合并同类项和去括号课 时 教 案1
- 格式:doc
- 大小:188.00 KB
- 文档页数:4
第2课时去括号【知识与技能】能运用运算律探究去括号法则,并且利用去括号法则将整式化简.【过程与方法】经过类比带有括号的有理数的运算,发现去括号时的符号变化的规律,归纳出去括号法则,培养学生观察、分析、归纳能力.【情感态度】培养学生主动探究、合作交流的意识,严谨治学的学习态度.【教学重点】去括号法则,准确应用法则将整式化简.【教学难点】括号前面是“-”号去括号时,括号内各项变号容易产生错误.一、情境导入,初步认识利用合并同类项可以把一个多项式化简,在实际问题中,往往列出的式子含有括号,那么该怎样化简呢?现在我们来看本章引言中的问题(3):在格尔木到拉萨路段,如果列车通过冻土地段要uh,那么它通过非冻土地段的时间为(u-0.5)h,于是,冻土地段的路程为100ukm,非冻土地段的路程为120(u-0.5)km,因此,这段铁路全长(单位:km)是100u+120(u-0.5)①冻土地段与非冻土地段相差100u-120(u-0.5)②上面的式子①、②都带有括号,它们应如何化简?思路点拨:教师引导、启发学生类比数的运算,利用分配律.学生练习、交流后,教师归纳:利用分配律,可以去括号,合并同类项,得:100u+120(u-0.5)=100u+120u+120×(-0.5)=220u-60;100u-120(u-0.5)=100u-120u-120×(-0.5)=-20u+60.我们知道,化简带有括号的整式,首先应先去括号.上面两式去括号部分变形分别为:+120(u-0.5)=+120u-60 ③-120(u-0.5)=-120u+60 ④比较③、④两式,你能发现去括号时符号变化的规律吗?二、思考探究,获取新知【教学说明】上一栏目中问题,应鼓励学生通过观察,试用自己的语言叙述去括号法则,然后教师板书(或用屏幕)展示.【归纳结论】如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.特别地,+(x-3)与-(x-3)可以分别看作1与-1分别乘(x-3).利用分配律,可以将式子中的括号去掉,得:+(x-3)=x-3(括号没了,括号内的每一项都没有变号)-(x-3)=-x+3(括号没了,括号内的每一项都改变了符号)去括号规律要准确理解,去括号应对括号内的每一项的符号都予考虑,做到要变都变;要不变,则每一项都不变;另外,括号内原有几项去掉括号后仍有几项.三、典例精析,掌握新知例1 化简下列各式:(教材第66页例4)(1)8a+2b+(5a-b);(2)(5a-3b)-3(a2-2b).【教学说明】讲解时,先让学生判定是哪种类型的去括号,去括号后,要不要变号,括号内的每一项原来是什么符号?去括号时,要同时去掉括号前的符号.为了防止错误,题(2)中-3(a2-2b),先把3乘到括号内,然后再去括号.解答过程按课本,可由学生口述,教师板书.例2 两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是50km/h,水流速度是akm/h.(教材第67页例5)(1)2h后两船相距多远?(2)2h后甲船比乙船多航行多少千米?【教学说明】教师操作投影仪,展示例2,学生思考、小组交流,寻求解答思路.根据船顺水航行的速度=船在静水中的速度+水流速度,船逆水航行速度=船在静水中的速度-水流速度.因此,甲船速度为(50+a )km/h ,乙船速度为(50-a )km/h ,2h 后,甲船行程为2(50+a )km ,乙船行程为2(50-a )km.两船从同一港口同时出发反向而行,所以两船相距等于甲、乙两船行程之和.去括号时强调:括号内每一项都要乘以2,括号前是负因数时,去掉括号后,括号内每一项都要变号.为了防止出错,可以先用分配律将数字2与括号内的各项相乘,然后再去括号,熟练后,再省去这一步,直接去括号.