第3章电化学测试技术
- 格式:ppt
- 大小:9.90 MB
- 文档页数:120
电化学测量技术与方法
电化学测量技术是一种用于测量化学反应中电子转移数量的技术手段。
它通常使用一个电极和一个参考电极,通过测量电极之间的电势差来计算出电子转移数量。
电化学测量技术可以分为两大类:一类是定量电化学测量技术,可以精确测量电子转移数量,例如极化曲线测量技术、响应曲线测量技术、恒电位测量技术等;另一类是定性电化学测量技术,可以检测电子转移数量的变化,例如恒电流测量技术、恒电位测量技术、电解水技术等。
在实际应用中,电化学测量技术可以用于测量化学反应中的电子转移数量、反应速率、反应平衡常数等参数,帮助人们更好地理解化学反应的机理和规律。
同时,电化学测量技术也可以用于制备电极材料、研究电极表面形貌、电子传输机制等方面的研究。
总结起来,电化学测量技术是一种高效、精确、可靠的技术手段,在化学、材料、环境等领域都有着广泛的应用。
第3章 电化学极化 (电荷转移步骤动力学)绪论中曾提到:一个电极反应是由若干个基本步骤形成的,一个反应至少有三个基本步骤:00R R ze O O s s →→+→-1) 反应粒子自溶液深处向电极表面的扩散——液相传质步骤。
2) 反应粒子在界面得失电子的过程——电化学步骤。
3) 产物生成新相,或向溶液深处扩散。
当有外电流通过电极时,ϕ将偏离平衡值,我们就说此时发生了极化。
如果传质过程是最慢步骤,则ϕ的偏离是由浓度极化引起的(此时0i s i C C ≠,e ϕ的计算严格说是用s i C 。
无浓度极化时0i s i C C =,ϕ的改变是由s i C 的变化引起)。
这时电化学步骤是快步骤,平衡状态基本没有破坏。
因此反映这一步骤平衡特征的Nernst 方程仍能使用,但须用ϕ代e ϕ,s i C 代0i C ,这属于下一章的研究内容。
如果传质等步骤是快步骤,而电化学步骤成为控制步骤,则这时ϕ偏离e ϕ是由电化学极化引起的,也就是本章研究的内容。
实际上该过程常常是比较慢的,反应中电荷在界面有积累(数量渐增),ϕ随之变化。
由此引起的ϕ偏离就是电化学极化,这时Nernst 方程显然不适用了,这时ϕ的改变将直接以所谓“动力学方式”来影响反应速度。
3.1 电极电位与电化学反应速度的关系电化学反应是一种特殊的氧化—还原反应(一个电极上既有氧化过程,又有还原过程)。
若一个电极上有净的氧化反应发生,而另一个电极上有净的还原反应发生,则在这两个电极所构成的电化学装置中将有电流通过,而这个电流刚好表征了反应速度的大小,)(nFv i v i =∝[故电化学中总是用i 表示v ,又i 为电信号,易测量,稳态下串联各步速度同,故浓差控制也用i 表示v 。
i 的单位为A/cm 2,zF 的单位为C/mol ,V 的单位为mol/(cm 2.s )]。
既然电极上有净的反应发生(反应不可逆了),说明电极发生了极化,ϕ偏离了平衡值,偏离的程度用η表示,极化的大小与反应速度的大小有关,这里就来研究i ~ϕ二者间的关系。