CAN总线接口电路
- 格式:pdf
- 大小:4.43 MB
- 文档页数:25
CAN 总线标准接口与布线规范
工业4.0 时代已经到来,基于自主优先级仲裁和错误重发机制的CAN 总线应用十分广泛,相同的各种总线故障和问题也十分困扰工程师,其实最
好的解决办法就是产品前期设计要相对的严谨,今天主要带大家熟悉CAN
总线的常用接口和布线规范。
随着CAN 总线技术的应用愈发广泛,不仅涉及汽车电子和轨道交
通,还包括医疗器械、工业控制、智能家居和机器人网络互联等,当然我们
的工程师也被各种奇葩的总线问题困扰,与其后期解决问题,不如前期有效
规避。
一、常见的CAN 总线标准接口
CAN 总线接口已经在CIA 出版的标准CIA 303_1 进行明确规定,熟知接口定义有助于提高自身产品和其它设备兼容性。
1.DB_9 端子
2.M12 端子
图3 M12 接口定义
图3 是M12 形式的接口定义,在这里可能没有什幺特别需要注意的点,还有就是除了5pin 的接口还有8pin、9pin、10pin 和12pin 的接口,具体的定义不在赘述,可参考标准CIA 303_1。
二、CAN 总线布线规范
如果你是一个CAN 总线的入门小白,下面的总线布线规范,你可能
得收藏起来,在你组网布线的时候时不时拿出来看看,相信对你会非常有帮。
涡流量计CAN总线接口电路图快速瓶劲识别-更好的负载测试方法CAN总线是一种串行数据通信协议,在CAN总线通信接口中集成了CAN协议的物理层和数据链路层功能,可以完成对通信数据成帧处理。
涡流量计CAN总线接口的具体电路如图1所示。
笔者用SJA1000作为流量计的CAN控制器,与CPU(单片机)的I/O口直接相连,再通过PCA82C250组成CAN总线。
这种结构很容易实现CAN网络节点中的信息收发,从而实现对现场的控制。
SJA1000的AD0~AD7连接到MSP420F149的P0口,INT接到P1.0,/CS接到P1.1,/RD连接到P1.2,/WR连到P1.3,ALE连到P1.4,SJA1000的RX0与TX0分别通过两个高速光耦CNW137与PCA82C250相连后,连到CAN总线上。
PCA82C250为CAN总线收发器,是CAN控制器与CAN总线的接口器件,对CAN 总线差分方式发送,其RS引脚用于选择PCA82C250的工作方式:高速方式、斜率方式。
RS接地为高速,RS引脚串接一个电阻后再接地,用于控制上升和下降斜率,从而减小射频干扰。
RS引脚接高电平,PCA82C250处于等待状态。
此时,发送器关闭,接收器处于低电流工作,可以对CAN总线上的显性位做出反应,通知CPU。
实验数据表明15~200K 为较理想的取值范围,在这种情况下,可以使用平行线或双绞线作总线,本文中PCA82C250的斜率电阻为取30K。
CNW137为高速光耦,最高速度为10Mbps,用于保护CAN总控制器SJA1000。
CAN 总线的终端匹配电阻起相当重要的作用,不合适的电阻会使数据通信的抗干扰性及可靠性大大降低,甚至无法通信,范围为108~132Ω,本文使用的电阻为124Ω。
SJA1000的功能简介CAN通信协议主要由CAN控制器完成。
SJA1000是适用于汽车和一般工业环境控制器局域网(CAN)的高集成度独立控制器,具有完成高性能通信协议所要求的全部必要特性,具有简单总线连接的SJA1000可完成物理层和数据链路层的所有功能,应用层功能可由微控制器完成,SJA1000为其提供了一个多用途的接口。
分析及应用can接口典型电路CAN接口是一种常见的串行通信协议,主要用于汽车、工业控制等领域。
它能够实现节点之间的高效通信,具有可靠性高、传输速度快等优势。
CAN接口典型电路由电源电路、CAN收发器、MCU芯片、电源管理器等组成,下面将依次进行分析及应用。
1. 电源电路CAN接口必须要有稳定的电源供应来实现正常工作。
一般情况下,CAN接口需要使用5V的电源。
因此,电源电路是CAN接口典型电路中非常重要的组成部分。
电源电路需要提供可靠的稳压作用,以保证数据传输的准确性和稳定性。
2. CAN收发器CAN收发器是CAN接口的重要组成部分。
CAN收发器是将MCU芯片和CAN 总线之间进行隔离的一个元件。
其主要功能是将电压信号转换为差分信号以适应CAN总线,以及进行信号的保护和隔离。
