玻璃马池焰窑炉课程设计说明书
- 格式:doc
- 大小:165.50 KB
- 文档页数:15
燃气马碲焰水玻璃窑总体方案说明泡花碱又称水玻璃,它的用途非常广泛,在化工系统被用来制造硅胶、白炭黑、沸石分子筛、五水偏硅酸钠、硅溶胶、层硅及速溶粉状硅酸钠、硅酸钾钠等各种硅酸盐类产品,是硅化合物的基本原料。
在经济发达国家,以硅酸钠为原料的深加工系列产品已发展到50余种,有些已应用于高、精、尖科技领域;在轻工业中是洗衣粉、肥皂等洗涤剂中不可缺少的原料,也是水质软化剂、助沉剂;在纺织工业中用于助染、漂白和浆纱;在机械行业中广泛用于铸造、砂轮制造和金属防腐剂等;在建筑行业中用于制造快干水泥、耐酸水泥防水油、土壤固化剂、耐火材料等;在农业方面可制造硅素肥料;另外用作石油催化裂化的硅铝催化剂、肥皂的填料、瓦楞纸的胶粘剂、金属防腐剂、水软化剂、洗涤剂助剂、耐火材料和陶瓷原料、纺织品的漂、染和浆料、矿山选矿、防水、堵漏、木材防火、食品防腐以及制胶粘剂等。
为规范硅酸钠行业发展,防止盲目投资和重复建设,促进产业结构升级,控制高耗能、高污染、资源型产业过快增长,根据国家有关法律法规和产业政策,按照“调整结构、有效竞争、降低消耗、保护环境、持续发展”的原则。
所以09年对我国该行业制定了准入条件.其中对工艺和设备作出明确规定:一,工艺和设备:新建或改建硅酸钠项目整体技术和装备水平应达到或接近国际先进水平。
硅酸钠的生产有干法(固相法)和湿法(液相法)两种生产工艺。
干法工艺以纯碱和石英砂为原材料,通过高温熔融反应得到固体产品;湿法工艺以烧碱和石英砂为原材料,通过加温加压反应得到液体产品干法(固相法)生产工艺应达到以下要求:原料配料与称量系统要采用高精度电子称量系统(动态称量精度达到5/1000)和DCS系统模拟显示,采用优质配合料混合设备,生产控制系统应配备快速分析仪表(含在线水份测量、离线成份分析等测定)。
主要设备窑炉应推广使用结构合理、热能综合利用好的蓄热室马蹄焰窑炉。
采用优质耐火材料,新建或改建玻璃熔窑设计窑龄在3年以上。
玻璃马蹄焰池窑课程设计说明书集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-玻璃窑炉及设计课程设计说明书题目:年产42200吨高白料酒瓶燃油蓄热式马蹄焰池窑设计学生姓名:\学号:院(系):材料科学与工程学院专业:无机非金属材料工程指导教师:2013年6月20日目录1绪论课程设计是培养学生运用《窑炉及设计(玻璃)》课程的理论和专业知识,解决实际问题,进一步提高设计、运算、使用专业资料等能力的重要教学环节。
目的是使学生受到设计方法的初步训练,逐步树立正确的设计观点,增强设计能力、创新能力和综合能力,初步掌握窑炉及其它热工设备设计的基本知识和技能,并对所学窑炉热工理论知识进行验证和深化,为将来从事生产、设计、研究及教学等方面工作打下良好的基础。
同时为毕业设计(论文)奠定良好的基础。
1.1设计依据:(1)设计题目:年产42200吨高白料酒瓶燃油马蹄焰玻璃池窑的设计(2) 原始数据:产品规格:高白酒瓶容量550mL, 重量450g/只行列机年工作时间及机时利用率:325 天,95%机速:QD8行列机高白酒瓶75只/分钟QD6行列机高白酒瓶42只/分钟产品合格率:90%玻璃熔化温度1430℃玻璃形成过程耗热量q玻=2350kJ/kg玻璃液重油组成(质量分数%),见表1 。