四、运用新知,深化理解1~2.教材第67页练习.3.一本书第一天看了x 页,第二天看的页数比第一天看的页数的2倍少25页,第三天看的比第一天看的一半多42页,已知三天刚好看完这本书.(1)用含x 的代数式表示这本书的页数;(2)当x=100,试计算这本书的页数.4.有这样一道计算题:计算(2x 3-3x 2y-2xy 2)-(x 3-2xy 2+y 3)+(-x 3+3x 2y-y 3)的值,其中x=2012,y=1.甲同学错把x=2012看成x=-2012,但计算结果仍正确,请你说说这是怎么一回事?【教学说明】本课时的内容是有关于去括号的问题,教师先让学生独立完成,向学生强调去括号时应注意符号的变化.【答案】1.(1)12x-6 (2)-5+x (3)-5a+5 (4)5y+12.解:顺风飞行4小时的行程为4(a+20)千米;逆风飞行3小时的行程为3(a-20)千米;两个行程相差4(a+20)-3(a-20)=4a+80-3a+60=(a+140)千米.3.(1)x+(2x-25)+(21x+42)=27x+17; (2)将x=100代入原式得27×100+17=367.因为化简结果与x的取值无关,所以x=2012与x=-2012对计算结果没有影响,从而结果仍正确.五、师生互动,课堂小结学生作总结后教师强调要求大家应熟记法则,并能根据法则进行去括号运算.法则顺口溜:去括号,看符号:是“+”号,不变号;是“―”号,全变号.1.布置作业:从教材习题2.2中选取.2.完成练习册中本课时的练习.去括号是代数式变形中的一种常用方法,去括号时,特别是括号前面是“-”号时,括号连同括号前面的“-”号去掉,括号里的各项都改变符号.去括号规律可以简单记为“-”变“+”不变,要变全都变.当括号前带有数字因数时,这个数字要乘以括号内的每一项,切勿漏乘某些项.本课时教学时教师要通过对这个法则的不断强化,使学生牢牢记住变形时的符号变化.作者留言:非常感谢!您浏览到此文档。
第一篇:公开课《解一元一次方程——去括号》说课稿解一元一次方程——去括号的说课稿我说课的内容是人教版九年义务教育七年级教科书数学第一册第三章第三节“解一元一次方程——去括号”的第一课时内容。
本次讲课从四大方面讲解:一、教材分析地位与作用:本节内容在全书及章节的地位:《解一元一次方程——去括号》是初中七年级数学人教版上册第三章第三节。
前面几节我们学习了《解一元一次方程——移项及合并同类项》,这节是解一元一次方程的延伸及应用。
通过这节我们对解一元一次方程有了更新的步骤。
它在教材中起着承前启后的作用,一方面加深对一元一次方程的解法认识,另一方面为接下来讲解去分母做了铺垫。
所以说这节课内容非常重要。
二、教学目标根据上述教材结构内容简析,考虑到学生的认识结构心理特征,教学目标确定如下:①知识与能力:形成并掌握解一元一次方程的规范步骤,理解去括号的法则,并通过对比加深对带系数的去括号方法。
②过程与方法:逐步培养学生观察、归纳、类比、联想等发现规律的一般方法③情感态度与价值观:通过分析解有括号的一元一次方程的过程,让学生体会整洁的内涵,发展有条理地清晰的思维能力,提高人的一般素质。
三、教学重难点确定弄清列方程解应用题的思想方法;用去括号解一元一次方程是这节课的重点。
弄清题意,寻找等量关系是这节课的难点四、学情分析(1)知识掌握上,七年级学生刚刚学习一元一次方程,解一元一次方程的步骤和实际问题的找等量关系掌握不一定很深刻,尤其是应用题的等量关系的寻找不容易,所以应全面系统的去讲述。
(2)学生学习本节课的知识障碍。
学生在知识的结合上不是很顺手,所以教学中教师应予以简单明白、深入浅出的分析。
(3)由于七年级学生的理解能力和思维特征和生理特征,学生好动性,注意力易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中应抓住学生这一生理心理特点,一方面要运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性。
