
研究直线与圆的位置关系不仅有助于理解几何学基本原理,还可以应用到实际问题中。
本文将归纳总结几种常见的直线与圆的位置关系题型,并给出相应的解题方法。
一、直线与圆相交直线与圆相交通常有三种情况:直线与圆相切、直线穿过圆、直线既与圆相切又穿过圆。
1. 直线与圆相切当直线与圆只有一个交点时,称直线与圆相切。
这种情况下,直线与圆的位置关系相对简单。
求解这类问题时,可以利用以下方法: - 根据已知条件确定直线方程和圆的方程。
- 将直线方程和圆的方程联立,求解交点的坐标。
- 判断交点是否满足直线方程和圆的方程,从而确定直线与圆相切。
2. 直线穿过圆当直线与圆有两个交点时,称直线穿过圆。
这种情况下,需要进一步确定直线与圆的具体位置关系。
求解这类问题时,可以按照以下步骤进行: - 利用已知条件确定直线方程和圆的方程。
- 将直线方程和圆的方程联立,求解交点的坐标。
- 判断交点的坐标与圆心的位置关系,从而确定直线与圆的位置关系。
3. 直线既与圆相切又穿过圆当直线与圆既有一个交点又有两个交点时,称直线既与圆相切又穿过圆。
这种情况下,需要进一步确定直线与圆的具体位置关系。
求解这类问题时,可以按照以下步骤进行: - 利用已知条件确定直线方程和圆的方程。
- 将直线方程和圆的方程联立,求解交点的坐标。
- 判断交点的坐标与圆心的位置关系,从而确定直线与圆的位置关系。
二、直线与圆相离直线与圆相离是指直线与圆没有交点。
这种情况下,直线与圆的位置关系相对简单。
求解这类问题时,可以按照以下步骤进行: - 利用已知条件确定直线方程和圆的方程。
- 求解直线方程和圆的方程的解集。
- 判断解集是否为空集,从而确定直线与圆相离。
三、总结与应用对于直线与圆的位置关系题型,我们可以通过确定直线方程和圆的方程,求解交点的坐标,判断交点的坐标与圆心的位置关系来确定直线与圆的位置关系。
直线与圆的位置关系一、点与圆的位置关系设),(00y x P 与圆222)()(r b y a x =-+-;若P 到圆心之距为d ;①P 在在圆C 外22020)()(r b y a x r d >-+-⇔>⇔; ②P 在在圆C 内22020)()(r b y a x r d <-+-⇔<⇔; ③P 在在圆C 上22020)()(r b y a x r d =-+-⇔=⇔;二、直线与圆的位置关系:设直线0:=++C By Ax l 和圆222)()(:r b y a x C =-+-,位置关系的判定:判定方法1:联立方程组 得到关于x(或y)的方程(1)△>0相交; (2)△=0相切; (3)△<0相离。
判定方法2:若圆心(a ,b)到直线L 的距离为d (1)d<r 相交; (2)d=r 相切;(3)d>r 相离。
利用∆判定称为代数法,对讨论直线和二次曲线的位置关系都适应。
三、两圆的位置关系:(1)代数法:解两个圆的方程所组成的二元二次方程组;若方程组有两组不同的实数解,则两圆相交;若方程组有两组相同的实数解,则两圆相切;若无实数解,两圆相离。
(2)几何法:设圆1O 的半径为1r ,圆2O 的半径为2r①两圆外离2121||r r O O +>⇔;4条公切线②两圆外切2121||r r O O +=⇔;3条公切线③两圆相交212112||||r r O O r r +<<-⇔;2条公切线④两圆内切||||1221r r O O -=⇔;1条公切线⑤两圆内含||||1221r r O O -<⇔;没有公切线四、两圆公共弦所在直线方程圆1C :221110x y D x E y F ++++=,圆2C :222220x y D x E y F ++++=,则()()()1212120D D x E E y F F -+-+-=为两相交圆公共弦方程. 补充说明:① 若1C 与2C 相切,则表示其中一条公切线方程; ② 若1C 与2C 相离,则表示连心线的中垂线方程.