整理合并同类项和去括号练习题
- 格式:doc
- 大小:89.00 KB
- 文档页数:3
去括号和合并同类项专项训练单项式中的数字因数叫做单项式的系数。
单项式中所有字母的指数的和叫做单项式的次数。
几个单项式的和叫做多项式。
多项式中,每个单项式叫做多项式的项;多项式里含有几项,就把这个多项式叫做几项式,其中次数最高的项的次数叫做这个多项式的次数。
不含字母的项叫做常数项。
所含字母相同,并且相同字母的指数也相同的项叫做同类项。
根据乘法分配律把同类项合并成一项叫做合并同类项。
合并同类项法则:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变。
去括号法则:括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项的符号都不改变。
括号前面是“﹣”号,把括号和它前面的“﹣”号去掉,括号里各项的符号都要改变。
一、选择题1 .下列式子中正确的是( )A.3a+2b =5abB.C.D.5xy-5yx =0 2 .下列各组中,不是同类项的是A 、3和0B 、2222R R ππ与C 、xy 与2pxyD 、11113+--+-n n n n x y y x 与 3 .下列各对单项式中,不是同类项的是( )A.0与31B.23n m x y +-与22m n y x +C.213x y 与225yxD.20.4a b 与20.3ab4 .如果23321133a b x y x y +--与是同类项,那么a 、b 的值分别是( )A.12a b =⎧⎨=⎩B.02a b =⎧⎨=⎩C.21a b =⎧⎨=⎩D.11a b =⎧⎨=⎩5 .下列各组中的两项不属于同类项的是 ( )A.233m n 和23m n -B.5xy 和5xyC.-1和14D.2a 和3x6 .下列合并同类项正确的是A.628=-a a ;B.532725x x x =+C. b a ab b a 22223=-;D.y x y x y x 222835-=-- 7 .已知代数式y x 2+的值是3,则代数式142++y x 的值是A.1B.4C. 7D.不能确定8 .x 是一个两位数,y 是一个一位数,如果把y 放在x 的左边,那么所成的三位数表示为A.yxB.x y +C.10x y +D.100x y +752853x x x =+y x xy y x 22254-=-2 / 49 .某班共有x 名学生,其中男生占51%,则女生人数为 ( )A 、49%xB 、51%xC 、49%x D 、51%x10.一个两位数是a ,还有一个三位数是b ,如果把这个两位数放在这个三位数的前面,组成一个五位数,则这个五位数的表示方法是 ( )A.b a +10B.b a +100C.b a +1000D.b a + 11. 与y x 221不仅所含字母相同,而且相同字母的指数也相同的是( )A.z x 221B. xy 21C.2yx -D. x 2y 12.下列各组式子中,两个单项式是同类项的是( ) A.2a 与2a B.5b a 2 与b a 2 C. xy 与y x 2 D. 0.3m 2n 与0.3x 2y 13.下列计算正确的是( )A.2a+b=2abB.3222=-x xC. 7mn-7nm=0D.a+a=2a 14、化简(3-π)-︱π-3︱的结果为( )A .6B .-2πC .2π-6D .6-2π二、填空题1.写出322x y -的一个同类项_______________________.2.单项式113a b a x y +--与345y x 是同类项,则a b -的值为_________。3.若2243a b x y x y x y -+=-,则a b +=__________. 4.合并同类项:._______________223322=++-ab b a ab b a5.已知622x y 和313m n x y -是同类项,则29517m mn --的值是_____________. 6.某公司员工,月工资由m 元增长了10%后达到_______元。 7.在9)62(22++-+b ab k a 中,不含ab 项,则k= 8.若22+k k y x 与n y x 23的和为5n y x 2,则k= ,n=9. 若-3x m-1y 4与2n 2y x 31+是同类项,则m= n=10. 如果3423x y a b a b -与的和是单项式,那么x = . y = .三.