合并同类项、加(去)括号、准确数知识点一:合并同类项把多项式中的同类项合并成一项,叫做合并同类项。
要点诠释:1、合并同类项的法则是:同类项的系数相加,所得的结果作为合并后所得项的系数,字母和字母的指数不变。
比如:在多项式中遇到同类项,可以运用交换律、分配律合并,如===2、合并同类项的一般步骤:(1)先判断谁与谁是同类项;注:所有的常数项都是同类项,合并时把它们结合在一起,运用有理数的运算法则合并。
(2)利用法则合并同类项;注:①合并同类项时,系数相加,字母部分不变,不能把字母的指数也相加,如 2a+5a≠7a2。
②如果两个同类项的系数互为相反数,合并同类项后,结果为0。
③合并同类项时,只能把同类项合并成一项,不是同类项的不能合并,不能合并的项,在每一步运算中不要漏掉。
(3)写出合并后的结果。
注:合并同类项时,只要多项式中不再有同类项,就是最后的结果,结果可能是单项式,也可能是多项式。
知识点二:去括号与添括号去括号法则:括号前是“﹢”号,把括号和它前面的“﹢”号去掉,括号里的各项都不变符号;括号前是“﹣”号,把括号和它前面的“﹣”号去掉,括号里的各项都改变符号。
要点诠释:1、括号前面有数字因数时,应利用乘法分配律,先将该数与括号内的各项分别相乘,再去掉括号,以避免发生符号错误。
2、在去掉括号时,括号内的各项或者都要改变符号,或者都不改变符号,而不能只改变某些项的符号。
3、一定要注意括号前面的符号,它是去掉括号后,括号内各项是否变号的依据。
如括号前面是“-”号,去括号时常忘记改变括号内每一项的符号,出现错误,或括号前有数字因数,去括号时没把数字因数与括号内的每一项相乘,出现漏乘的现象,只有严格按照去括号法则,才能避免出错。
添括号法则:所添括号前面是“+”号,括到括号里的各项都不变符号;所添括号前面是“-”号,括到括号里的各项都改变符号.要点诠释:1、添括号是添上括号和括号前面的符号,也就是说,添括号时,括号前面的“+”号或“-”号也是新添的,不是原来多项式的某一项的符号“移”出来的。
去括号各位老师:大家好,我今天说课的内容是冀教版数学七年级(上)第四章第三节《去括号》,我将从教材分析、学情分析、教学目标、教法学法、教学程序和板书设计等六各方面进行分析。
(一) 教材分析本节课的教学内容《去括号》是中学数学部分的一个基础知识点,是在前面学习了有理数、单项式、多项式、同类项、合并同类项的基础上来学习的,它是整式的化简和整式的加减的基础,为进一步学习下一章一元一次方程等后续数学知识做好准备,同时也是是以后分解因式、解方程(组)与不等式(组)、函数等知识点当中的重要环节之一,对于七年级学生来说接受这个知识点存在一个思维上的转换过程,同时它也是一个难点,因此去括号在初中数学教材中有其特殊地位和重要作用。
(二)学情分析七年级的学生在前面已经学习了有理数的运算、单项式、多项式、整式、合并同类项,而且在小学就学习了乘法分配律并用其进行简便运算,已经积累了一定的学习经验,但是对于七年级的学生用字母表示数以及式的运算还不太熟悉,前面学生已经学习了“字母表示数”的问题,接下来要让学生理解字母可以像数一样进行计算,所以本节课类比数学习式,数的运算性质和运算律在式的运算中仍然成立,让学生通过类比学习充分体会“数式通性”,为学习整式的加减运算打好基础,从而实现数到式的飞跃。
(三)教学目标针对学生的学习状况和《数学课程标准》对本节课的要求,我确定以下的教学目标:知识技能:(1)学生经过观察、合作交流、讨论总结出去括号的法则,并较为牢固地掌握。
(2)理解去括号就是将分配律用于整式运算,掌握去括号法则。
(3)能正确且较为熟练地运用去括号法则化简整式。
数学思考:经历类比带有括号的有理数的运算,探究、发现去括号时的符号变化的规律,归纳出去括号法则,培养学生观察、分析、归纳能力.解决问题:通过对解决问题过程中的反思,获得解决问题的经验.情感态度:(1)让学生感受知识的产生、发展及形成过程,培养其勇于探索的精神。