五、圆系问题过两圆1C :221110x y D x E y F ++++=和2C :222220x y D x E y F ++++=交点的圆系方程为()22221112220x y D x E y F x y D x E y F λ+++++++++=(1λ≠-) 补充:① 上述圆系不包括2C ;② 2)当1λ=-时,表示过两圆交点的直线方程(公共弦)③ 过直线0Ax By C ++=与圆220x y Dx Ey F ++++=交点的圆系方程为()220x y Dx Ey F Ax By C λ+++++++=六、 过一点作圆的切线的方程:(1) 过圆外一点的切线: ①k 不存在,验证是否成立②k 存在,设点斜式方程,用圆心到该直线距离=半径,即 ⎪⎩⎪⎨⎧+---=-=-1)()(2110101R x a k y b R x x k y y 求解k ,得到切线方程【一定两解】例1. 经过点P(1,—2)点作圆(x+1)2+(y —2)2=4的切线,则切线方程为 。
直线与圆、圆与圆的位置关系【重难点精讲】重点一、直线与圆的位置关系:(1)直线与圆相交,有两个公共点;(2)直线与圆相切,只有一个公共点;(3)直线与圆相离,没有公共点. 重点二、几何判定法:设r 为圆的半径,d 为圆心到直线的距离:(1)d >r ⇔圆与直线相离;(2)d =r ⇔圆与直线相切;(3)d <r ⇔圆与直线相交.重点三、代数判定法:由⎩⎪⎨⎪⎧ Ax +By +C =0x -a 2+y -b 2=r 2消元,得到一元二次方程的判别式Δ,则(1)Δ>0⇔直线与圆相交;(2)Δ=0⇔直线与圆相切;(3)Δ<0⇔直线与圆相离.重点四、圆与圆的位置关系:两圆(x -a 1)2+(y -b 1)2=r 21(r 1>0)与(x -a 2)2+(y -b 2)2=r 22(r 2>0)圆心距d 221212()()a a b b -+- d >r 1+r 2⇔两圆外离;d =r 1+r 2⇔两圆外切;|r 1-r 2|<d <r 1+r 2⇔两圆相交;d =|r 1-r 2|⇔两圆内切;0<d <|r 1-r 2|⇔两圆内含,d =0时为同心圆.重点五、两圆的公切线条数:当两圆内切时有一条公切线;当两圆外切时有三条公切线;相交时有两条公切线;相离时有四条公切线;内含时无公切线.【典题精练】考点1、直线与圆的位置关系例1.已知直线320l x y -+=,圆22:4410C x y x y ++--=.(1)判断直线l 与圆C 的位置关系,并证明;(2)若直线l 与圆C 相交,求出圆C 被直线l 截得的弦长;否则,求出圆上的点到直线l 的最短距离.【解析】(1)相交,证明如下;可将圆的一般方程22:4410C x y x y ++--=化为:22(2)(2)9x y ++-=,可得其圆心:(2,2)-,半径为:3,由直线320l x y -+=, 可得圆心到直线l 的距离:2322313d --+==+d r <,可得直线l 与圆C 相交;(2)由(1)得直线l 与圆C 相交,且圆心到直线l 的距离d =故弦长为:==考点2、弦长问题例2.已知圆C 的圆心在直线1y x =+上,且圆C 经过点()3,6P 和点()5,6Q .(1)求圆C 的方程;(2)过点()3,0的直线l 截圆所得弦长为2,求直线l 的方程.【解析】(1)由题意可知,设圆心为(),1a a +,则圆C 为:22()[(1)]2x a y a -+-+=, 圆C 经过点()3,6P 和点()5,6Q ,2222(3)[6(1)]2(5)[6(1)]2a a a a ⎧-+-+=∴⎨-+-+=⎩,解得4a =,则圆C 的方程为:22(4)(5)2x y -+-=; (2)当直线l 的斜率存在时,设直线l 的方程为()3y k x =-,即30k y k --=,∴过点()3,0的直线l 截圆所得弦长为2,1d ∴==,解得125k =, ∴直线l 的方程为125360x y --=,当直线l 的斜率不存在时,直线l 为3x =,此时弦长为2符合题意. 综上,直线l 的方程为3x =或125360x y --=.考点点睛:设直线l 的方程为ax +by +c =0,圆O 的方程为(x -x 0)2+(y -y 0)2=r 2,求弦长的方法通常有以下两种:(1)几何法:由圆的性质知,过圆心O 作l 的垂线,垂足C 为线段AB 的中点.如图所示,在Rt △OCB 中,|BC |2=r 2-d 2,则弦长|AB |=2|BC |=2r 2-d 2.(2)代数法:解方程组222000()()ax by c x x y y r++=⎧⎪⎨-+-=⎪⎩,消元后可得关于x 1+x 2,x 1·x 2或y 1+y 2,y 1·y 2的关系式,则|AB |考点3、圆的切线问题例3.