热统导言及第一章
- 格式:ppt
- 大小:4.58 MB
- 文档页数:137
大一热学第一章知识点热学是物理学的重要分支之一,它研究的是物质的热现象和热力学性质。
作为大一学生,我们将从热学的第一章开始,学习一些基础的热学知识。
本文将带领大家回顾并深入探讨大一热学第一章的知识点。
1. 温度与热量温度是物质内部粒子运动的平均速度和能量的度量。
常用的温度单位有摄氏度(℃)和开尔文(K)。
而热量是物质传递热能的方式,它的单位是焦耳(J)。
2. 热平衡与热传递当两个物体达到相同的温度时,它们处于热平衡状态。
热传递是指热量从温度较高的物体传递到温度较低的物体的过程,可通过导热、对流和辐射等方式实现。
3. 热容和比热容热容是物体吸收或放出单位热量时温度的变化量。
它的计算公式为Q = mcΔT,其中Q表示吸收或放出的热量,m为物体的质量,c为物体的热容,ΔT为温度的变化量。
比热容是指单位质量物体吸收或放出的热量引起的温度变化量。
4. 等压热容和等体热容等压热容是指在等压条件下单位质量物质吸收或放出的热量引起的温度变化量;等体热容是指在等体条件下单位质量物质吸收或放出的热量引起的温度变化量。
它们的计算公式分别为Cp = (∂Q/∂T)p和Cv = (∂Q/∂T)v。
5. 绝热过程绝热过程是指在过程中没有热量传递的过程。
在绝热过程中,物体内部的热量不外传,因此可以推导出绝热方程pV^γ = 常数,其中p为压强,V为体积,γ为比热容比。
6. 理想气体状态方程理想气体状态方程描述了理想气体在一定条件下的物态方程,即pV = nRT,其中p为气体的压强,V为气体的体积,n为气体的物质量,R为气体常数,T为气体的绝对温度。
7. 微观与宏观微观热学研究物质的微观运动和微观结构对热学性质的影响;宏观热学研究大量物质的整体性质和宏观规律。
在热学中,我们通常运用宏观热学分析问题。
8. 内能和焓内能是物体内部分子之间相互作用的能量总和,它包括物体的热能、动能和势能等。
焓是系统吸收或放出的热量和对外界做功之和,表示为H = Q + W,其中Q为吸收或放出的热量,W为对外界做的功。
各章重点符号:T:热力学温度t:摄氏温度S:熵α:体胀系数β:压强系数W:功U:内能H:焓F:自由能G:吉布斯函数第一章1、与其他物体既没有物质交换也没有能量交换的系统称为孤立系;2、与外界没有物质交换,但有能量交换的系统称为闭系;3、与外界既有物质交换,又有能量交换的系统称为开系;4、平衡态的特点:1.系统的各种宏观性质都不随时间变化;2.热力学的平衡状态是一种动的平衡,常称为热动平衡;3.在平衡状态下,系统宏观物理量的数值仍会发生或大或小的涨落;4.对于非孤立系,可以把系统与外界合起来看做一个复合的孤立系统,根据孤立系统平衡状态的概念推断系统是否处在平衡状态。
5、参量分类:几何参量、力学参量、化学参量、电磁参量6、温度:宏观上表征物体的冷热程度;微观上表示分子热运动的剧烈程度7、第零定律:如果物体A和物体B各自与处在同一状态的物体C达到热平衡,若令A与B进行热接触,它们也将处在热平衡,这个经验事实称为热平衡定律8、t=T-273.59、体胀系数、压强系数、等温压缩系数、三者关系10、理想气体满足:玻意耳定律、焦耳定律、阿氏定律、道尔顿分压11、准静态过程:进行得非常缓慢的过程,系统在过程汇总经历的每一个状态都可以看做平衡态。
12、广义功13、热力学第一定律:系统在终态B和初态A的内能之差UB-UA等于在过程中外界对系统所做的功与系统从外界吸收的热量之和,热力学第一定律就是能量守恒定律.UB-UA=W+Q.能量守恒定律的表述:自然界一切物质都具有能量,能量有各种不同的形式,可以从一种形式转化为另一种形式,从一个物体传递到另一个物体,在传递与转化中能量的数量保持不变。
14、等容过程的热容量;等压过程的热容量;状态函数H;P2115、焦耳定律:气体的内能只是温度的函数,与体积无关。