(2)通过学生间的相互交流、沟通,培养他们的协作意识。
2.2整式的加减(第1课时)教学目标:1.理解同类项的概念.2.掌握合并同类项法则,会进行简单的同类项合并.3.运用类比数学思想方法,发展学生探究能力、问题的抽象概括能力.教学重点:合并同类项法则难点:对同类项概念的理解,合并同类项法则的探究过程.教法:互动探究法学法:小组研讨法教学过程:复习(1)举例说明什么是多项式,多项式的次数、多项式的项、常数项.学生活动:学生抢答一、情境引入问题1:在西宁到拉萨路段,列车在冻土地段的行驶速度是100 km/h ,在非冻土地段的行驶速度是120 km/h ,列车通过非冻土地段所需时间是通过冻土地段所需时间的2.1倍 ,如果通过冻土地段需要t h ,你能用含t 的式子表示这段铁路的全长吗?学生合作探究:分析已知量和未知量之间的数量关系.教师总结:依题意可列出非冻土地段所需时表示为t 1.2,根据路程=时间⨯速度,铁路全长是t t 1.2120100⨯+,即t t 252100+.那么t t 252100+能够化简吗?下面我们就来学习今天的新知识——同类项问题2:(1)运用运算律计算:22522100⨯+⨯= ,()()22522100-⨯+-⨯= ;(2)根据(1)中的方法完成下面的运算,并说明其中的道理:t t 252100+= .学生活动:在独立完成的基础上,小组合作探究.师生合作探究:前面我们学习过特殊到一般的方法解决问题,本题22522100⨯+⨯可看作,t t 252100+中当t 取多少时的算式?()()22522100-⨯+-⨯呢?类比它们的关系,t t 252100+也能用运算律来化简吗?教师总结:运用分配律可得(1)题中()2352225210022522100⨯=⨯+=⨯+⨯,()()()()()2352225210022522100-⨯=-⨯+=-⨯+-⨯(2)题t t 252100+有与(1)题相同的结构,其中t 代表一个因数,因此也可以用分配律得()t t t 252100252100+=+.本题利用类比方法,推导出运算律同样适用于含字母因数的式子,为下面的同类项概念的引入做准备.问题3:填空:(1)=-t t 252100( )t ;(2)=+2223x x ( )2x ;(3)=-2243ab ab ( )2ab .上述运算式有什么特点,你能多中得出什么规律?学生活动:独立完成的基础上,小组合作交流.教师总结:利用分配律可得()t t t t 152252100252100-=-=-,()2222323x x x +=+,()2224343ab ab ab -=-.观察(1)中的多项式的项t 100和t 152-,它们含有相同的字母t ,并且字母的指数都是1;(2)中多项式的项23x 、22x 都含有相同的字母x ,并且x 的指数都是2;(3)中多项式的项23ab 、24ab -,它们都含有字母a 、b ,并且a 都是1次的,b 都是2次的.象t 100与t 152-,23x 与22x ,23ab 与24ab -这样,所含字母相同,并且相同字母的指数也相同的项叫做同类项.几个常数项也是同类项.把多项式中的同类项合并成一项,叫做合并同类项.合并同类项后,所得项的系数是合并前各同类项系数的和,且字母部分不变.问题 4.你能化简多项式28372422--+++x x x x 吗?若能,请你把最后结果中的各项按照某个字母的指数从大到小或者从小到大的顺序排列.学生活动:小组合同探究,结合前面的结论,来寻求解决问题的途径与方法.师生合作探究:多项式中有同类项吗?能利用交换律、结合律合并同类项吗?