CAN收发器还可以在一定程度上提高CAN总线的抗干扰能力,使其更加稳定可靠。
3. MCU芯片MCU芯片是CAN接口中的核心部件。
MCU芯片可以根据需要自主调整CAN的发送和接收速度,实现数据的传输和处理。
MCU芯片还可以实现CAN的各种功能,如过滤、帧处理和错误检测等。
在CAN接口设计中,MCU芯片是非常重要的部分,不同的MCU芯片还有不同的特点和功能。
4. 电源管理器电源管理器是如果CAN接口,它可以用来控制CAN接口的电源开关和低功耗功能,以实现电源的管理。
电源管理器可以实现电源模块的引脚检测和关闭功能,以实现CAN接口电源的节能和延长使用寿命。
总体来说,CAN接口典型电路是一种高效、可靠和稳定的串行传输系统。
对于设计者来说,电源稳定性,CAN收发器的性能,MCU的选择和电源管理器的应用都非常重要。
设计者需要根据实际应用场景来选择合适的电路和元器件,以确保CAN接口的性能和可靠性。
CAN总线接口电路设计注意事项CAN(Controller Area Network)总线是一种广泛应用于汽车电子、工业自动化等领域的串行通信协议。
CAN总线接口电路设计的关键因素包括信号线路、电源与地线路、保护电路等部分。
以下是设计CAN总线接口电路时需注意的几个方面:1.信号线路设计信号线路的设计应考虑信号的稳定性、抗干扰能力和传输速率。
首先,应尽量降低信号线的长度以减小信号传输的延迟。
同时,为保证信号的稳定性和抗干扰能力,应使用屏蔽线缆,并正确接地以防止地回流问题。
另外,为提高传输速率,可采用信号差分传输方式,即CAN-H和CAN-L两个线进行差分传输。
2.电源与地线路设计电源与地线路的设计应考虑到CAN总线工作的稳定性和可靠性。
首先,电源线路应提供稳定的电压,以满足CAN总线的要求。
此外,地线路应设计合理,确保地的连续性和低阻抗。
同时,为降低地回流对信号传输的干扰,应采用低阻抗地连接方式,即在CAN控制器和每个节点上都连接一段短接电阻。
此外,为提高抗干扰能力,还可使用电源和地线的滤波电路。
3.保护电路设计保护电路是为了保护CAN控制器和节点不受外部干扰和短路等异常情况的影响。
首先,需要设置电压保护电路,以防止过压和过载等情况对硬件造成损坏。
同时,还应考虑到静电放电和电磁干扰等问题,采用保护电阻、TVS二极管等元件进行保护。
另外,还应设计电流限制电路,以防止短路时过大的电流对硬件造成烧毁。
4.稳压和滤波电路设计稳压和滤波电路的设计是为了提供干净的电源和地线,保证CAN总线的正常工作。
稳压电路可采用稳压芯片或稳压二极管等元件来实现,以保持电源的稳定性。
滤波电路可采用电感、电容等元件,滤除电源和地线上的高频噪声干扰,提高CAN总线的抗干扰能力。
5.PCB布局和阻抗匹配在PCB设计中,应合理布局CAN总线接口电路的各个元件和信号线路,以降低互相干扰的可能性。
可以根据信号的传输速率和长度选择合适的线路宽度,确保信号的传输速率和阻抗匹配。
can总线接口电路设计Can总线是一种用于车辆电子系统中的通信接口,它在汽车电子技术中起着至关重要的作用。
本文将围绕Can总线接口电路的设计展开讨论。
Can总线是Controller Area Network的缩写,它是一种串行通信协议,旨在提供高可靠性、实时性和高带宽的数据通信。
Can总线接口电路的设计是为了实现Can总线与其他电子设备的连接和数据传输。
我们需要考虑Can总线的物理层接口电路。
Can总线使用差分信号传输,因此需要设计差分发送器和差分接收器。
差分发送器将逻辑高和逻辑低分别转换为正向和负向的差分信号,而差分接收器则将差分信号还原为逻辑高和逻辑低。
这样的设计可以提高信号的抗干扰能力,保证数据的可靠传输。
我们需要考虑Can总线的协议层接口电路。
Can总线采用帧格式进行数据传输,因此需要设计帧格式解析器和帧格式生成器。
帧格式解析器用于解析接收到的帧数据,提取出其中的控制信息和数据信息。
而帧格式生成器则用于生成符合Can总线协议的帧数据,并将其发送出去。
这样的设计可以保证数据的正确解析和生成,实现与其他设备的有效通信。
除了物理层和协议层接口电路,Can总线接口电路还需要考虑其他功能模块。
例如,需要设计时钟模块来提供时钟信号,以保证数据传输的同步性。
同时,还需要设计中断模块来处理Can总线接收到的中断信号,及时响应和处理来自其他设备的请求。
在Can总线接口电路的设计中,还需要考虑电路的功耗和成本。
可以采用低功耗的设计方案,选择低功耗的器件和电源管理电路,以降低整个系统的功耗。
同时,还需要根据实际的应用需求选择适当的元器件和电路结构,以降低系统成本。
Can总线接口电路的设计是为了实现Can总线与其他电子设备的连接和数据传输。
它涉及到物理层接口电路、协议层接口电路以及其他功能模块的设计。
在设计过程中,需要考虑信号的抗干扰能力、数据的可靠传输、接口的兼容性、功耗的控制以及成本的降低等因素。
通过合理的设计和选型,可以实现高可靠性、实时性和高带宽的数据通信,进而提升车辆电子系统的性能和功能。
CAN总线接口电路的硬件设计首先,CAN总线接口电路的设计需要考虑以下几个方面:电气特性、线路传输、保护电路以及电源设计。
1. 电气特性设计:CAN总线通信的电气特性主要包括传输速率、传输距离和传输噪声等。
根据CAN总线的规范,通信速率可分为几个常用的速率,如1Mbps、500Kbps、250Kbps等。
在设计CAN总线接口电路时,需要选择与所应用的CAN总线通信速率相匹配的晶振,并根据晶振选择合适的分频比。
此外,CAN总线的传输距离较短,一般在40米以内,因此需要考虑信号的传输衰减和时序的稳定性。
传输噪声是CAN总线设计中的一个重要问题,为了减少噪声的干扰,可以采取屏蔽线路、独立地线、滤波电路等措施。
2.线路传输设计:CAN总线的传输线路一般是双绞线,这种线路能够减少电磁干扰,提高传输质量。
在设计CAN总线接口电路时,需要合理布局CAN总线线路,确保信号的稳定传输。
在布线过程中,需要避免与其他高干扰信号线路的交叉和并行,以减少电磁干扰的可能性。
对于长距离传输的CAN总线,还需要考虑电缆的衰减和传输质量,可以通过使用中继器来增强信号。
3.保护电路设计:CAN总线接口电路需要设计合适的保护电路,以防止过压、过流、过热等故障对电路和设备的损坏。
常见的保护电路有瞬态电压抑制器(TVS)、过流保护电路和热敏电阻等。
瞬态电压抑制器可以抑制大功率瞬态电流,保护电路免受过压的影响;过流保护电路可监测和控制电流变化,确保电路不会因过大的电流而损坏;热敏电阻可用于监测电路的温度,并在温度超过预设值时触发保护机制。
4.电源设计:CAN总线接口电路的电源设计需要考虑电源稳定性和滤波。
稳定的电源可以提供稳定的工作环境,减少因电源波动而产生的故障。
滤波电路可以滤除电源中的噪声,提高电源的质量。
通常情况下,CAN总线接口电路需要提供3.3V或5V的电源供电,可以使用稳压器或开关电源等方式得到所需的电源电压。
总之,CAN总线接口电路的硬件设计需要考虑电气特性、线路传输、保护电路以及电源设计等方面的问题。
can总线接口电路设计Can总线接口电路设计一、引言Can总线是一种常用的串行通信协议,广泛应用于汽车电子、工业自动化等领域。
Can总线接口电路的设计是实现Can总线通信的关键。
本文将从Can总线的基本原理、Can总线接口电路的设计要点以及常见的设计方案等方面进行探讨。
二、Can总线的基本原理Can总线是一种多主机、多节点的串行通信协议,采用差分信号传输方式。
其基本原理包括以下几个方面:1. 差分信号传输:Can总线采用两条线分别传输正负两个信号,通过差分电压来传递信息。
这种差分传输方式具有抗干扰能力强、传输距离远等优点。
2. 冲突检测与容错机制:Can总线采用冲突检测与容错机制,可以在多个节点同时发送数据时进行冲突检测,并通过优先级来解决冲突,确保数据传输的可靠性。
3. 高速传输:Can总线的通信速率可以达到几百kbps甚至几Mbps,能够满足高速数据传输的需求。
三、Can总线接口电路的设计要点Can总线接口电路的设计要考虑以下几个方面:1. 差分信号传输:Can总线的接口电路应保证正负两个信号的差分电压,一般通过差分放大器或差分驱动器来实现。
2. 抗干扰能力:Can总线在工业环境中应用广泛,接口电路应具备良好的抗干扰能力,包括抑制共模干扰、抑制电磁干扰等。
3. 高速传输:Can总线的通信速率较高,接口电路应具备足够的带宽和响应速度,以满足高速传输的需求。
4. 电源稳定性:Can总线接口电路对电源的稳定性要求较高,应采取合适的电源滤波和稳压措施,以确保电源的可靠性和稳定性。
5. 保护电路设计:Can总线接口电路应具备过压保护、过流保护等保护电路,以防止外部干扰对接口电路和总线的损坏。
四、常见的Can总线接口电路设计方案根据应用需求和成本考虑,常见的Can总线接口电路设计方案包括以下几种:1. 集成电路方案:使用Can总线收发器芯片,如TI的SN65HVD230等,通过将芯片与控制器进行连接,实现Can总线的收发功能。
CAN接口电路设计系统各模块硬件设计完成后需考虑模块间相互通信的实现。
由于整体系统采用CAN总线进行作为通信网络,基于各模块通信的稳定性和同一性考虑,统一的CAN接口电路设计成为必要。
针对不带有CAN通信接口的芯片来讲,CAN总线接口电路由CAN总线控制电路和CAN总线收发电路两部分组成。
CAN总线控制器用来完成总线协议的数据链路层和物理层的功能,如对报文的装配与拆分、对接收信息进行过滤和较验等。
应用层功能可由各模块内的微控制器完成。
CAN收发器提供CAN控制器与物理总线之间的接口,在两条有差动电压的总线CANL和CANH上传输数据,可以提高CAN总线的可靠性和驱动能力[i]。
由于系统模块采用了STM32F103R8T6和STM32F103C6T6芯片,这两款微控制器均自带CAN通信接口,只需连接CAN总线收发电路即可接入总线。
为了避免芯片内的CAN控制模块和CAN收发电路的电气不一致造成电气隔离给通信带来麻烦,模块在芯片和CAN收发电路之间添加了CAN总线隔离电路。
图3-23模块总线接口电路如图3-23所示,各模块总线接口电路由采用ADUM1201隔离芯片设计CAN 总线隔离电路和TJA1040收发器设计CAN总线收发电路组成。
传统的CAN总线控制采用光耦合器技术,使用光束来隔离和保护检测电路以及在高压和低压电器环境之间提供一个安全接口。
ADUM1201隔离芯片采用了iCoupler技术取消了光电耦合器中的光电转换,采用iCoupler变压器技术集成变压器驱动和接收电路。
与传统CAN总线控制相比,采用ADUM1201隔离芯片设计的CAN总线控制电路功耗低,数据传输速率高,时序精度高个瞬态共模抑制力优,信号传输方向灵活,硬件电路简单[ii]。
CAN总线隔离电路设计时应注意ADUM1201所隔离的两端有各自的电源和参考地。
电源和参考地之间应接入0.01~0.1μF电容,用来滤除高频干扰。
本模块采用了0.1μF的电容。
可以界面设计:Can总线是一个串行通信网络,可以有效地支持分布式控制和实时控制。
它以其高性能和高可靠性而被广泛应用于自动控制领域。
为了提高系统的驱动能力并增加通信距离,飞利浦82C250通常用作CAN控制器与物理总线(即收发器)之间的接口,以增强总线的差分传输能力。
以及CAN控制器的差分接收能力。
为了进一步提高抗干扰能力,经常在CAN控制器和收发器之间设置光电隔离电路。
典型的CAN总线接口电路原理如图1所示接口电路设计中的关键问题1.1光电隔离电路尽管光电隔离电路可以增强系统的抗干扰能力,但也会增加CAN总线有效环路信号的传输延迟时间,从而导致通信速率或距离的降低。
82C250和其他Can收发器具有瞬时抗干扰能力,可减少射频干扰(RFI)并实现热保护。
限流电路还为总线提供了进一步的保护。
因此,如果场传输距离近并且电磁干扰小,则不使用光电隔离来实现最大的通信速率或距离,并且可以简化接口电路。
如果现场环境需要光电隔离,则应选择高速光电隔离装置以减少CAN总线有效环路信号的传输延迟时间。
例如,传输延迟时间6n137短,典型值仅为48 ns,接近TTL电路的传输延迟时间。
1.2电源隔离光电隔离装置两侧使用的电源的Vdd和VCC必须完全隔离,否则光电隔离将失去应有的功能。
电源的隔离可以通过低功率DC / DC电源隔离模块来实现,例如具有5V双隔离输出的低功率DC / DC模块,其总体尺寸为dip-14标准引脚。
1.3上拉电阻图1中的罐收发器82C250的发送数据输入TXD与光耦合器6n137的输出连接。
注意,TXD还必须连接到上拉电阻R3。
一方面,R3确保6n137中的光敏三极管在导通时可以输出低电平,在截止时可以输出高电平。
另一方面,它也是CAN总线的要求。
具体来说,82C250的TXD端子的状态确定高和低罐电压输入/输出端子上的canh和canl的状态(请参见表1)。
Can总线规定,总线在空闲期间应为隐性,即Can网络中节点的默认状态为隐性,这要求TXD 终端的默认状态82c25o为逻辑1(高电平)。