1.2简述玻璃窑炉的发展历史及今后的发展动向玻璃生产专用热工设备统称为玻璃窑炉。
玻璃窑炉是玻璃行业生产的心脏,是能源消耗的主要设备。
目前我国正在运行的窑炉以火焰炉为主,能耗水平较高(一般在300~500公斤标煤/吨成品左右,国际先进水平为相当于150~200公斤标煤/吨成品);熔化率低(一般在1。
5~2吨玻璃液/平方米熔化面积·天,国际先进水平为3~3。
6吨工字钢玻璃液/平方米熔化面积·天),周期熔化率低(国际可超过10000吨玻璃液/窑炉运行周期,国内在2400~6200吨玻璃液/窑炉运行周期)这也与我们企业的产品结构、窑炉熔化面积的大小、生产线的合理配置有关;在能源结构方面,我们目前主要选用煤和油,热利用率低且污染严重,而目前国际上则普遍采用天然气和电等清洁能源,热利用率高污染少。
课程设计任务书学生姓名: 专业班级:指导教师:工作单位:题目: 33 t/d蓄热式马蹄焰池窑的设计初始条件:1、产品的品种:陶瓷熔块2、产量: 33 吨/天3、玻璃的成分陶瓷熔块成分(wt/%)表14、原料所用原料及基本要求表26、纯配合料熔化,不外加碎玻璃。
7、玻璃的熔化温度:1509 ℃;熔化部火焰空间温度: 1559 ℃。
8、助燃空气预热温度:1198 ℃。
9、燃料:重油重油的元素组成表310、重油雾化介质:压缩空气,温度80℃,用量0.5Bm/kg油11、空气过剩系数:α取1.112、窑型:蓄热式马蹄焰流液洞池窑要求完成的主要任务:一、撰写设计说明书,主要内容包括:1、设计依据及相关政策、法律、法规及设计规范2、物料平衡计算(列出计算过程)2.1配料计算2.2去气产物及组成计算3、热平衡计算(列出计算过程)3.1燃料燃烧计算3.2玻璃形成过程所消耗的热量计算3.3燃料消耗量近似计算4、窑炉的结构设计详细说明各部位的作用,各主要参数选择依据,并进行方案对比。
4.1熔化部设计包括熔化部的面积、长、宽、深度、火焰空间及投料口的尺寸。
4.2工作部的设计包括工作部的面积、长、宽、深度及火焰空间的尺寸。
4.3玻璃液的分隔设备的设计4.4出料口的设计4.5小炉口的计算与设计4.6蓄热室的计算与设计4.7烟道与烟囱尺寸的确定5、窑炉耐火材料的设计与选择包括池壁、池底、胸墙、大碹、蓄热室的耐火材料及保温材料的设计与选择。
要求作方案对比,阐述选择依据。
6、窑炉主要技术经济指标①熔化量:②熔化率:③熔化部面积:④冷却部面积:⑤一侧蓄热室格子砖的受热面积:⑥单位熔化部面积所占格子砖受热面积:⑦每公斤玻璃液所消耗的热量:⑧燃料消耗量:⑨玻璃熔成率。
二、用CAD绘制一张窑炉总图(3#图打印)时间安排:18周讲课、查阅资料、设计计算、绘制草图;19周 CAD制图;20周撰写设计说明书、答辩。
指导教师签名:年月日系主任(或责任教师)签名:年月日目录1.设计依据及相关的法律法规 (1)1.1设计的依据:课程设计任务书 (1)1.2国家相关法律、法规及设计规范 (1)1.3马蹄焰窑炉的特点 (2)2.物料平衡计算 (2)2.1配料计算 (2)2.2去气产物及组成计算 (4)3.热平衡计算 (5)3.1燃料燃烧计算 (5)3.2玻璃形成过程中所消耗的热量 (6)3.3燃料消耗量近似计算 (7)4.窑炉的结构设计 (8)4.1熔化部的设计 (8)4.2工作部的设计 (11)4.3玻璃液的分隔设备(流液洞)的设计 (11)4.4出料口的设计 (12)4.5 小炉口的计算与设计 (12)4.6蓄热室的计算与设计 (13)4.7烟道与烟囱尺寸的确定 (15)5. 主要技术经济指标 (16)6. 参考文献 (16)7. 总结 (16)设计题目:33 t/d蓄热式马蹄焰池窑的设计1 设计依据及相关的法律法规设计依据及其基本原则:随着工业生产现代化水平的日益提高,能源供应日趋紧张,在本设计中,为了节约能源、降低成本,采用有效的保温措施。
一、原始资料1、产品:高白料机制玻璃瓶罐。
2、出料量:每天熔化玻璃60吨。
3、玻璃成分(设计)(%):SiO2Al2O3CaO+MgO BaO Na2O+K2O71% 3.5% 10.5% 0.5% 14.5%4、料方及原料组成:原料料方%原料化学组成(%)外加水分% SiO2Al2O3CaO MgO Na2O Fe2O3其它失量石英砂51.985 99.350.2 0.1 0.05 0.05 15.0长石28.858 65.1319.940.24 0.11 14.03 0.12 0.43石灰石18.926 1 0.255.260.3 0.02 碳酸钠 99.2硝酸钠 98.12硫酸钠 0.14等等纯碱18.06 57.87 7.0 硝酸钠 1.162 1.5重晶石0.524 1.16 氧化钡 63.35合计119.5155、碎玻璃数量:占配合料量的33%。
6、配合料水分:靠石英砂和纯碱的外加水分带入,不另加水。
7、玻璃熔化温度:1400℃。
8、工作部玻璃液平均温度:1300℃。
9、重油。
元素组成(%)低热值(千卡/公斤)加热温度(℃)C H O N S A W86.42 12.16 0.55 0.2 0.15 0.02 0.5 10000 125 10、雾化介质:用压缩空气,预热到120℃,用量为0.6m3/公斤油。
11、喷嘴砖孔吸入的空气量:0.5m3/公斤油。
12、助燃空气预热温度:1050℃。
13、空气过剩系数a:取1.2。
14、火焰空气内表面温度:熔化部1450℃,工作部1350℃。
15、窑体外表面平均温度(℃):窑顶侧胸墙前后胸墙电容锆砖池墙池底熔化部250 180 200 160 130 17516、熔化池内玻璃液温度(℃):液面窑池上部(平均)窑池上下部交接层窑池下部(平均)池底1400 900 1280 1265 1250池深方向玻璃液温降:窑池上部为2℃/cm,窑池下部为1℃/cm。
课程设计玻璃池窑设计一、教学目标本课程的学习目标主要包括知识目标、技能目标和情感态度价值观目标。
通过学习,学生将掌握玻璃池窑设计的基本原理和方法,了解其在现代工业中的应用和发展趋势。
在技能方面,学生将能够运用所学知识进行简单的玻璃池窑设计,培养解决实际问题的能力。
同时,通过课程学习,学生能够认识到玻璃池窑技术在节能减排、促进可持续发展等方面的重要性,树立正确的价值观。
二、教学内容本课程的教学内容主要包括玻璃池窑设计的基本原理、设计方法和应用案例。
具体包括以下几个方面:1.玻璃池窑的概述:介绍玻璃池窑的定义、分类和特点,以及其在玻璃工业中的重要性。
2.玻璃池窑设计原理:讲解玻璃池窑的设计原则、基本参数和计算方法。
3.玻璃池窑结构与设计:介绍玻璃池窑的结构组成、设计要点和关键技术。
4.玻璃池窑的应用:分析玻璃池窑在现代工业中的应用案例,阐述其在节能减排、促进可持续发展等方面的意义。
三、教学方法为了提高教学效果,本课程将采用多种教学方法相结合的方式进行教学。
具体包括以下几种:1.讲授法:通过讲解玻璃池窑设计的基本原理、方法和应用案例,使学生掌握相关知识。
2.讨论法:学生针对玻璃池窑设计的某个主题进行讨论,培养学生的思考能力和团队协作精神。
3.案例分析法:分析具体玻璃池窑设计案例,使学生更好地理解和运用所学知识。
4.实验法:安排玻璃池窑设计实验,让学生动手操作,提高实际操作能力。
四、教学资源为了支持本课程的教学内容和教学方法的实施,我们将准备以下教学资源:1.教材:选用国内权威、实用的玻璃池窑设计教材,为学生提供系统的理论知识。
2.参考书:推荐相关领域的参考书籍,丰富学生的知识体系。
3.多媒体资料:制作课件、视频等多媒体资料,直观地展示玻璃池窑设计的过程和应用案例。
4.实验设备:配备必要的实验设备,为学生提供实际操作的机会。
五、教学评估本课程的评估方式将包括平时表现、作业和考试三个部分,以全面客观地评价学生的学习成果。
课程设计概要一、 设计的指导思想马蹄焰熔窑的发展概况、新技术、新工艺、选用窑型的选择、蓄热室的选择、 耐火材料的选用等。
二、各部分尺寸的设计1.熔化部(1)熔化面积①熔化率K 确定(P50)K 取1.65~2.0②F m =K Q③熔化部宽B 确定取决于小炉宽度、中墙宽度(小炉之间的距离)。
一半要求小炉边缘与胸墙之间的间距必须大于0.3m ,以免胸墙被烧损。
一般宽度2~7m 。
④熔化部长度L B=L F m池底砖规格为:300×300×1000 排砖后确定B 和L ,校验L :B 是否在1.5~1.8之间。
然后确定实际的熔化面积和熔化率。
⑤池深一般在900~1200mm 左右,应与耐火材料的选取相一致。
(2)火焰空间设计火焰空间长度与L 相同,但比B 宽300~500,取71 s h ,算出孤高h ,火焰空间总高度。
(3)投料池设计其长度一般在长800~1000mm ,宽度决定于投料机的宽度和两边的留空,深度比窑池浅200~300 mm 。
(4)池壁、池底、保温设计(5)窑坎的设计一般在窑长的三分之二处。
2.分隔设备的设计(1)流液洞设计可参考参考图(宽300~500mm ,高400~500mm ,长900~1000 mm )。
流液洞越低、越小越好。
(2)气体空间分隔装置的设计全分隔与半分隔。
3.冷却部的设计F 冷/F 熔=20~25%深度一般比熔化部浅300 mm ,选择形状。
三、热工计算1.配合料计算(不用芒硝)2.玻璃耗热量计算(见P75)四、燃烧计算要求算出窑炉的热效率五、小炉尺寸设计1.小炉尺寸设计①小炉脖下的操作空间(见P59),即水平通道。
②炉口面积:喷喷喷W T V F ⨯+⨯=273273V 0——每秒流过小炉口的空气标态流量(此处取10m/s )T 喷——喷火口处火焰温度(此处取1200℃)。
③经验指标 满足5.2~3.2=熔喷F F 即可。
④火口的宽与高选取小炉的宽,再计算出小炉的高(高相同)。
目录1.绪论 (1)2. 计算内容 (4)2.2 熔化率的选取 (4)2.3熔窑基本结构尺寸的确定 (4)2.4 窑体主要部位所用材料的选择和厚度的确定 (6)2.5 燃料燃烧计算 (7)2.6燃料消耗量的计算 (8)2.7 小炉结构的确定与计算 (10)2.8蓄热室的设计 (11)2.9 窑体主要部位所用材料的选择和厚度的确定 (12)3.主要技术经济指标 (12)4.对本人设计的评述 (14)参考文献 (14)1.绪论课程设计是培养学生运用《玻璃窑炉及设计》课程的理论和专业知识解决实际问题,进一步提高设计运算,使用专业资料等能力。
目的是使学生受到设计方法的初步训练,逐步树立正确的设计观点,增强设计能力,创新能力和综合能力,逐步掌握窑炉及其他热工设备设计的基础知识和技能,并对所学窑炉热工设备理论知识进行验证和深化,为将来从事生产、设计、研究及教学奠定良好的基础,同时为毕业论文打下坚实的基础。
1.1设计依据设计内容:年产12000吨高白料酒瓶燃油蓄热式马蹄焰池窑(1)原始数据:a)产品规格:青白酒瓶容量500mL, 重量400g/只b)行列机年工作时间及机时利用率:313 天,95%c)机速:QD6行列机青白酒瓶38只/分钟d)产品合格率:90%e)玻璃熔化温度1430℃f)玻璃形成过程耗热量q玻=2350kJ/kg玻璃液g)重油组成(质量分数%),见表1﹣11.2 述玻璃窑炉的发展历史及今后的发展动向玻璃窑炉是熔制玻璃的热工设备,利用燃料的化学能、电能或其它能源产生热量,造成可控的高温环境,使玻璃配合料在其中经传热、传质和动量传递过程,完成物理和化学变化,经过熔化、澄清、均化和冷却等阶段,为生产提供一定数量和质量的玻璃液。
我国的玻璃窑炉古已有之,其经历了一个漫长的发展史,通过燃料和技术的发展提高,玻璃窑炉现在已经有了较大的进步。
我国的玻璃窑炉基本上都为火焰池窑,其基本结构为:玻璃熔制、热源供给、余热回收、排烟供气四部分。
目前我国玻璃窑炉的主体要燃料有煤、重油、发生炉煤气、天然气,其中最普遍采用的是煤和重油,为节能降耗减少污染,也有许多窑炉采用发生炉煤气和天然气,如下表1-2介绍了我国玻璃窑炉的发展史:我国现阶段的玻璃池窑主要有平板池窑,横焰流液洞池窑、换热式单(双)碹池窑、蓄热式马蹄焰流液洞池窑,另外我国玻璃窑炉还有坩锅窑、电熔窑和浮法玻璃池窑。
近年来随着科学技术的进步和人们环保意识的增强,国内国外新技术,新设备,如减压澄清、全氧燃烧、纯氧助燃、顶插全电熔窑、深澄清池、三通道蓄热式等。
通过采用新技术、新工艺,可进一步降低能耗,提高玻璃液质量,减少环境污染,走出一条仅能环保的可持续发展道路。
1.3 所选窑炉类型的论证本设计采用蓄热式马蹄焰流液洞池窑。
(1)其优点有:a. 热利用率高,火焰行程长,因而燃料燃烧充分,同时窑体表面积小,热散失少,可提高热利用率,降低燃料消耗;b. 结构简单,造价低,只有一对小炉布置在熔化部端墙上。
(2) 但该窑也有缺点:a. 沿窑长方向难以建立必要的热工制度,火焰覆盖面积小,在炉宽上温度分布不均匀,尤其是火焰换向带来的周期性的温度波动和热点移动;b. 一对小炉限制了炉宽,进而限制了生产的规模;c. 燃料燃烧喷出的火焰诱使对料堆有堆料作用,不利于配合料的熔化和澄清,并对花格墙、流液洞盖板和冷却部空间砌体有烧损作用。
其适用于各种空心制品、压制品和玻璃球的生产。
1.4关工艺问题的论证(1)温度制度:“窑温”指胸墙挂钩砖温度,依靠燃料消耗比例调节。
马蹄焰和纵焰池窑的热点值取决于熔化玻璃的品种、燃料和耐材质量。
热点位置选在熔化部的1/2~2/3处,不易控制。
(2)压力制度:压强或静压头,沿气体流程。
玻璃液面处静压微正压(+5Pa),微冒火。
测点在澄清带处大碹或胸墙。
用烟道的开度调节抽力压强。
(3) 泡界限制度人为确定玻璃液热点位置。
马蹄焰池窑稳定性不很强。
(4)液面制度:稳定。
波动会加剧液面处耐材侵蚀。
对成型也有影响。
日用玻璃池窑要求±0.5mm,轻量瓶为±0.1~0.3mm)。
探针式和激光式测量方法。
安装在供料道或工作池。
依靠控制加料机的加料速率来进行。
(5)气氛制度:通过烟气中O2含量和CO含量判断。
多数玻璃需氧化焰,但芒硝料要求还原焰。
通常借助改变空气过剩系数来调节窑内气氛的性质(空气口大小和鼓风用量)。
Fe2+——深绿色,透光性差,透热差。
Fe3+——浅黄色,透热、透光性强。
火焰亮度判断,明亮为氧化焰,不大亮为中性焰,发浑者为还原焰。
(6)换向制度:蓄热式池窑定期倒换燃烧方向,使蓄热室格子体系统吸热和换热交替进行。
换向间隔一般为20~30/min,烧重油熔窑,换向时先关闭油阀,然后关小雾化剂阀,留有少量雾化剂由喷嘴喷出,为的是避免排走废气时喷油嘴被加热,喷嘴内重油碳化,堵塞喷油嘴。
(7)加料方式:采用单侧加料。
2.计算内容2.1 日出料量的计算日出料量由年产量和原始数据计算得:列机年产合格瓶量(吨/年)m为单台DQ6m=机速(只/分钟)×60×24×瓶重×10-6×行列机年工作时间×机时利用率×产品合格率:m=38×60×24×400×10-6×313×95%×90%=5857.55712吨/年QD6因设计要求年产量为12000吨/年的玻璃酒瓶,则选用行列机台数n=12000/5857.6=3QD6故玻璃熔窑日出料量G(t/d)G=机速(只/分钟)×60×24×瓶重(g/只)×10-6×台数G=38×60×24×400×10-6×3=65.7t/d 计算玻璃熔窑日出料量G(t/d)2.2 熔化率的选取熔化率K是玻璃窑炉一个重要的技术指标,它是指窑池每平方米面积上每天熔制的玻璃液量,单位是kg/(m2d)或t/(m2d)。
熔化率K的选择依据:(1)玻璃品种与原料组成;(2)熔化温度;(3)燃料种类与质量;(4)制品质量要求;(5)窑型结构,熔化面积;(6)加料方式和新技术的采用;(7)燃料消耗水平;(8)窑炉寿命和管理水平。
表4-2。
K=2.0~2.2 t/(m2·d) 取熔化率为:K=2.0t/d参考教材A,P922.3熔窑基本结构尺寸的确定2.3.1 熔化部面积计算式(4-1)熔化部池窑面积根据已定的熔窑规模(日产量)和熔化率K估算,由教材A,P91有:熔化池面积F熔=G/K=65.78/2.0=32.9m2 2.3.2 冷却部面积计算根据经验值,参考教材A,P98表4-9,取F冷/F熔=20%,则F冷=32.9×20%= 6.58m2根据玻璃品种、供料道条数、成型机部位和操作条件来决定冷却部形状,本设计采用扇形供料道,冷却部一般比窑池浅300mm,取900.F冷、=32.9×20%=6.58 m2如图2-1所示则F冷=1/2= 1/2×3.14×2.12=6.92 m2所以F冷/F熔=21.0%2.3.3 窑池长度和宽度的确定由教材A,P93,表4-3可知,烧重油时马蹄焰池窑的长宽比较烧发生炉煤气的稍大些。
这是由于采用了高压外混喷嘴,特别是直流式,喷出火焰射程长,冲量大,刚性强,火焰转弯困难,为了避免冷却部温度过高,流液洞盖板过早烧损一囧窑池横向出现温度差,必须把窑池放长;另外,烧重油后火焰温度升高,加快了熔化速度,增大了出料量。
为了确保玻璃液的质量,有必要将窑池适当放长。
但长宽比过大时,在火焰喷出的正前方空间燃烧产物排除困难,逐渐积聚,压力增大,是火焰变短。
基于以上原则,马蹄焰池窑池长不宜小于4m,熔化面积较大时,长宽比可取低些,否则窑池过长,火焰很难同时满足熔化与澄清的要求。
本设计长宽比取1.6.则F熔=1.6×B2解得:L=7.2m , B=4.5m如图2-1所示实际熔化面积:F熔实际=7.2×4.5=32.4m2 (2-3-3)实际熔化率:K=G/ F熔实际= 65.7t/d/32.4 m2=2.03t/(m2·d)(2-3-4)2.3.4熔化池深同玻璃液质量关系很大,池深须使窑内不形成不动层。
深影响窑容量,即窑内停留时间,停留1.5~2天。
合理的池深必须综合考虑到玻璃颜色、玻液粘度、熔化率、制品质量、燃料种类、池底砖质量、池底保温和新技术采用(鼓泡、电助熔)等。
表4-4和近似式(4-2)参考教材A,Pg93池壁高度即为池深,一般取0.8-0.9m。
初取h=0.9m..校核:池深h可按近似公式计算h=0.4+(0.5±a)lgVV——熔化池容积,m3;a——系数,其值0~0.135.h=0.4+(0.5-0.02)lg(31.5×0.9)=1.1m解得:h=1.1m由于此池窑熔化率较大,所以池窑深度应深一些,因此h取1.2m.熔化池窑坎可以强化熔化率,取窑坎高600mm,一般置于熔化池长的2/3处。
玻璃液的平均密度为2.45g/cm3,即2.45t/m3则玻璃液停留时间t=31.5×1.2×2.45/65.7=1.41天因玻璃液在窑内停留一天以上,故上述计算合理。
冷却部池深取浅(比熔化池浅300mm),本设计取h=0.9m冷却率=正常流动负荷/冷却部面积。
(t/d·m2)3~13范围。
K冷=G/F冷=65.7/6.58=9.98 符合范围t=冷却部容积/正常流动负荷(m3/d)=6.58x0.6x24x2.45/65.7=3.53h 符合要求玻璃液停留时间。
愈长愈稳定,但需更多空间,回流多。
最小存3小时玻璃流量。
2.4 窑体主要部位所用材料的选择和厚度的确定2.4.1 窑体结构设计(1)池壁玻璃液的主要侵蚀为横向硅缝处。
因此应尽量避免在高温区出现横向裂缝,通常采用整块大砖立砌,要求立砌排砖尺寸必须相当精确,结合面应加工磨制加工达到硅缝密接。
本设计采用300mmAZS33QX—Y + 30mm锆质捣打料+115mmLZ-55(NZ—40)+100mm硅钙板(2)池底结构:随着温度的提高,出料量的增加,炉龄的增加,更主要的是为减少散热损失,节约能源,现代熔窑池底多采用多层式复合池底结构。
有:主体层:黏土大砖75mmAZS33WS-Y + 35mm锆质捣打料 + 32mm烧结锆英石砖+ 30mm锆质捣打料+300mm浇注大砖+280mm轻质粘土砖+10mm石棉板+8mm钢板(3)火焰空间火焰空间长度与窑池长度相等,宽度比窑池宽度多200~400mm,本设计取400mm,则火焰空间宽度B=4500+400=4900mm,长度L=7200mm.火焰空间高度由胸墙高度和大碹碹股高度合成,参表4-8,取大碹升高为1/8,则得碹股f=4700×1/8=587.5mm。