教师总结:因为多项式中的字母表示的是数,所以我们也可以运用交换律、结合律、分配律把多项式中的同类项进行合并.2732842837242222-+++-=--+++x x x x x x x x()()()55427328422++-=-+++-x x x x最后结果是按照x 的指数从大到小(降幂)的顺序排列,其中5是常数项,相对于x ,可以看作“没有指数”.最后结果也可以按照x 的指数从小到大(升幂)的顺序,写成2455x x -+.二、范例学习例1:合并下列各式的同类项:(1)2251xy xy -; (2)22222323xy xy y x y x -++-;(3)222244234b a ab b a --++学生活动:在独立完成的基础上,小组交流,讨论解题过程以及结果的合理性.师生合作探究:利用运算律,先合并同类项,结果按照某个字母的升幂或降幂排列.教师总结:(1)22225451151xy xy xy xy =⎪⎭⎫ ⎝⎛-=-; (2)()()22222223232323xy y x xy xy y x y x -++-=-++-22xy y x +-=(3)()()ab b b a a b a ab b a 243444423422222222+-+-=--++()()ab b ab b a 224344222+-=+-+-=例2:(1)求多项式23452222--++-x x x x x 的值,其中21=x . (2)求多项式22313313c a c abc a +--+的值,其中3,2,61-==-=c b a . 学生活动:小组合作探究,先完成(1)题,教师评讲完后,再做下一题.师生合作探究:一种方法是直接把x 的值代入多项计算,第二种是把多项式经过合并同类项,再带入x 的值计算,两种方法更简便?教师总结:先化简,再代入求值.(1)()()2245312234522222--=-+-+-+=--++-x x x x x x x x . 当21=x 时,原式25221-=--=. (2)()abc c abc a c a c abc a =⎪⎭⎫ ⎝⎛+-++-=+--+222313133313313. 当3,2,61-==-=c b a 时,原式()13261=-⨯⨯-. 上面的问题使学生进一步熟悉合并同类项法则,也使学生看到将多项式适当化简后可以简化计算.例3:(1)水库水位第一天连续下降了a h ,每小时平均下降到2cm ;第二天连续上升了a h ,每小时平均上升了0.5cm ,这两天水位总的变化情况如何?(2)某商店原有5袋大米,每袋大米为x kg.上午卖出3袋,下午又购进同样包装的大米4袋.进货后这个商店有大米多少千克?学生活动:小组合作探究.师生合作探究:(1)水位有升降区别,那么用什么数来表示这种变化?总的水位变化,显然是这两天水位变化的和.(2)大米量变化上午卖出理+下午购进量,这里的卖出与购进怎么表示?教师总结:(1)a a a 5.15.02-=-(cm )(2)x x x x 6435=+-(kg )三、巩固拓展练习1 判断下列说法是否正确,正确的在括号内打“√”,错误的打“×”(1)x 3与xm 3是同类项( )(2)ab 2 与ab -是同类项( )(3)22yx 与 y x 23是同类项( )(4)23ab 与c ab 23是同类项( )(5)23与32是同类项( )练习21.若m y x 3-与n x y 221是同类项,则m = ,n = .2.若22252xy y mx y x -=+,则m = .3.当21=x 进,多项式765155222--++-x x x x x 的值为 .参考答案:×,√,√,×,√,2,3,-12.四、课堂总结(1)本节课学了哪些主要内容?(2)你能举例说明同类项的概念吗?(3)举例说明合并同类项的方法.(4)本节课主要运用了什么思想方法研究问题?五、作业教科书第65页练习题第1、2、3、4题板书设计例1 例2 例32.2 整式的加减(第2课时)教学目标:1.理解去括号法则.2.会利用去号法则将整式化简.3.经历类比带有括号的有理浸透的运算,发现去括号时的符号变化的规律,归纳出去括号法则,培养学生观察、分析、归纳能力.