合并同类项:(1)b a b a 222+- (2)b a b a b a -+++-3223;(3)b a b a b a 2222132-+; (4)322223b ab b a ab b a a +-+-+(5)5253432222+++--xy y x xy y x (6) 222b ab a 43ab 21a 32-++-(7)2222532xy y x xy y x -+--; (8)5312322-+-+-x x x x四.化简:(1)(2x-3y)+(-5x+4y); (2)(8a-7b)-(-4a-5b);(3)(8x-3y)-(4x+3y-z)+2z ; (4)()()()y x y x y x 3242332+--+--(5)()()43537422+-----x x x x (6).2a-3b+[4a-2(3a-b)];4 / 44、先化简,再求值。
去括号练习题
1. 计算下列表达式的值:(3x-2y)+(5x+y)
2. 解题时,首先去括号,然后合并同类项:(4a-3b)-(2a-b)
3. 将下列表达式中的括号去掉,并简化:(2x+3)-(4x-1)
4. 计算并简化以下表达式:(3x-5)-(2x+4)
5. 将下列表达式中的括号去掉,并找出其中的同类项:(6y-4)+(3y+2)
6. 去括号并合并同类项:-3(2x-y)
7. 计算并简化以下表达式:(4x+5)-(3x-2)
8. 去括号并找出同类项:(2x-3)+(3x+4)
9. 将下列表达式中的括号去掉,并计算其结果:(5y-3)+(y+2)
10. 去括号并简化:-2(3x-2y)
11. 计算并简化以下表达式:(7x-8)-(4x+3)
12. 将下列表达式中的括号去掉,并找出其中的同类项:(3x+2)-(5x-1)
13. 去括号并合并同类项:-4(2y-3)
14. 计算并简化以下表达式:(6x-3)+(2x+1)
15. 将下列表达式中的括号去掉,并计算其结果:(2y-1)+(3y+4)
16. 去括号并简化:3(4x-y)
17. 计算并简化以下表达式:(5x+2)-(2x-3)
18. 将下列表达式中的括号去掉,并找出其中的同类项:(4y-
3)+(2y+1)
19. 去括号并合并同类项:-5(3x+y)
20. 计算并简化以下表达式:(7y-8)-(3y+2)。
七年级上册数学合并同类项、去括号基础题北师版一、单选题(共11道,每道9分)1.在下列各式x2-3x,2πx2y,-5,a,0,,中,单项式和多项式的的个数分别是()A.3,4B.4,3C.5,2D.6,1答案:C试题难度:三颗星知识点:单项式的概念;多项式的概念2.-π3a2b2的系数和次数分别为()A.-1,4B.-1,5C.-π3,4D.-π,7答案:C试题难度:三颗星知识点:单项式的系数与次数3.多项式-3x2y2+6xyz+3xy2-35是()A.三次三项式B.三次四项式C.四次四项式D.五次四项式答案:C试题难度:三颗星知识点:多项式的项与次数4.如果一个多项式的次数是6,则这个多项式的任何一项的次数都()A.小于6B.等于6C.不大于6D.不小于6答案:C试题难度:三颗星知识点:多项式的次数5.下列两项中,属于同类项的是()A.与B.4ab与4abcC.与D.nm和-mn答案:D试题难度:三颗星知识点:同类项6.如果与是同类项,那么等于()A.1B.0C.2D.4答案:A试题难度:三颗星知识点:同类项(已知同类项求参数的值)7.下列运算中结果正确的是()A.3a+2b=5abB.5y-3y=2C.-3x+5x=-8xD.答案:D试题难度:三颗星知识点:合并同类项8.把3(a+b)+2(a+b)-4(a+b)中的(a+b)看成一个因式合并同类项,结果应是()A.a+bB.- (a+b)C.-a+bD.a-b答案:A试题难度:三颗星知识点:合并同类项(整体合并)9.下列运算正确的是()A.-4(x-y)=-4x-yB.-4(x-y)=-4x+yC.-4(x-y)=-4x-4yD.-4(x-y)=-4x+4y答案:D试题难度:三颗星知识点:去括号10.下列各式中与a-b-c的值不相等的是()A.a-(b+c)B.a-(b-c)C.(a-b)+(-c)D.(-c)-(b-a)答案:B试题难度:三颗星知识点:添括号11.当x=2,y=-1时,5x2-(3y2+5x2)+(3y2+xy)的值为()A.2B.1C.-1D.-2答案:D试题难度:三颗星知识点:化简求值。
合并同类项和去括号练习题
本文档将提供一些合并同类项和去括号的练题,旨在帮助读者加深对这两个概念的理解和运用。
合并同类项练题
