2_3_2热容、绝热过程、循环过程、制冷循环
- 格式:pdf
- 大小:783.38 KB
- 文档页数:28
热力学中的理想气体循环过程热力学中的理想气体循环过程是指理想气体在进行一系列压力、体积、温度变化的过程中所形成的循环。
这一过程在工程领域中有着广泛的应用,例如内燃机、制冷空调系统等。
本文将介绍热力学中的理想气体循环过程的基本概念、类型及其应用。
1. 理想气体循环过程的基本概念理想气体循环过程是指理想气体在经历一系列变化后,回到起始状态的过程。
理想气体循环过程可分为四个阶段,即吸热、绝热膨胀、放热和绝热压缩。
2. 理想气体循环过程的类型常见的理想气体循环过程包括卡诺循环、布雷顿循环和奥托循环等。
2.1 卡诺循环卡诺循环是理想气体循环过程中效率最高的循环过程。
它由两个绝热过程和两个等温过程组成。
在卡诺循环中,气体从高温热源吸收热量,经过绝热膨胀降温,然后放热给低温热源,在经过绝热压缩升温后回到高温热源。
2.2 布雷顿循环布雷顿循环是蒸汽机常用的循环过程。
它由一个等压加热、一个绝热膨胀、一个等压放热和一个绝热压缩组成。
在布雷顿循环中,气体在等压加热过程中吸收热量,然后经过绝热膨胀、等压放热和绝热压缩,回到初始状态。
2.3 奥托循环奥托循环是内燃机常用的循环过程,也被用于汽油发动机。
它由一个绝热压缩、一个等容加热、一个绝热膨胀和一个等容放热组成。
在奥托循环中,气体在绝热压缩过程中升温,然后通过等容加热,绝热膨胀和等容放热返回初始状态。
3. 理想气体循环过程的应用理想气体循环过程在工程领域中有着广泛的应用。
以下是几个常见应用的例子:3.1 内燃机奥托循环被广泛应用于内燃机中,包括汽油发动机和柴油发动机。
在内燃机中,奥托循环是发动机的工作循环,通过气体的压力和体积变化实现功的转换。
3.2 制冷空调系统制冷空调系统中的制冷循环使用了理想气体循环过程。
在制冷循环中,工质(例如制冷剂)经历蒸发、压缩、冷凝、膨胀等过程,在不同的状况下实现能量的转移,从而实现空调制冷的效果。
3.3 太阳能发电系统太阳能发电系统中的热力循环通常采用卡诺循环。
2011年浙江省大学生物理竞赛理论竞赛卷考试形式:闭卷,允许带 无存储功能的计算器 入场 考试时间: 2011 年 12 月 10 日 上午8:30~11:30气体摩尔常量 K mol J 31.8⋅⋅=R 玻尔兹曼常量 K J 1038.1⋅⨯=k真空介电常数 ε0=8.85⨯10-12C 2/(N ⋅m 2) 真空中光速 c =3⨯108m/s 普朗克常数h =6.63⨯10-34J ⋅s基本电荷e =1.6⨯10-19C 真空介电常数ε 0=8.85⨯10-12C 2/(N ⋅m 2) 电子质量m e =9.1⨯ 10-31kg 真空磁导率μ0=4π⨯10-7H/m真空中光速c =3⨯108m/s里德伯常数-17m 10097.1⨯=R 电子伏特 1eV=1.6⨯ 10-19J 氢原子质量 m =1.67⨯ 10-27kg 维恩位移定律常数b =2.898×10-3m K斯忒恩-波尔兹曼常数σ=5.67×10-8W/m 2K 4 这三项是公式编的,字号偏大。
字号改小后:-11-K mol J 31.8⋅⋅=R ,-123K J 1038.1⋅⨯=-k ,-17m 10097.1⨯=R一、选择题:(单选题,每题3分,共30分)1.质量为m 的质点在外力作用下,其运动方程为 j t B i t A rωωsin cos +=,式中A 、B 、ω 都是正的常量.由此可知外力在t =0到t =π/(2ω)这段时间内所作的功为( )A .)(21222B A m +ω B .)(222B A m +ω C .)(21222B A m -ω D .)(21222A B m -ω2.一座塔高24m ,一质量为75kg 的人从塔底走到塔顶. 已知地球的质量为6⨯1024kg ,从日心参考系观察,地球移动的距离为?( )(不考虑地球的转动) A .12m B .24m C .4.0⨯-24m D .3.0⨯-22m 3.边长为l 的正方形薄板,其质量为m .通过薄板中心并与板面垂直的轴的转动惯量为( ) A .231ml B .261ml C .2121ml D .2241ml4.μ子的平均寿命为2.2⨯10-6s .由于宇宙射线与大气的作用,在105m 的高空产生了相对地面速度为0.998c (c 为光速)的μ子,则这些μ子的( ) A .