P2316、理想气体准静态绝热过程的微分方程P2417、卡诺循环过程由两个等温过程和两个绝热过程:等温膨胀过程、绝热膨胀过程、等温压缩过程、绝热压缩过程18、热功转化效率19、热力学第二定律:1、克氏表述-不可能把热量从低温物体传到高温物体而不引起其他变化;2、开氏表述-不可能从单一热源吸热使之完全变成有用的功而不引起其它变化,第二类永动机不可能造成20、如果一个过程发生后,不论用任何曲折复杂的方法都不可能把它留下的后果完全消除而使一切恢复原状,这过程称为不可逆过程21、如果一个过程发生后,它所产生的影响可以完全消除而令一切恢复原状,则为可逆过程22、卡诺定理:所有工作于两个一定温度之间的热机,以可逆机的效率为最高23、卡诺定理推论:所有工作于两个一定温度之间的可逆热机,其效率相等24、克劳修斯等式和不等式25、热力学基本微分方程:26、理想气体的熵P4027、自由能:F=U-FS28、吉布斯函数:G=F+pV=U-TS+pV29、熵增加原理:经绝热过程后,系统的熵永不减少;孤立系的熵永不减少30、等温等容条件下系统的自由能永不增加;等温等压条件下,系统的吉布斯函数永不增加。
1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数κT 。
解:已知理想气体的物态方程为,pV nRT = (1)由此易得11,p V nR V T pV Tα∂⎛⎫=== ⎪∂⎝⎭ (2) 11,V p nR p T pV Tβ∂⎛⎫=== ⎪∂⎝⎭ (3) 2111.T T V nRT V p V p pκ⎛⎫⎛⎫∂⎛⎫=-=--= ⎪ ⎪ ⎪∂⎝⎭⎝⎭⎝⎭ (4)1.2 证明任何一种具有两个独立参量,T p 的物质,其物态方程可由实验测得的体胀系数α及等温压缩系数κT ,根据下述积分求得:()ln T V =αdT κdp -⎰如果11,T T pακ==,试求物态方程。
解:以,T p 为自变量,物质的物态方程为(),,V V T p =其全微分为.p TV V dV dT dp T p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭ (1) 全式除以V ,有11.p TdV V V dT dp V V T V p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭ 根据体胀系数α和等温压缩系数T κ的定义,可将上式改写为.T dVdT dp Vακ=- (2)上式是以,T p 为自变量的完整微分,沿一任意的积分路线积分,有()ln .T V dT dp ακ=-⎰ (3)若11,T T pακ==,式(3)可表为11ln .V dT dp Tp ⎛⎫=- ⎪⎝⎭⎰ (4)选择图示的积分路线,从00(,)T p 积分到()0,T p ,再积分到(,T p ),相应地体积由0V 最终变到V ,有000ln=ln ln ,V T pV T p - 即000p V pV C T T ==(常量), 或.pV CT = (5)式(5)就是由所给11,T Tpακ==求得的物态方程。
确定常量C 需要进一步的实验数据。
1.8 满足n pV C =的过程称为多方过程,其中常数n 名为多方指数。
试证明:理想气体在多方过程中的热容量n C 为1n V n C C n γ-=- 解:根据式(1.6.1),多方过程中的热容量0lim .n T n nnQ U V C p T T T ∆→∆∂∂⎛⎫⎛⎫⎛⎫==+ ⎪ ⎪ ⎪∆∂∂⎝⎭⎝⎭⎝⎭ (1) 对于理想气体,内能U 只是温度T 的函数,,V nU C T ∂⎛⎫= ⎪∂⎝⎭ 所以.n V nV C C p T ∂⎛⎫=+ ⎪∂⎝⎭ (2)将多方过程的过程方程式n pV C =与理想气体的物态方程联立,消去压强p 可得11n TV C -=(常量)。