1. 合并下列各组同类项:
- 3x + 2x
- 5y - 3y
2. 整理下列表达式,合并同类项:
- 6a + 2b - 4a + 3b
3. 合并下列表达式中的同类项:
- 8x^2y - 2xy + 5xy - 3x^2y
4. 合并下列各组同类项,并简化结果:
- 7(3x + 2y) - 4x(2 - x) + 5(3y + 6x)
去括号练题
1. 去括号,简化下列表达式:
- (2x + 5y) - (3y - x)
2. 去括号并进行合并操作:
- (4a^2 - 3ab) - (2ab + a^2)
3. 合并同类项并去括号:
- (6x - 3y) - (4x + 2y) + (5y - 2x)
4. 去括号并进行合并操作,简化表达式:
- (2x - y)(4y + x) - (3x^2 - 2xy)
以上是本文档提供的合并同类项和去括号的练题。
通过完成这些练,读者可以巩固相关概念并提高解题能力。
在解答时请务必注意细节和符号的运用,确保计算的准确性。
注:本文档中提供的练习题仅供参考和练习之用,使用者应自行验证答案的正确性,避免误导和错误的解题。
七年级上册数学合并同类项、去括号基础题北师版一、单选题(共11道,每道9分)1.在下列各式x2-3x,2πx2y,-5,a,0,,中,单项式和多项式地地个数分别是()A.3,4B.4,3C.5,2D.6,1答案:C试卷难度:三颗星知识点:单项式地概念。
多项式地概念2.-π3a2b2地系数和次数分别为()A.-1,4B.-1,5C.-π3,4D.-π,7答案:C试卷难度:三颗星知识点:单项式地系数与次数3.多项式-3x2y2+6xyz+3xy2-35是()A.三次三项式B.三次四项式C.四次四项式D.五次四项式答案:C试卷难度:三颗星知识点:多项式地项与次数4.如果一个多项式地次数是6,则这个多项式地任何一项地次数都()A.小于6B.等于6C.不大于6D.不小于6答案:C试卷难度:三颗星知识点:多项式地次数5.下列两项中,属于同类项地是()A.与B.4ab与4abcC.与D.nm和-mn答案:D试卷难度:三颗星知识点:同类项6.如果与是同类项,那么等于()A.1B.0C.2D.4答案:A试卷难度:三颗星知识点:同类项(已知同类项求参数地值)7.下列运算中结果正确地是()A.3a+2b=5abB.5y-3y=2C.-3x+5x=-8xD.答案:D试卷难度:三颗星知识点:合并同类项8.把3(a+b)+2(a+b)-4(a+b)中地(a+b)看成一个因式合并同类项,结果应是()A.a+bB.- (a+b)C.-a+bD.a-b答案:A试卷难度:三颗星知识点:合并同类项(整体合并)9.下列运算正确地是()A.-4(x-y)=-4x-yB.-4(x-y)=-4x+yC.-4(x-y)=-4x-4yD.-4(x-y)=-4x+4y答案:D试卷难度:三颗星知识点:去括号10.下列各式中与a-b-c地值不相等地是()A.a-(b+c)B.a-(b-c)C.(a-b)+(-c)D.(-c)-(b-a)答案:B试卷难度:三颗星知识点:添括号11.当x=2,y=-1时,5x2-(3y2+5x2)+(3y2+xy)地值为()A.2B.1C.-1D.-2答案:D试卷难度:三颗星知识点:化简求值。
初一数学上册合并同类项及去括号专项练习题100a + b) - (p + q)3(9b + x) + 9(m + 9p) - (2n - 3)y + 4(9 - 7c)11a - 4(6y - 2c) - (9a - y) - 4(4n + 4c)4 + 10y) + c9(4b + 3mn - 6)a + b) - (s + t)5(6b + y) - 5(n + 2q) - (7b - 4)y - 7(4 + 4c)2x + 8(9b + 9z) - (4x - b) - 8(8b + 6c)16 - 10y) + z3(2b + 4bc + 4)b + c) - (e + f)3(7a + y) + 4(n - 7q) - (5b + 1)x - 9(7 + 2a)12m + 8(5y + 5c) - (3m + y) - 2(6b - 5a)8 + 10x) - c7(3a + 2xy + 4)a + b) - (p + q)3(9b - x) - 3(n - 6q) - (6x - 5)x + 5(9 + 7c)6x + 3(8b + 6z) - (8x + b) - 7(3x + 3c)12 - 8x) + z3(3b - 8ab + 3)y + z) - (p + q)4(6a - y) + 9(m + 9q) - (7x + 1)y - 5(8 - 5c) 8x + 5(8y - 6t) - (9x + y) - 8(6x - 4c)12 - 6y) + t4(8b + 7xy + 1)a + b) - (p + q)4(8b + y) + 4(n + 6q) - (5n + 7)z + 9(4 + 5a) 20a - 8(5y + 2z) - (7a - y) + 2(5n + 2a)12 - 6z) - z9(7b - 3mn + 5)a + b) - (e + f)5(8b - x) - 4(n + 7p) - (8a - 9)z + 8(7 + 8c) 13x + 8(9y + 8t) - (9x + y) - 9(7a + 6c)6 - 10z) + t7(5c - 8bc - 6)a + b) - (s + t)3(9a + y) - 6(n + 7q) - (8b + 8)y - 8(8 - 6b)6x + 4(4y - 6z) - (6x - y) - 8(6b - 3b)10 - 4y) + z5(3c - 6bc + 3)46: 删除该段落,因为没有明确的句子或表达。
一、知识要点同类项:所含的字母相同,并且相同字母的指数也相同的项叫做同类项。
合并同类项:把多项式中的同类项合并成一项的过程叫做合并同类项。
合并同类项法则:把同类项的系数相加,所得的结果作为系数,字母和字母的指数不变。
二、例题导航例1、下列各式不是同类项的是( )A .b a 2-与b a 221 B .x 21与-3x C .b a 231-与251ab D .xy 41与yx - 点拨:按照定义所含的字母相同,并且相同字母的指数相同。
但必需强调的是相同字母。
解: C例2、合并同类项13363451222--+-+-x x x x x 点拨:首先要找到各项的同类项,再按照合并同类项的法则进行合并。
251x 与32x 与26x -是同类项,x 4-与3x -是同类项,3与-1是同类项。
解:13363451222--+-+-x x x x x =()133********-+⎪⎭⎫ ⎝⎛--+⎪⎪⎭⎫ ⎝⎛-+x x x x x =21582x --x 313-+2 三、基础过关 1、若y x y x y x b a 2234-=+-,则b a +=2、三角形三边长分别为x x x 13,12,5,则这个三角形的周长为 ;当cm x 2=时,周长为 cm 。
3、若单项式m y x 22与-331y x n 是同类项,则n m +的值是 。
4、下列各组中的两式是同类项的是( )A .()32-与()3n - B .b a 254-与c a 254- C .2-x 与2- D .n m 31.0与321nm - 5、下列判断中正确的个数为( )①23a 与23b 是同类项;②85与58是同类项;③x 2-与2x-是同类项; ④4321y x 与347.0y x -是同类项A .1个B .2个C .3个D .4个6、下列各式中,与y x 2是同类项的是( )A .2xyB .xy 2C .y x 2-D .223y x7、下列式子中正确的是( )A .ab b a 33=+B .143-=-mn mnC .4221257a a a =+D .2229495xy x y xy -=-8、若323y x m -与n y x 42是同类项,则n m -的值是( )A .0B .1C .7D .-19、一个单项式减去22y x -等于22y x +,则这个单项式是()A .22xB .22yC .22x -D .22y -10、求单式327y x 、322y x -、323y x -、322y x 的和。
七年级数学(上)合并同类项、去括号(时间45分钟 满分100分)一、填空(本大题共有10小题,13个空,每空2分,共26分)1.直接写出下列各式的结果:(1)1122xy xy -+=__________; (2)7a 2b+2a 2b=__________; (3)-x -3x+2x=___________; (4)2221123x y x y x y --=__________; (5)3xy 2-7xy 2=__________. 2.请写出314x b 的一个同类项_________. 3.如果5a k b 与-4a 2b 是同类项,那么5a k b+(-4a 2b)=__________. 4.若7x m+1y 4和5117n x y --是同类项,则2m -3n 的值是_________. 