已知点1,2P ,点()3,1M ,圆22:124C x y(1)求过点P 的圆C 的切线方程;(2)求过点M 的圆C 的切线方程.【解析】由题意得:圆心()1,2C ,半径2r(1)()()22211224+-+= P ∴在圆C 上 1PC k ==-∴切线的斜率11PC k k =-= ∴过点P 的圆C 的切线方程为()21y x --=-,即10x y -+-= (2)()()22311254-+-=> M ∴在圆C 外部若过点M 的直线斜率不存在,直线方程为3x =,是圆C 的切线;若过点M 的切线斜率存在,可设切线方程为:()13y k x -=-,即310kx y k--+=∴圆心C 到切线的斜率2d ===,解得:34k = ∴切线方程为()3413y x -=-,即3450x y --= 综上所述:切线方程为3x =或3450x y --=考点点睛:求过某一点的圆的切线方程,首先判定点与圆的位置关系,以确定切线的条数.(1)求过圆上一点P (x 0,y 0)的圆的切线方程:先求切点与圆连线的斜率k ,则由垂直关系得切线斜率为-1k,由点斜式方程可求得切线方程.如果k =0或斜率不存在,则由图形可直接得切线方程为y =y 0或x =x 0.(2)求过圆外一点P (x 0,y 0)的圆的切线方程时,常用几何方法求解:设切线方程为y -y 0=k (x -x 0),即kx -y -kx 0+y 0=0,由圆心到直线的距离等于半径,可求得k ,进而求出切线方程.但要注意,若求出的k 值只有一个时,则另一条切线的斜率一定不存在,切线方程为x =x 0. 考点4、两圆位置关系的判断例4.已知两圆1C :22210100x y x y +-++=和2C :222210x y x y ++++=. (Ⅰ)判断两圆的位置关系;(Ⅱ)求两圆公共弦所在直线方程;(Ⅲ)求两圆公共弦的长度.【解析】(Ⅰ)1C :()()221516x y -++=,()11,5C -,14r =, 2C :()()22111x y +++=,()21,1C --,21r =,∴12C C ==121212r r C C r r <<-+,故1C 与2C 相交. (Ⅱ)因为两圆1C :22210100x y x y +-++=和2C 222210x y x y ++++=,所以两方程相减得:4890x y --=.(Ⅲ)设1C 到4890x y --=的距离为d ,则d ==,弦长AB ==2=. 考点点睛: 判断两圆位置关系的方法有两种,一是代数法,看方程组的解的个数,但往往较繁琐,另外须注意方程组有“一个”解与两圆相切不等价;二是几何法,看两圆连心线的长d ,若d =r 1+r 2,两圆外切;d =|r 1-r 2|时,两圆内切;d >r 1+r 2时,两圆外离;d <|r 1-r 2|时,两圆内含;|r 1-r 2|<d <r 1+r 2时,两圆相交.考点5、由圆与圆的位置关系求参数的值或取值范围例5.已知直线:0l x y m ++=与圆()()22:119C x y ++-=没有公共点,圆()()221:121O x y -++=与圆()()()2222:420O x y m m -+-=>相交,求m 的取值范围.【解析】圆()()22:119C x y ++-=的圆心()1,1C -,半径3r =,由题意可得,圆心C 到直线的距离3d =>,0m >,则m >圆()()221:121O x y -++=与圆()()()2222:420O x y m m -+-=>相交,圆心()11,2O -,圆1O 的半径11R =,圆心()24,2O ,圆2O 的半径2R m =,121212R R OO R R ∴-<<+,即11m m -<<+,解得46m <<.综上所述,实数m 的取值范围是().考点点睛: 两圆相切包括外切与内切,外切时,圆心距等于两圆半径之和,内切时,圆心距等于两圆半径差的绝对值.在题目没有说明是内切还是外切时,要分两种情况进行讨论.解决两圆相切问题,常用几何法.。
高中数学圆的方程典型例题
类型一:圆的方程
1 求过两点、且圆心在直线上的圆的标准方程并判断点与圆的关系.