教学重点:去括号法则,准确应用法则进行化简.教学难点:去括号法则的理解;括号前面是负号时,去括号后各项符号的变化.教法:互动探究法.学法:小组研讨法.教学过程:复习:1.什么是同类项?2.怎样进行合并同类项?一、情况引入问题:在格尔木到拉萨路段,如果列车通过冻土地段需要u h ,那么它通过非冻土地段的时间是(5.0-u )h.于是冻土地段的路程是u 100km ,非冻土地段的路程是()5.0120-u km.因此,这段铁路的全长(单位:km )是 ,冻土地段与非冻土地段相差(单位:km ) 学生合作探究:先自主完成,小组交流合作教师总结:()5.0120100-+u u ①,②()5.0120100--u u ②,式子①,②都带有括号,类比数的运算,它们应如何化简?这就是我们将要学习的内容——去括号利用分配律,可以去括号,再合并同类项,得()60220601201005.0120100-=-+=-+u u u u u()6020601201005.0120100+-=+-=--u u u u u上面两式中()601205.0120-+=-+u u ③()601205.0120+-=--u u ④比较③,④两式,你能发现骈括号时符号变化的规律吗?学生活动:小组合作探究师生合作探究:去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反注意:去括号规律要准确理解,去括号应考虑括号内的每一项的符号,做到要变都变;要不变都不变;另外,括号内原来有几项,去掉括号后仍有几项.特别地,()3-+x 与()3--x 可以看作1与此同时1分别乘()3-x .二、范例学习例4化简下列各式:(1)()b a b a -++528;(2)()()b a b a 23352---.学生活动:自方主完成教师总结:先去括号,再合并同类项解(1)()b a b a b a b a b a +=-++=-++13528528;(2)()()()b a b a b a b a 6335233522---=---b a a b a b a 353633522++-=+--=.例5两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是50 km/h ,水流速度是a km/h .(1)2 h 后两船相距多远?(2)2 h 后甲船比乙船多航行多少km ?学生活动:小组合作交流师生合作探究:顺水速度=静水速度+水流速度=(50+ a )km/h逆水速度=静水速度-水流速度=(50- a )km/h教师总结:2 h 后两船相距2(50+ a )+2(50- a )=200.2 h 后甲船比乙船多航行2(50+ a )-2(50- a )=4 a.三、巩固拓展1.(1)()122-+-+y x = ;(2)()b a +--35= .(3)实数a 、b 、c 数轴上的对应点如下图,化简c c b b a a ----++= . 0c ba2.化简: (1)()5.012-x ; (2)⎪⎭⎫ ⎝⎛--x 5115 (3)()()73235---+-a a a ; (4)()()123931++-y y . 学生活动:先独立完成,后小组合作交流教师总结: 1. 224-+-y x 、b a -+-35、0;2. 612-x 、5-x 、55+-a 、14+y四、课堂总结1.去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.2.注意:去括号规律要准确理解,去括号应考虑括号内的每一项的符号,做到要变都变;要不变都不变;另外,括号内原来有几项,去掉括号后仍有几项.五、作业教科书第70页习题2.2第3、4题板书设计2.2整式的加减第二课时去括号问题例4例52.2整式的加减(第3课时)教学目标:1.