5.去掉下列各式中的括号.(1)(a+b)-(c+d)=___________; (2)(a -b)-(c -d)=__________;(3)(a+b)-(-c+d)=____________; (4)-[a -(b -c)]=____________.6.若()2210a b -++=,则b a a+=_________. 二、选择(本大题共有9小题,每小题3分,共27分)7.下列各组中两数相互为同类项的是 ( )A .223x y 与-xy 2 B .0.5a -b 与0.5a 2c C .3b 与3abc D .-0.1m 2n 与212nm 8.下列说法中正确的是 ( )A .字母相同的项是同类项B .只有系数不同的项,才是同类项C .-1与0.1是同类项D .-x 2y 与xy 2是同类项9.下面合并同类项中运算正确的是 ( )A .3x+2x 2=5x 3B .2a 2b -a 2b=1C .-ab -ab=0D .-x 2y+yx 2=010.下列去括号中,正确的是 ( )A .a 2-(2a -1)=a 2-2a -1B .a 2+(-2a -3) =a 2-2a+3C .3a -[5b -(2c -1)]=3a -5b+2c -1D .-(a+b)+(c -d)=-a -b -c+d11.下列去括号中,错误的是( ) A.a2-(3a-2b+4c)=a2-3a+2b-4cB.4a2+(-3a+2b)=4a2+3a-2bC.2x2-3(x-1)=2x2-3x+3D.-(2x-y)-(-x2+y2)=-2x+y+x2-y212.不改变代数式a-(b-3c)的值,把代数式括号前的“-”号变成“+”号,结果应是( ) A.a+(b-3c) B.a+(-b-3c) C.a+(b+3c) D.a+(-b+3c) 13.化简x-y-(x+y)的最后结果是( ) A.0 B.2x C.-2y D.2x-2y 14.已知A=x3+6x-9,B=-x3-2x2+4x-6,则2A-3B等于( ) A.-x3+6x2B.5x3+6x2C.x3-6x2D.-5x3+6x215.若15m n-=,那么-3(n-m)的值是( )A.35-B.53C.115D.35三、解答(本大题共有4小题,共47分)16.(每小题3分,共18分)合并下列各式中的同类项:(1)-4x2y-8xy2+2x2y-3xy2;(2)3x2-1-2x-5+3x-x2;(3)-0.8a2b-6ab-1.2a2b+5ab+a2b;(4)5yx-3x2y-7xy2+6xy-12xy+7xy2+8x2y;(5)x -(3x -2)+(2x -3); (6)(3a 2+a -5)-(4-a+7a 2).17.(每小题4分,共24分)化简求值:(1)222121863234a a a a --+-+,其中12a =;(2)2222223327242x y xy x y xy x y +--++,其中x=2,14y =;(3)3a 2-2(2a 2+a)+2(a 2-3a),其中a=-2;(4)(9a 2-12ab+5b 2)-(7a 2+12ab+7b 2),其中12a =,12b =-;(5)5xyz-{2x2y-[3xyz-(4xy2-x2y)]},其中x=-2,y=-1,z=3;(6)已知m-n=2,mn=1,求多项式:(-2mn +2m+3n)-(3mn+2n-2m)-(m+4n+mn)的值.18.(本题满分5分)已知有理数a、b、c在数轴上的位置如图所示,试化简:+--+-.a cbc b a2参考答案一、1.(1) 0 (2)9a 2b (3)-2x (4)216x y (5)-4xy 2 2.答案不唯一(如x 3b) 3.a 2b 4.-7 5.(1)a+6-c -d (2)a -b -c+d (3)a+b+c -d (4)-a+b -c 6.32二、7.D 8.C 9.D 10.C 11.B 12.D 13.C 14.B 15.D 三、16.(1)-2x 2y -11xy 2 (2)2x 2+x -6 (3)-a 2b -ab (4)-xy+5x 2y (5)-1(6)-4a 2+2a -9 17. (1)54 (2)94(3)20 (4)6 (5)原式=8xyz -y -4xy 2,当x=-2,y=-1,z=3时,原式=60 (6)原式=-6mn+3m -3n ,当m -n=2,mn=1时,原式=0 18.原式=-3b。