寿命将大于平均寿命十倍以上,能够到达地面 B .寿命将大于平均寿命十倍以上,但仍不能到达地面 C .寿命虽不大于平均寿命十倍以上,但能够到达地面 D .寿命将不大于平均寿命十倍以上,不能到达地面5.乐器二胡上能振动部分的弦长为0.3m ,质量线密度为=ρ4⨯10-4kg/m ,调音时调节弦的张力F ,使弦所发出的声音为C 大调,其基频为262Hz. 已知波速ρFu =,则弦中的张力为( )A .1.0NB .4.2NC .7.0ND .9.9N6.一固定的超声波探测器在海水中发出频率为30000Hz 的超声波,被迎面驶来的潜艇反射回来,测得反射波频率与原来的波频率之差(拍频)为241Hz .已知超声波在海水中的波速为1500m/s ,则潜艇的速率为( ) m/s A .1 B .2 C .6 D .107.如图所示,两个相同的平板电容器1和2并联,极板平面水平放置.充电后与电源断开,此时在电容器1中一带电微粒P 恰好静止悬浮着。
简述常见的热力学过程热力学是研究能量转化和能量传递的一门科学,它涉及到各种各样的过程。
在这篇文章中,我们将简要介绍一些常见的热力学过程。
1. 等温过程:等温过程是指在恒温条件下进行的能量转化过程。
在等温过程中,系统与外界保持热平衡,温度保持不变。
对于理想气体来说,等温过程可以通过绝热墙与恒温热源相连来实现。
在等温过程中,系统的内能发生改变,但是温度保持恒定。
2. 绝热过程:绝热过程是指在没有热量交换的情况下进行的能量转化过程。
在绝热过程中,系统与外界不进行热量的交换,只有功可以进行。
绝热过程可以通过绝热壁来实现,绝热壁不允许热量的传递。
在绝热过程中,系统的内能发生改变,但是热量不变。
3. 等容过程:等容过程是指在恒容条件下进行的能量转化过程。
在等容过程中,系统的体积保持不变,系统与外界不进行体积的改变。
等容过程通常发生在容器内部的隔板上,隔板不允许移动。
在等容过程中,系统的内能发生改变,但是体积不变。
4. 等压过程:等压过程是指在恒压条件下进行的能量转化过程。
在等压过程中,系统与外界保持压力恒定,系统与外界可以进行体积的改变。
等压过程通常发生在活塞上,活塞允许自由移动。
在等压过程中,系统的内能发生改变,但是压力保持不变。
5. 绝热绝压过程:绝热绝压过程是指在没有热量交换和体积改变的情况下进行的能量转化过程。
在绝热绝压过程中,系统与外界既不进行热量的交换,也不进行体积的改变。
绝热绝压过程可以通过绝热固定器来实现,绝热固定器不允许热量的传递和体积的改变。
在绝热绝压过程中,系统的内能发生改变,但是热量和体积不变。
以上就是一些常见的热力学过程的简要介绍。
这些过程在热力学研究中非常重要,可以帮助我们理解能量转化和能量传递的规律。
热力学过程的研究对于工程领域的能量利用和环境保护都有着重要的意义。
希望本文对读者对热力学过程有所启发,并对热力学的研究产生兴趣。
§8.4 循环过程一.循环过程如果循环是准静态过程,在P –V 图上就构成一闭合曲线如果物质系统的状态经历一系列的变化后,又回到了原状态,就称系统经历了一个循环过程。
=∆E 1. 循环VpOⅡⅠ··12工质对外所作的净功,其值等于闭合曲线所包围的面积21A A A -=21>-=A A A 21Q Q A -=2. 正循环、逆循环正循环(循环沿顺时针方向进行)逆循环(循环沿逆时针方向进行)(系统对外作功)21Q A Q +=ⅠⅡQ 1Q 2ab V pO根据热力学第一定律,有021<-=A A A (系统对外作负功)正循环也称为热机循环逆循环也称为致冷循环··ⅠⅡQ 1Q 2ab VpO····热库热库冷库冷库二. 循环效率1212111Q Q Q Q Q Q A -=-==η在热机循环中,工质对外所作的功A 与它吸收的热量Q 1的比值,称为热机效率在制冷循环中,工质从冷库中吸取的热量Q 2与外界对工质作所的功A 的比值,称为循环的致冷系数2122Q Q Q A Q w -==热机的能流图2Q 1Q 2T 低温热源致冷机的能流图2T 低温热源1Q 1T 高温热源热机能流图制冷机能流图1T 高温热源2Q AA1 mol 单原子分子理想气体的循环过程如图所示。
(1) 作出p -V 图(2) 此循环效率解例求cab 600211632T (K )V (10-3m 3)O2ln 600lnR V V RT A Q abab ===V (10-3m 3)OP (105R )(2) ab 是等温过程,有bc 是等压过程,有750bc p Q C T Rν=∆=-(1) p -V 图abc300ca 是等体过程R p p V T T C E Q c a c a V ca 450)(23)(=-=-=∆=ν循环过程中系统吸热RR R Q Q Q ca ab 8664502ln 6001=+=+=循环过程中系统放热RQ Q bc 7502==00124.1386675011=-=-=RRQ Q η此循环效率一定量的理想气体经历如图所示的循环过程。
热力学绝热过程热力学绝热过程是指系统与外界之间没有热量交换的一类过程。
在绝热过程中,系统只能通过做功来与外界进行能量交换。
本文将详细探讨热力学绝热过程的特点、方程和应用。
一、绝热过程的特点绝热过程是在理想条件下进行的,其特点如下:1. 无热量交换:绝热过程中系统与外界之间没有热量的传递,系统内部的热能不发生改变。
2. 系统隔热:绝热过程中,系统与外界之间存在完全隔离,不发生物质和能量的交换。
3. 做功交换:绝热过程中,系统通过对外界做功来改变内能和温度。
二、绝热过程的方程绝热过程可以通过一些基本方程来描述,其中最重要的是绝热功和绝热指数。
1. 绝热功:绝热功是在绝热条件下系统对外界做的功。
在理想气体中,绝热功可以通过以下公式计算:ΔQ = 0, ΔU = W2. 绝热指数:绝热指数是描述绝热过程中气体性质变化的一个参数。
对于理想单原子气体,绝热指数γ可以通过以下公式来计算:γ = Cp/Cv三、绝热过程的应用绝热过程在热力学中有着广泛的应用,以下列举几个典型的应用实例:1. 绝热膨胀:绝热膨胀是绝热过程中的一种应用,通过气体的膨胀来对外界做功。
这个过程在内燃机中有着重要的应用,如汽车引擎的工作过程中,气缸内的燃气在燃烧后膨胀并驱动汽车运动。
2. 绝热压缩:绝热压缩是绝热过程的另一种应用,通过对气体的压缩来对外界做功。
这个过程在压缩机、空调等设备中得到广泛应用,如冷气机的制冷循环中,气体在绝热压缩过程中升温,然后通过冷凝器将热量释放到外部环境。
3. 绝热加热:绝热加热是绝热过程的另一个应用,通过对系统施加外部的绝热加热使其温度升高,从而改变系统的状态。
这个过程在核能、工业生产等领域中得到应用,如核反应堆中的核燃料在绝热加热条件下发生裂变反应。
四、总结热力学绝热过程是指系统与外界之间没有热量交换的一类过程。
在绝热过程中,系统只能通过做功来与外界进行能量交换。
绝热过程具有无热量交换、系统隔热和做功交换的特点。
卡诺循环的四个过程公式卡诺循环是热力学中一个重要的循环过程,用来描述热机的理想工作原理。
它由四个过程组成,分别是绝热膨胀、等温膨胀、绝热压缩和等温压缩。
下面将详细介绍卡诺循环的四个过程和相应的公式。
1. 绝热膨胀(ADIABATIC EXPANSION)绝热膨胀过程是指在不与外界交换热量的情况下,系统从高温状况下膨胀至低温状态。
这一过程中系统不进行热传导和热交换,只进行功的转换。
根据理想气体状态方程PV^γ = 常数(γ为比热容比),绝热过程的理想气体功公式为:W_ad = (P_1V_1 - P_2V_2)/(γ - 1)其中, W_ad 表示绝热过程所做的功, P_1 和 V_1 表示初始状态下的压力和体积,P_2 和 V_2 表示终态下的压力和体积。
2. 等温膨胀(ISOCHORIC EXPANSION)等温膨胀过程是指在恒温条件下,系统从高温状态膨胀至低温状态。
这一过程中系统与外界交换热量,但不进行功的转换。
根据理想气体状态方程 PV = nRT,等温过程中热量 Q 的转移公式为:Q = nRΔTln(V_2/V_1)其中, Q 表示等温过程中的热量转移量, n 表示气体的摩尔数, R 表示理想气体常数,ΔT 表示温度差, V_1 和 V_2 表示初始状态下的体积和终态下的体积。
3. 绝热压缩(ADIABATIC COMPRESSION)绝热压缩过程是指在不与外界交换热量的情况下,系统从低温状态进行压缩至高温状态。
与绝热膨胀相似,绝热压缩过程中也不进行热传导和热交换,只进行功的转换。
绝热过程的理想气体功公式与绝热膨胀过程相同。
W_ad = (P_2V_2 - P_1V_1)/(γ - 1)其中, W_ad 表示绝热过程所做的功, P_1 和 V_1 表示初始状态下的压力和体积,P_2 和 V_2 表示终态下的压力和体积。
4. 等温压缩(ISOCHORIC COMPRESSION)等温压缩过程是指在恒温条件下,系统从低温状态压缩至高温状态。