让学生从实际问题中去体会进进行整式加减的必要性,掌握并能灵活运用整式加减的运算法则.2.培养学生的观察、分析、归纳、总结以及概括能力.3.认识到数学是解决实际问题和进行交流的重要工具.教学重点:整式加减的运算法则教学难点:概括整式加减的运算法则并灵活、准确地运用法则.教法:互动探究法学法:小组研讨法教学过程:复习:去括号法则教师总结:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.一、情境引入如图,用火柴棍拼成一排正方形图形,如果图形中含有1、2、3或4个正方形,分别需要多少根火柴棍?如果图形中含有n个正方形,需要多少根火柴棍?学生合作探究:小组合作探究师生合作探究:有几种求解方法教师总结:方法一:第一个正方形用4根火柴棍,每增加一个正方形增加3根火柴棍,搭n 个正方形就需要[4+3(n -1)]根火柴棍.方法二:把每一个正方形都看成用4根火柴棍搭成的,然后再减去多算的火柴棍,得到需要[4n -(n -1)]根火柴棍.方法三:第一个正方形可以看成是3根火柴棍加1根火柴棍搭成的,此后每增加一个正方形就增加3根,搭n 个正方形共需要(3n +1)根火柴棍.想一想:这三种方法的结果是否一样?上几节课学习了合并同类项、去括号等内容,它们是进行整式加减运算的基础.二、范例学习例6计算:(1)()()y x y x 4532++-;(2)()()b a b a 5478---学生活动:学生独立完成教师总结:先去括号,再合并同类项解:(1)()()y x y x 4532++- (2)()()b a b a 5478---y x y x 4532++-= b a b a 5478+--=y x +=7 b a 24-=完成课本69页练习第1题例7 笔记本的单价是x 元,圆珠笔的单价是y 元。
5.方茴说:“那时候我们不说爱,爱是多么遥远、多么沉重的字眼啊。
我们只说喜欢,就算喜欢也是偷偷摸摸的。
”6.方茴说:“我觉得之所以说相见不如怀念,是因为相见只能让人在现实面前无奈地哀悼伤痛,而怀念却可以把已经注定的谎言变成童话。
”7.在村头有一截巨大的雷击木,直径十几米,此时主干上唯一的柳条已经在朝霞中掩去了莹光,变得普普通通了。
8.这些孩子都很活泼与好动,即便吃饭时也都不太老实,不少人抱着陶碗从自家出来,凑到了一起。
9.石村周围草木丰茂,猛兽众多,可守着大山,村人的食物相对来说却算不上丰盛,只是一些粗麦饼、野果以及孩子们碗中少量的肉食。
《解一元一次方程——去括号》说课稿洮南市瓦房中学郑佳5.方茴说:“那时候我们不说爱,爱是多么遥远、多么沉重的字眼啊。
我们只说喜欢,就算喜欢也是偷偷摸摸的。
”6.方茴说:“我觉得之所以说相见不如怀念,是因为相见只能让人在现实面前无奈地哀悼伤痛,而怀念却可以把已经注定的谎言变成童话。
”7.在村头有一截巨大的雷击木,直径十几米,此时主干上唯一的柳条已经在朝霞中掩去了莹光,变得普普通通了。
8.这些孩子都很活泼与好动,即便吃饭时也都不太老实,不少人抱着陶碗从自家出来,凑到了一起。
9.石村周围草木丰茂,猛兽众多,可守着大山,村人的食物相对来说却算不上丰盛,只是一些粗麦饼、野果以及孩子们碗中少量的肉食。
解一元一次方程-去括号各位评委、老师好:我是洮南市瓦房镇中学的郑佳,我的说课内容是七年级上册的《解一元一次方程——去括号》,我的说课内容将从教材分析、学情分析、教法和学法分析、教学程序、板书设计这五方面进行。
具体内容如下:一、教材分析1、所处的地位及作用本节课是人教版七年级上册第三章第二节《解一元一次方程——去括号》,去括号这一节是学生在学习了去括号法则和移项之后,进一步系统学习解一元一次方程的有关知识。
它既是第三章知识的深化,又为我们以后学习一元一次方程的应用提供研究和学习的方法,同时也为含有分母的一元一次方程的计算做好准备,具体的说,本节课就是要通过对去括号的掌握和理解,让学生形成系统的解一元一次方程的知识结构,学会学习解一元一次方程的方法,因此本节课的重要性是不言而喻的。