合并同类项、去括号试题1.合并下列各式中的同类项(1)3x 2-1-2x-5+3x-x 2 (2)4xy-3y 2-3x 2+xy-3xy-2x 2-4y 2(3)-0.8a 2b-6ab-1.2a 2b+5ab+a 2b (4)222b ab a 43ab 21a 32-++- (5)5(a-b)2-7(a-b)+3(a-b)2-9(a-b) (6)3x n+1-4x n-1+12x n+1+32x n-1+5x n -2x n(7)3a -(4b -2a +1) (8)x -[(3x +1)-(4-x )](13)5(43)(3)a b a a b +---+ (14)222(25)(32)2(41)a a a -+-----(15)(531)(21)x x y x y +-+--+ (16)()232a a b a ---⎡⎤⎣⎦(17)8(2)4(3)2x y x y z z --+-+ (18)[]{}23(2)2a b a b a a -----(19)8x +2y +2(5x -2y ) (20)(x 2-y 2)-4(2x 2-3y 2)(21)-3(2x 3y -3x 2y 2+3xy 3) (22)(-4y +3)-(-5y -2) +3y(23)(6x 2-x +3)-2(4x 2+6x -2 (24){}222234(3)x x x x x ⎡⎤--+--⎣⎦ (25)11(46)3(22)32a abc c b ---+-+ (26)[](43)(3)()5x y y x x y x ----+-- (27)22121232a a b a b ⎛⎫⎛⎫--++-+ ⎪ ⎪⎝⎭⎝⎭(28) 2-[2(x+3y)-3(x-2y)] (29)(2m-3)+m-(3m-2) (30)3(4x-2y )-3(-y+8x ).(31)(2x-3y)+(5x+4y) (32)(8a-7b)-(4a-5b)(33)a-(2a+b)+2(a-2b) (34)3(5x+4)-(3x-5)(35)(8x-3y)-(4x+3y-z)+2z (36)-5x 2+(5x-8x 2)-(-12x 2+4x)+2(37)2-(1+x)+(1+x+x 2-x 2) (38)3a 2+a 2-(2a 2-2a)+(3a-a 2)(39)2a-3b+[4a-(3a-b)] (40)3b-2c-[-4a+(c+3b)]+c(41)x-(3x-2)+(2x-3) (42)(3a 2+a-5)-(4-a+7a 2)(43)x 2+(-3x-2y+1) (44)x-(x 2-x 3+1)(45)3a+4b-(2b+4a) (46)(2x-3y)-3(4x-2y)(47)(2x-3y)+(5x+4y) (48)(8a-7b)-(4a-5b)(49)a-(2a+b)+2(a-2b) (50)3(5x+4)-(3x-5)(51)(8x-3y)-(4x+3y-z)+2z (52)-5x 2+(5x-8x 2)-(-12x 2+4x)+2(53)2-(1+x)+(1+x+x 2-x 2) (54)3a 2+a 2-(2a 2-2a)+(3a-a 2)(55)5a +(3x -3y -4a) (56)3x -(4y -2x +1)(57)7a +3(a +3b ) (58)(x 2-y 2)-4(2x 2-3y )(59)2a -3b +[4a -(3a -b)] (60)3b -2c -[-4a +(c +3b)]+c(61)x+[x+(-2x-4y)] (62) (a+4b)- (3a-6b)(63)3x 2-1-2x-5+3x-x 2 (64) -0.8a 2b-6ab-1.2a 2b+5ab+a 2b (65) 222b ab a 43ab 21a 32-++- (66) 6x 2y+2xy-3x 2y 2-7x-5yx-4y 2x 2-6x 2y (67) 8x +2y +2(5x -2y) (68) 3a -(4b -2a +1)(69) 7m +3(m +2n) (70) (x 2-y 2)-4(2x 2-3y 2)(71) -4x +3(31x -2) (72) 5(2x-7y)-3(4x-10y) (73))153()52(+---y x y x (74) )56(3)72(2+--x x(75))3(2)2(322b ab ab a +--- (76) )3123()322(2122y x y x x +-+-- (77) )]12(45[3---x x x (78) 2xy-{5x-3[xy-31x(y+1)]-4xy} 2.求下列代数式的值:3m 2n-mn 2-1.2mn+mn 2-0.8mn-3m 2n,其中m=6, n=2。