2、 设圆满足:(1)截轴所得弦长为2;(2)被轴分成两段弧,其弧长的比为,在满足条件(1)(2)的所有圆中,求圆心到直线的距离最小的圆的方程.
类型二:切线方程、切点弦方程、公共弦方程
1 已知圆,求过点与圆相切的切线.
2 两圆与相交于、两点,求它们的公共弦所在直线的方程.
3、过圆122=+y x 外一点)3,2(M ,作这个圆的两条切线MA 、MB ,切点分别是A 、B ,求直线AB 的方程。
练习:
1.求过点(3,1)M ,且与圆22(1)4x y -+=相切的直线l 的方程
2、过坐标原点且与圆02
52422=++-+y x y x 相切的直线的方程为 3、已知直线0125=++a y x 与圆0222=+-y x x 相切,则a 的值为 .
类型三:弦长、弧问题
1、求直线063:=--y x l 被圆042:2
2=--+y x y x C 截得的弦AB 的长
2、直线0323=-+y x 截圆422=+y x 得的劣弧所对的圆心角为
3、求两圆0222=-+-+y x y x 和522=+y x 的公共弦长
类型四:直线与圆的位置关系
1、若直线m x y +=与曲线24x y -=
有且只有一个公共点,实数m 的取值范围 2 圆上到直线的距离为1的点有 个?
3、直线1=+y x 与圆)0(022
2>=-+a ay y x 没有公共点,则a 的取值范围是
4、若直线2+=kx y 与圆1)3()2(22=-+-y x 有两个不同的交点,则k 的取值范围是 .
5、 圆上到直线的距离为的点共有( ).
(A )1个 (B )2个 (C )3个 (D )4个
6、 过点作直线,当斜率为何值时,直线与圆有公共点 类型五:圆与圆的位置关系
1、判断圆02662:221=--++y x y x C 与圆0424:2
22=++-+y x y x C 的位置关系
)4,1(A )2,3(B 0=y )4,2(P y x 1:302=-y x l :42
2=+y x O :()42,P O 0111221=++++F y E x D y x C :0222222=++++F y E x D y x C :A B AB 9)3()3(22=-+-y x 01143=-+y x 034222=-+++y x y x 01=++y x 2()43--,P l l ()()4212
2=++-y x C :
2圆0222=-+x y x 和圆0422=++y y x 的公切线共有 条。
类型六:圆中的对称问题
1、圆22
2690x y x y +--+=关于直线250x y ++=对称的圆的方程是
类型七:圆中的最值问题
1、圆0104422=---+y x y x 上的点到直线014=-+y x 的最大距离与最小距离的差是
2、 (1)已知圆,为圆上的动点,求的最大、最小值. (2)已知圆,为圆上任一点.求
的最大、最小值,求的最大、最小值.
3、已知)0,2(-A ,)0,2(B ,点P 在圆4)4()3(22=-+-y x 上运动,则2
2PB PA +的最小值是 .
练习:
1:已知点),(y x P 在圆1)1(22=-+y x 上运动.
(1) 求
2
1--x y 的最大值与最小值;(2)求y x +2的最大值与最小值. 类型八:轨迹问题
1、已知点M 与两个定点)0,0(O ,)0,3(A 的距离的比为
2
1,求点M 的轨迹方程.
2、已知线段AB 的端点B 的坐标是(4,3),端点A 在圆4)1(22=++y x 上运动,求线段AB 的中点M 的轨迹方程.
练习:
1、由动点P 向圆122=+y x 引两条切线PA 、PB ,切点分别为A 、B ,APB ∠=600,则动点P 的轨迹方程是
类型九:圆的综合应用
1、 已知圆与直线相交于、两点,为原点,且,求实数的值.
1)4()3(221=-+-y x O :
),(y x P O 22y x d +=1)2(222=++y x O :),(y x P 12--x y y x 2-062
2=+-++m y x y x 032=-+y x P Q O OQ OP ⊥m
2、已知对于圆上任一点,不等式恒成立,求实数的取值范围.
1)1(22=-+y x ),(y x P 0≥++m y x m。