课 时 教 案 编 号:
授课教师 地点 时间
学 生 年级 科目
课 题
教学目标
1、代数式的表示作用,了解项、系数、次数的概念。
2、理解同类项的概念和合并同类项的意义
3、熟练地合并同类项
教学重点
认识项、系数,熟练地合并同类项
教学难点
去括号法则,熟练地合并同类项
教
学
过
程
知识点:
1、同类项:
所含字母相同,并且相同字母的指数也相同的项,叫做同类项,
常数项也是同类项。
判断同类项的标准有两条:(1)所含字母相同;(2)相同字母的
指数也分别相同。
2、合并同类项:
把多项式中的同类项合并成一项叫做合并同类项,不是同类项不
能合并。
合并同类项法则:(1)系数相加,所得结果作为系数;(2)字母
和字母的指数不变。
3、去括号:
去括号法则:(1)括号前是“+”号,把括号和它前面的“+”号
去掉后,原括号里各项符号都不改变;(2)括号前是“ – ”号,
把括号和它前面的“ – ”号去掉后,原括号里各项的符号都要改
变。
例题:
1.列代数式:
(1)x的平方的3倍与15的和;
(2)与1a的积是25的数;
(3)x,y两数和的平方与,ab 两数平方和的差.
2.写出下列代数式的系数和次数:
(1)5x2y (2)-3a3b2c (3)0.25m6n4 (4) 258mn
3.写出下列多项式的项数和次数:
(1)-2xy+32xy (2)3a2+2a +3
(3)-4ab+8-2b2-9ab3 (4)323xxyy+55
4、合并同类项
4x+2y—5x—y —3ab+7—2a2—9ab—3
5、先去括号,再合并同类项:
(1)(2x-3y)+(5x+4y); (2)(8a-7b)-(4a-5b);
(3)a-(2a+b)+2(a-2b); (4)3(5x+4)-(3x-5);
6、一种树苗的高度与生长年龄之间的关系如表所示:(树苗原高
是80厘米)
1.填出第4年树苗可达到的高度 .
2.用含a的代数式表示高度h .
3.用你得到的代数式求生长10年后树苗可能达到的高度 .
生长年数a 树苗高度h(厘米)
1 98
2 116
3 134
4
10
练习题:
1. 判断下列各题中的两个项是不是同类项,是打√,错打
⑴yx231与-3y2x ( ) ⑵2ab与ba2 ( )
⑶bca22与-2cab2( ) (4)4xy与25yx ( )
(5)24 与-24 ( ) (6) 2x与22 ( )
2. 判断下列各题中的合并同类项是否正确,对打√,错打
(1)2x+5y=7y ( ) ( 2)6ab-ab=6 ( )
(3)8xyxxyy3339( )(4)2122533mm ( )
(5)5ab+4c=9abc ( ) (6)523523xxx ( )
(7) 22254xxx( (8) ababba47322 ( )
3. 与yx221不仅所含字母相同,而且相同字母的指数也相同的是
( )
A.zx221 B. xy21 C.2yx D. x2y
4.下列各组式子中,两个单项式是同类项的是( )
A.2a与2a B.5ba2 与ba2 C. xy与yx2 D.
0.3m2n与0.3x2y
5.下列计算正确的是( )
A.2a+b=2ab B.3222xx C. 7mn-7nm=0
D.a+a=2a
6.代数式-4a2b与32ab都含字母 ,并且 都是一次,
都是二次,因此-4a2b 与32ab是
7.所含 相同,并且 也相同的项叫同类项。
9.在9)62(22babka中,不含ab项,则k=
11.若-3xm-1y4与2n2yx31是同类项,求m,n.
12.合并同类项:
1.222baba43ab21a32
2 . 6x2y+2xy-3x2y2-7x-5yx-4y2x2-6x2y
3.(x2-y2)-4(2x2-3y2)
(10)5(2x-7y)-3 (4x-10y)
课后反思
教务主任签名: