STM32的can总线实验心得
- 格式:docx
- 大小:33.88 KB
- 文档页数:37
基于STM32的CAN总线通信设计近年来,CAN(Controller Area Network)总线通信在汽车电子控制系统和工业领域得到了广泛应用。
作为一种高可靠性、高实时性的通信协议,CAN总线能够实现多节点之间的高效数据传输。
STM32系列微控制器作为嵌入式系统设计领域的重要成员,具备强大的处理能力和丰富的外设资源,被广泛用于CAN总线通信的设计和应用。
本文将介绍,包括硬件设计和软件编程两个方面。
首先,我们将讨论如何选择合适的STM32微控制器和CAN收发器。
其次,我们将详细描述硬件连接和接口电路设计。
最后,我们将介绍CAN总线通信软件的编程方法和实现。
在硬件设计方面,选择合适的STM32微控制器和CAN收发器是至关重要的。
STM32系列微控制器具备不同的处理能力和资源配置,应根据具体应用需求来选择。
CAN收发器是将STM32与CAN总线连接的重要部件,需要根据通信速率和总线特性选择合适的收发器。
在硬件连接和接口电路设计方面,需要参考STM32的引脚分配和电气特性,正确连接CAN收发器和其他外设。
同时,还需要考虑如何提供稳定的电源和适当的信号滤波电路,以保证CAN总线通信的可靠性和稳定性。
在软件编程方面,首先,需要在STM32的开发环境中配置CAN总线通信所需的外设和时钟。
然后,根据具体需求设置CAN总线的通信速率、帧格式和过滤器等参数。
接下来,编写CAN总线发送和接收数据的代码。
在发送数据时,需要将数据打包成CAN帧的格式,并将其发送到CAN总线;在接收数据时,需要监听CAN总线上的数据帧,并将接收到的数据解码处理。
此外,为了提高CAN总线通信的可靠性,还可以加入错误检测和纠错代码。
在实际应用中,广泛应用于汽车电子控制系统和工业自动化领域。
在汽车电子控制系统中,CAN总线通信可以实现各个控制单元之间的数据交换和协调工作,提高整车系统的性能和安全性。
例如,发动机控制单元、制动系统控制单元和防抱死系统控制单元可以通过CAN总线通信实现数据的快速传输和实时响应。
STM32的can现场总线实验心得最近在搞stm32实验板的can现场总线实验,之前只是搞过STC51的串口通信,相比之下,发觉can总线都挺复杂的。
开始时,知道自己是新手,只知道can总线跟串行通信,485通信,I2C通信一样都是用来传输数据通信的,对其工作原理一窍不通,还是从基础开始看书看资料,先了解它的基本原理吧。
原来can总线有以下特点:主要特点支持CAN协议2.0A和2.0B主动模式波特率最高可达1兆位/秒支持时间触发通信功能发送3个发送邮箱发送报文的优先级特性可软件配置记录发送SOF时刻的时间戳接收3级深度的2个接收FIFO14个位宽可变的过滤器组-由整个CAN共享标识符列表FIFO溢出处理方式可配置记录接收SOF时刻的时间戳可支持时间触发通信模式禁止自动重传模式16位自由运行定时器定时器分辨率可配置可在最后2个数据字节发送时间戳管理中断可屏蔽邮箱占用单独1块地址空间,便于提高软件效率看完这些特点后,疑问一个一个地出现,1.什么是时间触发功能?2.发送邮箱是什么来的?3.报文是什么来的?4.什么叫时间戳?5.什么叫接收FIFO?6.什么叫过滤器?好了,带着疑问往下看,看完一遍后,报文:报文包含了将要发送的完整的数据信息发送邮箱:共有3个发送邮箱供软件来发送报文。
发送调度器根据优先级决定哪个邮箱的报文先被发送。
接收过滤器:共有14个位宽可变/可配置的标识符过滤器组,软件通过对它们编程,从而在引脚收到的报文中选择它需要的报文,而把其它报文丢弃掉。
接收FIFO共有2个接收FIFO,每个FIFO都可以存放3个完整的报文。
它们完全由硬件来管理工作模式bxCAN有3个主要的工作模式:初始化、正常和睡眠模式。
初始化模式*软件通过对CAN_MCR寄存器的INRQ位置1,来请求bxCAN进入初始化模式,然后等待硬件对CAN_MSR寄存器的INAK位置1来进行确认*软件通过对CAN_MCR寄存器的INRQ位清0,来请求bxCAN退出初始化模式,当硬件对CAN_MSR寄存器的INAK位清0就确认了初始化模式的退出。
STM32的can总线实验心得(一) 工业现场总线 CAN 的基本介绍以及 STM32 的 CAN 模块简介首先通读手册中关于CAN的文档,必须精读。
STM32F10xxx 参考手册Rev7V3.pdf/bbs/redirect.php?tid=255&goto=lastpost#lastpos t需要精读的部分为 RCC 和 CAN 两个章节。
为什么需要精读 RCC 呢?因为我们将学习 CAN 的波特率的设置,将要使用到RCC 部分的设置,因此推荐大家先复习下这部分中的几个时钟。
关于 STM32 的 can 总线简单介绍bxCAN 是基本扩展 CAN (Basic Extended CAN) 的缩写,它支持 CAN 协议 2.0A 和 2.0B 。
它的设计目标是,以最小的 CPU 负荷来高效处理大量收到的报文。
它也支持报文发送的优先级要求(优先级特性可软件配置)。
对于安全紧要的应用,bxCAN 提供所有支持时间触发通信模式所需的硬件功能。
主要特点· 支持 CAN 协议 2.0A 和 2.0B 主动模式· 波特率最高可达 1 兆位 / 秒· 支持时间触发通信功能发送· 3 个发送邮箱· 发送报文的优先级特性可软件配置· 记录发送 SOF 时刻的时间戳接收· 3 级深度的2个接收 FIFO· 14 个位宽可变的过滤器组-由整个 CAN 共享· 标识符列表· FIFO 溢出处理方式可配置· 记录接收 SOF 时刻的时间戳可支持时间触发通信模式· 禁止自动重传模式· 16 位自由运行定时器· 定时器分辨率可配置· 可在最后 2 个数据字节发送时间戳管理· 中断可屏蔽· 邮箱占用单独 1 块地址空间,便于提高软件效率(二) STM32 CAN 模块工作模式STM32 的 can 的工作模式分为:/* CAN operating mode */#define CAN_Mode_Normal ((u8)0x00) /* normal mode */#define CAN_Mode_LoopBack ((u8)0x01) /* loopback mode */#define CAN_Mode_Silent ((u8)0x02) /* silent mode */#define CAN_Mode_Silent_LoopBack ((u8)0x03) /* loopback combined with silent mode */在此章我们的 Mini-STM32 教程中我们将使用到CAN_Mode_LoopBack和CAN_Mode_Normal两种模式。
STM32F4 CAN学习记录1.C AN协议学习CAN基础1.CAN属于多主机局部网,采用多主竞争式总线结构,具有多主站运行和分散仲裁的串行总线以及广播通信的特点,各节点之间可以实现自由通信。
2.CAN总线以报文为单位进行数据传送,报文的优先级由标识符决定,具有最低二进制数的标识符有最高的优先级。
3.CAN总线采用差分电压传输;在空闲状态下CAN_H和CAN_L均为2.5V左右,此时的状态表示为逻辑“1”,称为“隐性”电平(差值为"0v");当CAN_H比CAN_L高时表示逻辑“0”,称为“显性”电平(差值为"2v")。
显性时,通常电压值为:CAN_H=3.5V,CAN_L=1.5V。
4.CAN总线采用“载波监测,多主掌控/冲突避免”(CSMA/CA)的通信模式。
该模式工作流程大致如下:●当总线处于空闲状态时(呈隐性电平),任何节点都可以向总线发送显性电平作为帧开始。
●当网络中存在2个及以上节点同时要求发送时就会产生竞争。
CAN总线按位对标识符进行仲裁;各节点在发送电平的同时也在监听总线,如果总线电平与发送电平不同,则表明总线上存在更高优先级的节点在发送,则节点停止发送退出竞争。
其他节点继续上述过程直到剩余1个节点,则最终优先级最高节点获得总线控制权并发送数据。
●参与总线仲裁的只有仲裁段;基础ID相同的标准can报文比扩展can报文优先级更高;相同ID的数据帧与远程帧,数据帧优先级更高。
CAN报文结构CAN分为标准格式(CAN2.0A)和扩展格式(CAN2.0B);标准帧采用11位标识符ID,共可表示2047条报文;扩展帧采用29位标识符ID,共可表示5亿多条报文。
CAN总线上传输的数据帧共有4种类型:数据帧、远程帧、错误帧、过载帧。
每一帧都由多个场构成,每个场也都由多个位组成。
下面分别描述着几种帧结构。
1)数据帧:用于传输数据数据帧由7个不同的位场组成:帧起始、仲裁场、控制场、数据场、CRC场、应答场、帧结尾。
STM32CAN发送接收的简单测试can接⼝相对是⼀种常⽤的串⾏接⼝,但是不像spi、i2c、uart等接⼝都有主从的关系,can可以任何⼀个节点主动发送数据,并且假如出现总线冲突会有硬件来处理。
can和rs485⼜有些类似,都是把ttl信号转换成了差分信号。
所以在stm32 使⽤can的时候会有⼀个can收发器。
STM32 CAN 发送的简单测试从电路上看起来也很简单,stm32也是通过can tx、rx两根线和收发器相连。
所以假如我们要测试can的发送,是不是只接can tx脚就可以了?我最开始也以为这样就可以,但是深究can的总线冲突检测原理就会发现这样⾏不通的。
因为can 在发送数据的时候也会同时接收发送的数据,通过把接收的数据和内部发送寄存器的数据做对⽐,是不是⼀致就知道总线有没有冲突。
所以在正常情况(这⾥意味着⾮正常情况下也可以)下can rx不接就到这发送出去的数据⽆法收到从⽽硬件⾃动判断为发送失败。
所以要保证发送数据成功,can tx脚和can rx脚要都接上,并且确保can收发器供电正常。
硬件上就这些主要注意点,接下来就主要是软件的配置了。
⼀般stm32 配置can有以下⼏⼤步骤:can的初始化(cubemx直接可以⽣成代码)can的启动can滤波器的设置(⽤来接收的,发送的时候可以不⽤配置它)can执⾏发送数据请求我们只测试can的发送,所以就只⽤关系1、2、4步骤就可以了。
第⼀步,配置stm32cubemxSTM32 CAN 发送的简单测试如上图所⽰,最关键主要配置如下三个参数,分频数我这⾥配置48,下⾯的time Quantum值就会⾃动计算出来。
因为can时钟是48mhz经过48分频后,⼀个单位时间就是1us=1000ns。
因为我想要100k波特率,然后填写下⾯的Time segment1(简称 Tbs1 )和Time segment2 (简称 Tbs2) 为5和4。
那么具体波特率该怎么计算还是要看看官⽅⼿册的描述:STM32 CAN 发送的简单测试根据如上描述,能决定波特率的也就是三个参数:分频值、Tbs1、Tbs2。
图1 系统总体框图是一款带隔离的高速CAN收发器芯片,该芯片内部集成了所有必需的CAN隔离及CAN收发器件。
芯片的主要功能是将CAN控制器的逻辑电平转换为CAN总线的差分电平,并且具有DC 2500V的隔离功能及ESD保护作用,其是CAN收发器的理想选择[2]。
2 CAN总线收发模块的硬件设计CAN总线收发模块的硬件结构如图2所示。
CAN总线(1978-),男,江西宜春人,研究生,工程师。
研究方向:汽车电子项目管理。
公飞(1989-),男,山东临沂人,本科,助理工程师。
研究方向:汽车电子硬件设计。
收发模块的主要功能是控制开关和与RS232进行数据通信,开关可以用来控制现场设备的运行,后者可以方便与外界进行通信,提供通讯接口。
其硬件结构节点可以划分为最小系统模块、功能模块。
电源STM32的工作电压(VDD)为2.0~3.6V[3]。
通过内置的电压调节器提供所需的1.8V电源。
当主电源VDD掉电后,通过VBAT脚为实时时钟(RTC)和备份寄存器提供电源。
使用电池或其他电源连接到VBAT脚上,当VDD断电时,可以保存备份寄存器的内容和维持RTC的功能。
VBAT脚也图3 设置时钟流程图2.2 开关和RS232功能模块该节点具有两个功能,控制开关状态和与RS232通讯,开关选用八个TX2-5V继电器,两片MC1413作为驱动芯片,MC1413可以实现单片机端口电压到12V电平的转换。
与RS232通讯部分选用MAX232做为电平转换芯片。
2.3 CAN收发模块CAN收发模块主要是CAN收发器,CAN收发器的常用型号有CTM1050,CTM1050是一款带隔离的高速CAN收发器芯片,该芯片内部集成了所有必需的CAN隔离及CAN发器件。
芯片的主要功能是将CAN控制器的逻辑电平转换为CAN总线的差分电平,并且具有DC 2500V的隔离功能及ESD保护作用。
该芯片符合ISO 11898标准,因此,它可以和图2 节点硬件结构图图4 CAN初始化流程图选用的测试模式是环回模式,该模式下数据是自发自收的,即在发送成功的同时就接收到数据了。
基于STM32的CAN总线上下位机通信实验设计作者:刘泰廷李新建来源:《电脑知识与技术》2017年第05期摘要:随着技术的成熟和设备的完善,CAN总线在数据的实时传输和自动控制中展现出良好的灵活性与可靠性。
笔者以STM32为主控芯片搭建硬件电路,利用软件对其进行初始化设置,上位机与电路的连接使用USB—CAN转换器,并采用Visual C++的MFC编写的CAN 调试界面实现数据的实时收发,使上下位机完成通信。
本实验对于CAN总线的使用有一定的指导作用。
关键词:STM32;CAN总线;MFC;通信中图分类号:TP311 文献标识码:A 文章编号:1009-3044(2017)05-0199-02CAN简称为控制器局域网络(Controller Area Network),它是由研发和生产汽车电子产品著称的德国BOSCH公司开发的,是国际上应用最广泛的现场总线之一,并最终成为国际标准(ISO11519)。
近年来,由于它的高可靠性和良好的错误检测能力受到人们的关注,CAN 总线协议逐渐成为汽车计算机控制系统和嵌入式工业控制局域网的标准总线,被广泛应用于汽车控制系统和环境温度恶劣、电磁辐射强的工业环境。
1 实验系统结构组成利用CAN总线可以将传统分布式控制系统的功能分散到不同的现场节点中,本实验只选用一个节点作为下位机的收发模块。
实验的系统框图如图1所示,系统主要分为三个部分:上位机(PC机)、CAN转换器、下位机(CAN收发模块电路)。
一般调试员的PC机(多为笔记本电脑)接入CAN总线往往没有串行接口,为此我们采用USB—CAN协议的转换器接入CAN总线,实现数据之间的转发。
下位机是以STM32F103RCT6单片机作为主控芯片的CAN 收发电路,主要完成数据采集和处理的任务,并实现与CAN总线的数据互传。
上位机利用MFC编写的控制界面,对CAN总线上收到的数据进行显示,同时也可以完成向CAN总线发送数据的指令。
STM32的can总线实验心得标签: 总线心得实验2010-09-01 21:08/my/space.php?uid=2 29870&do=blog&id=37832工作模式bxCAN有3个主要的工作模式:初始化、正常和睡眠模式。
初始化模式*软件通过对CAN_MCR寄存器的INRQ位置1,来请求bxCAN进入初始化模式,然后等待硬件对CAN_MSR寄存器的INAK位置1来进行确认。
*软件通过对CAN_MCR寄存器的INRQ位清0,来请求bxCAN退出初始化模式,当硬件对CAN_MSR 寄存器的INAK位清0就确认了初始化模式的退出。
*当bxCAN处于初始化模式时,报文的接收和发送都被禁止,并且CANTX引脚输出隐性位(高电平)。
初始化CAN控制器,软件必须设置CAN_BTR和CAN_MCR寄存器。
正常模式在初始化完成后,软件应该让硬件进入正常模式,同步CAN总线,以便正常接收和发送报文。
软件通过对INRQ位清0来请求从初始化模式进入正常模式,然后要等待硬件对INAK位清0来确认。
在跟CAN总线取得同步,即在CANRX引脚上监测到11个连续的隐性位(等效于总线空闲)后,bxCAN才能正常接收和发送报文。
过滤器初值的设置不需要在初始化模式下进行,但必须在它处在非激活状态下完成(相应的FACT 位为0)。
而过滤器的位宽和模式的设置,则必须在进入正常模式之前,即初始化模式下完成。
睡眠模式(低功耗)*软件通过对CAN_MCR寄存器的SLEEP位置1,来请求进入这一模式。
在该模式下,bxCAN的时钟停止了,但软件仍然可以访问邮箱寄存器。
*当bxCAN处于睡眠模式,软件想通过对CAN_MCR 寄存器的INRQ位置1,来进入初始化式,那么软件必须同时对SLEEP位清0才行。
*有2种方式可以唤醒(退出睡眠模式)bxCAN:通过软件对SLEEP位清0,或硬件检测CAN总线的活动。
工作流程那么究竟can是怎样发送报文的呢?发送报文的流程为:应用程序选择1个空发送邮箱;设置标识符、数据长度和待发送数据;然后CAN_TIxR 寄存器的TXRQ位置1,来请求发送。
TXRQ位置1后,邮箱就不再是空邮箱;而一旦邮箱不再为空,软件对邮箱寄存器就不再有写的权限。
TXRQ位置1后,邮箱马上进入挂号状态,并等待成为最高优先级的邮箱,参见发送优先级。
一旦邮箱成为最高优先级的邮箱,其状态就变为预定发送状态。
当CAN总线进入空闲状态,预定发送邮箱中的报文就马上被发送(进入发送状态)。
邮箱中的报文被成功发送后,它马上变为空邮箱,硬件相应地对CAN_TSR寄存器的RQCP和TXOK位置1,来表明一次成功发送。
如果发送失败,由于仲裁引起的就对CAN_TSR寄存器的ALST位置1,由于发送错误引起的就对TERR 位置1。
发送的优先级可以由标识符或发送请求次序决定:由标识符决定。
当有超过1个发送邮箱在挂号时,发送顺序由邮箱中报文的标识符决定。
根据CAN协议,标识符数值最低的报文具有最高的优先级。
如果标识符的值相等,那么邮箱号小的报文先被发送。
由发送请求次序决定。
通过对CAN_MCR寄存器的TXFP位置1,可以把发送邮箱配置为发送FIFO。
在该模式下,发送的优先级由发送请求次序决定。
该模式对分段发送很有用。
时间触发通信模式:在该模式下,CAN硬件的内部定时器被激活,并且被用于产生时间戳,分别存储在CAN_RDTxR/CAN_TDTxR寄存器中。
内部定时器在接收和发送的帧起始位的采样点位置被采样,并生成时间戳。
接着又是怎样接收报文的呢?接收管理接收到的报文,被存储在3级邮箱深度的FIFO中。
FIFO完全由硬件来管理,从而节省了CPU的处理负荷,简化了软件并保证了数据的一致性。
应用程序只能通过读取FIFO输出邮箱,来读取FIFO中最先收到的报文。
根据CAN协议,当报文被正确接收(直到EOF域的最后1位都没有错误),且通过了标识符过滤,那么该报文被认为是有效报文。
接收相关的中断条件* 一旦往FIFO存入1个报文,硬件就会更新FMP[1:0]位,并且如果CAN_IER寄存器的FMPIE位为1,那么就会产生一个中断请求。
* 当FIFO变满时(即第3个报文被存入),CAN_RFxR 寄存器的FULL位就被置1,并且如果CAN_IER寄存器的FFIE位为1,那么就会产生一个满中断请求。
* 在溢出的情况下,FOVR位被置1,并且如果CAN_IER寄存器的FOVIE位为1,那么就会产生一个溢出中断请求。
标识符过滤在CAN协议里,报文的标识符不代表节点的地址,而是跟报文的内容相关的。
因此,发送者以广播的形式将报文发送给所有的接受者。
节点在接收报文时根据标识符的值决定是否需要该报文;如果需要,就拷贝到SRAM里;如果不需要,报文就被丢弃且无需软件的干预。
为满足这一需求,bxCAN为应用程序提供了14个位宽可变的、可配置的过滤器组(13~0),以便只接收那些软件需要的报文。
硬件过滤的做法节省了CPU开销,否则就必须由软件过滤从而占用一定的CPU开销。
每个过滤器组x由2个32位寄存器CAN_FxR0和CAN_FxR1组成。
过滤器的模式的设置:通过设置CAN_FM0R的FBMx位,可以配置过滤器组为标识符列表模式或屏蔽位模式。
为了过滤出一组标识符,应该设置过滤器组工作在屏蔽位模式。
为了过滤出一个标识符,应该设置过滤器组工作在标识符列表模式。
应用程序不用的过滤器组,应该保持在禁用状态。
过滤器优先级规则:位宽为32位的过滤器,优先级高于位宽为16位的过滤器;对于位宽相同的过滤器,标识符列表模式的优先级高于屏蔽位模式;位宽和模式都相同的过滤器,优先级由过滤器号决定,过滤器号小的优先级高。
接收邮箱(FIFO)在接收到一个报文后,软件就可以访问接收FIFO的输出邮箱来读取它。
一旦软件处理了报文(如把它读出来),软件就应该对CAN_RFxR寄存器的RFOM 位进行置1,来释放该报文,以便为后面收到的报文留出存储空间。
中断bxCAN占用4个专用的中断向量。
通过设置CAN中断允许寄存器CAN_IER ,每个中断源都可以单独允许和禁用。
(1) 发送中断可由下列事件产生:─ 发送邮箱0变为空,CAN_TSR寄存器的RQCP0位被置1。
─ 发送邮箱1变为空,CAN_TSR寄存器的RQCP1位被置1。
─ 发送邮箱2变为空,CAN_TSR寄存器的RQCP2位被置1。
(2) FIFO0中断可由下列事件产生:─ FIFO0接收到一个新报文,CAN_RF0R寄存器的FMP0位不再是‘00’。
─ FIFO0变为满的情况,CAN_RF0R寄存器的FULL0位被置1。
─ FIFO0发生溢出的情况,CAN_RF0R寄存器的FOVR0位被置1。
(3) FIFO1中断可由下列事件产生:─ FIFO1接收到一个新报文,CAN_RF1R寄存器的FMP1位不再是‘00’。
─ FIFO1变为满的情况,CAN_RF1R寄存器的FULL1位被置1。
─ FIFO1发生溢出的情况,CAN_RF1R寄存器的FOVR1位被置1。
(4) 错误和状态变化中断可由下列事件产生:─ 出错情况,关于出错情况的详细信息请参考CAN 错误状态寄存器(CAN_ESR)。
─ 唤醒情况,在CAN接收引脚上监视到帧起始位(SOF)。
─ CAN进入睡眠模式。
工作流程大概就是这个样子,接着就是一大堆烦人的can寄存器,看了一遍总算有了大概的了解,况且这么多的寄存器要一下子把他们都记住是不可能的。
根据以往的经验,只要用多几次,对寄存器的功能就能记住。
好了,到读具体实验程序的时候了,这时候当然要打开“STM32库函数”的资料,因为它里面有STM32打包好的库函数的解释,对读程序很有帮助。
下面是主程序:int main(void){// int press_count = 0;char data = '0';int sent = FALSE;#ifdef DEBUGdebug();#endifRCC_Configuration();NVIC_Configuration();GPIO_Configuration();USART_Configuration();CAN_Configuration();Serial_PutString("\r\n伟研科技 \r\n");Serial_PutString("CAN test\r\n");while(1){if(GPIO_Keypress(GPIO_KEY, BUT_RIGHT)) {GPIO_SetBits(GPIO_LED, GPIO_LD1); //检测到按键按下 if(sent == TRUE)continue;sent = TRUE;data ++;if(data > 'z')data = '0';CAN_TxData(data);}else//按键放开{GPIO_ResetBits(GPIO_LED, GPIO_LD1); sent = FALSE;}}}前面的RCC、NVIC、GPIO、USART配置和之前的实验大同小异,关键是分析CAN_Configuration()函数如下:void CAN_Configuration(void)//CAN配置函数{CAN_InitTypeDef CAN_InitStructure; CAN_FilterInitTypeDefCAN_FilterInitStructure;/* CAN register init */CAN_DeInit();// CAN_StructInit(&CAN_InitStructure);/* CAN cell init */CAN_InitStructure.CAN_TTCM=DISABLE;//禁止时间触发通信模式CAN_InitStructure.CAN_ABOM=DISABLE;//软件对CAN_MCR寄存器的INRQ位进行置1随后清0后,一旦硬件检测 //到128次11位连续的隐性位,就退出离线状态。
CAN_InitStructure.CAN_AWUM=DISABLE;//睡眠模式通过清除CAN_MCR寄存器的SLEEP位,由软件唤醒CAN_InitStructure.CAN_NART=ENABLE;//DISABLE;CAN报文只被发送1次,不管发送的结果如何(成功、出错或仲裁丢失)CAN_InitStructure.CAN_RFLM=DISABLE;//在接收溢出时FIFO未被锁定,当接收FIFO的报文未被读出,下一个收到的报文会覆盖原有的报文CAN_InitStructure.CAN_TXFP=DISABLE;//发送FIFO优先级由报文的标识符来决定//CAN_InitStructure.CAN_Mode=CAN_Mode_LoopBack; CAN_InitStructure.CAN_Mode=CAN_Mode_Normal; //CAN硬件工作在正常模式CAN_InitStructure.CAN_SJW=CAN_SJW_1tq;//重新同步跳跃宽度1个时间单位CAN_InitStructure.CAN_BS1=CAN_BS1_8tq;//时间段1为8个时间单位CAN_InitStructure.CAN_BS2=CAN_BS2_7tq;//时间段2为7个时间单位CAN_InitStructure.CAN_Prescaler =9;//(pclk1/((1+8+7)*9))=36Mhz/16/9 =bits设定了一个时间单位的长度9 CAN_Init(&CAN_InitStructure);/* CAN filter init 过滤器初始化*/CAN_FilterInitStructure.CAN_FilterNumber=0;//指定了待初始化的过滤器0CAN_FilterInitStructure.Filt erMo de=C AN_F ilte rMod e_Id Mask ;//指定了过滤器将被初始化到的模式标识符屏蔽位模式CAN_ Filt erIn itSt ructCAN_ Filt erId High =0x0 000; //用来设定过滤器标识符(32位位宽时为其高段位,16位位宽时为个)CAN_FilterInitStrucu r e . C A N _ F i l t e r I d L o w = 00 0 0 0 ; / /用来设定过滤器标识符(3 2位宽时为其低段位,16位位宽时为第二个CAN_FilterInitStructure.CAN _FilterMaskIdHigh=0x0000;//用来设定过滤器屏蔽标识符或者过滤器标识符(32位位宽时为其高段位,16位位宽时为第一个)CAN_FilterInitStructure.CAN _FilterMaskIdLow=0x0000;//用来设定过滤器屏蔽标识符或者过滤器标识符(32位位宽时为其低段位,16位位宽时为第二个CAN_FilterInitStructure.CAN_FilterActivation=E NABLE;//使能过滤器CAN_FilterInit(&CAN_FilterInitStructure);/* CAN FIFO0 message pending interrupt enable */CAN_ITConfig(CAN_IT_FMP0, ENABLE);//使能指定的CAN中断}再看看发送程序:TestStatus CAN_TxData(char data){CanTxMsg TxMessage;u32 i = 0;u8 TransmitMailbox = 0;/*u32 dataLen;dataLen = strlen(data);if(dataLen > 8)dataLen = 8;*//* transmit 1 message生成一个信息 */ TxMessage.StdId=0x00;//设定标准标识符TxMessage.ExtId=0x1234;//设定扩展标识符TxMessage.IDE=CAN_ID_EXT;//设定消息标识符的类型TxMessage.RTR=CAN_RTR_DATA;//设定待传输消息的帧类型/* TxMessage.DLC= dataLen;for(i=0;i<dataLen;i++)TxMessage.Data[i] = data[i];*/TxMessage.DLC= 1; //设定待传输消息的帧长度 TxMessage.Data[0] = data;//包含了待传输数据TransmitMailbox =CAN_Transmit(&TxMessage);//开始一个消息的传输i = 0;w h i l e ( ( C A N _ T r a n s m i t S tt u s ( T r a n s m i t M a i l b o x )=< A& &( i! = " 0 x F F ) ) /通过检查C A N T X O K 位来确认发送是否成功{i++;}return (TestStatus)ret;}CAN_Transmit()函数的操作包括:1.[选择一个空的发送邮箱]2.[设置Id]*3.[设置DLC待传输消息的帧长度]4.[请求发送]请求发送语句:CAN->sTxMailBox[TransmitMailbox].TIR |= TMIDxR_TXRQ;//对CAN_TIxR寄存器的TXRQ位置1,来请求发送发送方面搞定了,但接收方面呢?好像在主程序里看不到有接收的语句。