9牛顿第一定律和第三定律
- 格式:docx
- 大小:59.68 KB
- 文档页数:5
牛顿第一二三定律公式牛顿第一定律的内容:一切物体总保持匀速直线运动或静止状态,直到有外力迫使它改变这种状态为止。
它又被称作为惯性定律。
牛顿第二定律的公式内容:物体的加速度跟物体所受的合外力成正比,跟物体的质量成反比,表达式f=ma。
牛顿第三定律的内容:两物体之间的作用力反作用力总是大小相等方向相反,而且在一条直线上。
表达式f=-f。
牛顿第一定律的理解牛顿第一定律,讲的是一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。
它的前提条件是不受外力和,所受到的合外力等于0。
它的结果是物体保持匀速直线运动或静止状态。
要改变这种状态,就必须有外力,所以它也揭示出历史改变物体运动状态的原因。
如果没有外力改变,那么他将保持原来的运动状态,这种特性叫做惯性,惯性的大小,取决于物体的质量。
牛顿第一定律,是在伽利略理想行为的基础上,加上抽象的思维,概括出来的,所以它不是实验直接总结出来的。
牛顿第二定律的理解F等于ma中的f,是指的是合外力,m指的是受力物体的质量,a, 指的是受力物体的加速度。
F会随着m的增大而增大也会随着a的增大而增大。
但是m 等于f除以a。
M是物体的固有属性,不会随着f和a的变化而变化。
牛顿第二定律适用于宏观的低速。
在这里f和a都是矢量,m是标量,所以f和a的方向是一致的。
A与f同时产生,同时消失,同时变化。
牛顿第三定律的理解物体间的力的作用是相互的,如果把a对b地力成为最容易,那么b也会对a产生一个反作用力。
他们是一对相互作用力。
相互作用力的特点,大小相等,方向相反,作用在一条直线上,作用在两个不同的物体上。
一对平衡力的特点,大小相等,方向相反,作用在一条直线上,区别在于作用在一个物体上。
所以判断两个力是一对相互作用力还是平衡力,重点在于判断是否装在一个物体上还是两个物体上。
牛顿三大定律指什么导言牛顿三大定律是经典力学的基石,由英国物理学家牛顿提出,深刻地揭示了物体运动的规律。
这些定律被广泛应用于各个领域,帮助人们理解和预测物体的运动状态。
本文将分别介绍牛顿三大定律的概念以及其在实际生活中的应用。
第一定律:惯性定律牛顿第一定律也称为惯性定律,它表明一个物体如果没有外力作用于它,将保持匀速直线运动或静止状态。
简而言之,物体静止就会继续保持静止,运动就会继续匀速直线运动。
这个定律揭示了物体的自稳定性和惰性。
第二定律:运动定律牛顿第二定律是最为人熟知的物理定理之一,它建立了力和加速度之间的关系。
数学表达式为$ F = ma ,其中 F 是物体所受的合力, m 是物体的质量, a $是物体的加速度。
这个定律说明了物体的加速度与所受外力的大小成正比,与物体的质量成反比。
也就是说,一个物体所受的合力越大,它的加速度也越大。
第三定律:作用-反作用定律牛顿第三定律也被称为作用-反作用定律,它表明任何作用在物体上的力都会有一个大小相等、方向相反的反作用力作用于另一物体上。
举个例子,当我们站在地面上时,我们的体重使我们对地面施加一个垂直向下的力,而地面也会对我们产生一个大小相等、方向相反的向上的力,这样我们才能保持平衡。
这个定律揭示了物体相互作用的本质。
应用牛顿三大定律不仅在物理学中有着广泛的应用,而且在工程、生物学、天文学等领域也有着重要的作用。
例如在工程中,根据牛顿第二定律,可以计算出物体的加速度,帮助设计师选择合适的材料和结构;在生物学领域,牛顿第一定律可以解释为什么在没有外力作用时,人体的内脏会继续运动;在天文学中,牛顿第三定律被用来解释行星之间的引力交互等现象。
结论牛顿三大定律的提出,为人们认识世界提供了重要的理论基础,其应用也深刻地改变了人类社会的方方面面。
通过了解牛顿三大定律的原理和应用,我们可以更好地理解物体的运动规律,推动科学技术的发展,助力人类文明的进步。
牛顿的三大定律是什么?牛顿力学是经典力学的基础,也是物理学的重要组成部分。
众所周知,牛顿提出了三大定律,这些定律不仅适用于地球上的物体,也适用于日常生活中的多数运动。
在这篇科普文章中,我们将深入了解牛顿的三大定律。
一、牛顿第一定律牛顿第一定律,也叫作惯性定律,说的是:在没有作用于物体的力的情况下,物体将保持静止或匀速直线运动。
这个定律可以解释为,一个物体的运动状态是一直不变的,除非有其他物体对它施加力,改变它的动量; 或者与它相互作用的其他物体发生了变化。
“第一定律”在我们日常生活中十分常见。
比如,在坐公交车时,当车突然启动或突然停下时,人们就会感受到自己的身体在向前或向后移动。
这种感觉跟牛顿第一定律的概念一致——当车辆改变其运动状态时,人的运动状态也会随之改变。
二、牛顿第二定律牛顿第二定律,也叫作运动定律,说的是:作用于一个物体的力,等于该物体质量乘以其获得的加速度。
简单来说,它揭示了力、物体和加速度之间的关系。
该定律的数学表达式是 F = ma (F 代表物体作用力的大小,m 代表物体的质量,a 代表物体的加速度)。
举个例子,假设有一只鸟的质量为1.5千克,它向左飞行的加速度为10米每秒的平方,这时它所承受的力的大小就是 F=1.5×10=15牛顿。
牛顿第二定律能够帮助我们预测物体在特定环境下的行为。
例如,炸药在被引爆后,由于承受了巨大的力量,致使炸药的分子组成出现了根本性改变。
而在万有引力的影响下,地球从太阳那里得到的加速度和距离都是相对稳定的,所以地球围绕太阳做匀速圆周运动。
三、牛顿第三定律牛顿第三定律,也叫作作用与反作用定律,说的是:作用在物体 A 上的力,必然与物体 B 上作用的力大小相等、方向相反、且作用于两个物体所在的直线上。
这个定律特别强调了任何物体的运动状态是相互关联的。
假设我们往桌子上施加一个力,就像我们在打一个球或是跳跃一样,当施加的力生效时,我们也会承受一个与施加的力等大而反向的反作用力。
初中物理必背定律大全1. 牛顿第一定律:惯性定律一物体若受力平衡,则该物体将保持静止或匀速直线运动。
2. 牛顿第二定律:力的作用定律物体所受合力等于质量与加速度的乘积。
3. 牛顿第三定律:作用-反作用定律任何两个物体之间的相互作用力,其大小相等、方向相反。
4. 引力定律:万有引力定律任何两个物体之间存在一种吸引力,其大小与它们的质量成正比,与它们的距离平方成反比。
5. 阻力定律物体运动时受到阻碍的力,其大小和方向与物体的运动速度和运动状态有关。
6. 动能守恒定律不受外力的物体系统,机械能守恒。
7. 力的合成与分解多个力共同作用下,合力等于这些力的矢量和。
任何一力可分解成与之相等且方向相同或相反的两个力的合力。
8. 质量守恒定律在任何封闭系统中,质量总量保持不变。
9. 压力定律在相同面积上受力的物体,受到的压力大小与所受力和面积成正比。
10. 功和机械效率功是力对位移的乘积,机械效率是输出功与输入功之比。
11. 波的反射定律入射角等于反射角,入射光波、反射光波和法线在同一平面上。
12. 能量守恒定律一个封闭系统的能量总量恒定不变。
13. 镜面成像定律光线入射角等于反射角,入射光线、反射光线和法线在同一平面上。
14. 齐次质点的定义质点的组成部分在空间任何位置上都具有相同的性质。
15. 运动的微观本质万有引力和电磁力的作用,是宏观物体运动的微观本质。
16. 机械波的传播和声波的速度在空气中,声波的速度与温度正相关。
17. 反射和折射的规律光线从一介质到另一介质时,反射角等于入射角,折射角由狄拉克定律计算。
18. 平抛运动的轨迹空中自由下落物体处于水平投射状态时,它的轨迹是一个抛物线。
19. 热传导定律热传导是指物体内部冷热处于不同温度时,热量由高温区向低温区传递的现象。
20. 阿基米德原理在液体或气体中,物体受到的浮力大小等于所排走的液体或气体的重量。
21. 压强定义与测量单位面积上受到的力称为压强,压强的大小等于垂直于单位面积的力的大小与面积的比值。
牛顿三大定律公式:
1,牛顿第一定律(惯性定律):
物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。
2,牛顿第二定律公式:
F合=ma或a=F合/m
a由合外力决定,与合外力方向一致。
3,牛顿第三定律公式:
F= -F;
负号表示方向相反,F、-F为一对作用力与反作用力,各自作用在对方。
4,共点力的受力平衡公式:
F合=0
二力平衡则满足公式F1=-F2
请注意,二力平衡与作用力与反作用力是不一样的。
二力平衡的研究对象,是同一个物体;而作用力与反作用力,研究对象是两个不同的物体。
5,超重与失重的公式:
超重满足:N>G
失重满足:N<G
N为支持力,G为物体所受重力,不管失重还是超重,物体所受重力是不变的。
牛顿三大定律的内容:
1、牛顿第一定律:一切物体总是保持匀速直线运动状态或静止状态,除非作用在它上面的力迫使它改变这种状态。
(定性的描述了力与运动的关系,物体的运动不需要力维持,但改变物体的运动一定需要力,牛顿第一定律也叫惯性定律)
2、牛顿第二定律:物体加速度的大小跟它所受的作用力成正比、跟它的质量成反比,加速度的方向跟作用力的方向相同。
(定量的计算力与运动的关系,F=ma)
3、牛顿第三定律:两个物体之间的作用力和反作用力,总是大小相等、方向相反,作用在同一条直线上。
(说明了力的作用是相互的)。
初中物理牛顿运动三定律图文详解牛顿运动三定律是物理学中关于力和运动关系的基本定律,它们被广泛应用于解释和预测各种物体的运动。
本文将通过图文详细解析牛顿运动三定律,帮助读者深入理解这些定律。
一、牛顿第一定律-惯性定律牛顿第一定律,也被称为惯性定律,它表明一个物体如果没有外力作用于它,将会保持静止或匀速直线运动。
这意味着物体在没有受力时不会改变自己的状态。
以下图文解析将帮助读者更好地理解牛顿第一定律。
图1:[图片描述:一辆静止的小汽车][图片位置:文章中部]图1展示了一辆静止的小汽车。
根据牛顿第一定律,如果没有外力作用于这辆汽车,它将保持静止。
这是因为物体具有惯性,即物体倾向于保持自身运动状态,可能是静止也可能是匀速直线运动。
图2:[图片描述:一个小球沿着直线匀速运动][图片位置:文章中部]图2显示了一个沿着直线匀速运动的小球。
同样根据牛顿第一定律,如果一个物体受到一个恒定的合力,并且没有其他力的作用,它将以恒定的速度沿直线匀速运动。
这是因为物体保持自身运动状态的特性。
二、牛顿第二定律-力的作用定律牛顿第二定律是最著名的牛顿定律之一,它描述了力和物体运动之间的关系。
它的数学表达式为F=ma,其中F是力,m是物体的质量,a是物体的加速度。
以下图文解析将对牛顿第二定律进行详细说明。
图3:[图片描述:一个悬挂在绳子上的重物][图片位置:文章中部]图3展示了一个悬挂在绳子上的重物。
根据牛顿第二定律,物体所受的力等于质量乘以加速度。
在这个例子中,物体的质量为m,加速度为a,所以它所受的力F=ma。
这意味着当一个物体受到一个力时,它将产生一个加速度,加速度的大小与所受力成正比,与物体质量成反比。
图4:[图片描述:用力推动一个物体][图片位置:文章中部]图4展示了一个人用力推动一个物体。
根据牛顿第二定律,当一个人用力推动一个物体时,物体将受到一个力,力的大小取决于人的推力。
根据F=ma,物体的加速度将取决于所受力的大小和物体的质量。
牛顿三大定律内容是什么
牛顿第一定律:孤立质点保持静止或做匀速直线运动;第二定律:物体加速度的大小跟作用力成正比,跟物体的质量成反比,且与物体质量的倒数成正比;加速度的方向跟作用力的方向相同。
第三定律:相互作用的两个质点之间的作用力和反作用力总是大小相等,方向相反,作用在同一条直线上。
1 牛顿三大定律主要内容1、牛顿第一运动定律,简称牛顿第一定律。
又称
惯性定律、惰性定律。
常见的完整表述:任何物体都要保持匀速直线运动或静止状态,直到外力迫使它改变运动状态为止。
2、牛顿第二运动定律的常见表述是:物体加速度的大小跟作用力成正比,跟物体的质量成反比,且与物体质量的倒数成正比;加速度的方向跟作用力的方向相同。
3、牛顿第三运动定律的常见表述是:相互作用的两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在同一条直线上。
该定律是由艾萨克·牛顿在1687 年于《自然哲学的数学原理》一书中提出的。
1 牛顿三大定律详细说明牛顿第一定律(惯性定律)内容
表述一:任何一个物体在不受外力或受平衡力的作用时(Fnet=0),总是保
持静止状态或匀速直线运动状态,直到有作用在它上面的外力迫使它改变这种状态为止。
表述二:当质点距离其他质点足够远时,这个质点就作匀速直线运动或保
持静止状态。
最出名的三大定律引言在科学和自然界中,定律是一种描述自然规律的规则或原则。
这些定律通过观察和实验证据得出,可以被广泛接受和应用。
在科学史上,有许多著名的定律,其中最出名的三大定律是指:牛顿三大运动定律、热力学三大定律和量子力学三大定律。
这些定律对于我们理解和解释自然界中的现象至关重要。
本文将对这三大定律进行全面、详细、完整且深入地探讨。
一、牛顿三大运动定律1. 第一定律:惯性定律•牛顿第一定律也被称为惯性定律,它表明物体在没有外力作用时将保持静止或匀速直线运动的状态。
•惯性定律的核心思想是物体具有惯性,即物体会保持其运动状态直到外力改变其状态。
•举例:当我们在车上突然刹车时,人会因惯性而向前倾斜。
2. 第二定律:动量定律•牛顿第二定律描述了力、质量和加速度之间的关系,可以表述为F=ma,其中F是作用力,m是物体质量,a是加速度。
•动量定律说明了物体的运动状态受到力的影响,力的大小与物体的质量和加速度成正比。
•举例:用力推动一个小球和推动一个大球,大球的加速度较小,小球的加速度较大。
3. 第三定律:作用-反作用定律•牛顿第三定律也称为作用-反作用定律,它说明了任何作用力都会产生一个大小相等、方向相反的反作用力。
•作用-反作用定律强调了力的相互作用,即所有力都是成对出现的,且大小相等、方向相反。
•举例:当我们站在冰面上,用力踢冰球,我们会因为冰球的反作用力而后退一步。
二、热力学三大定律1. 第一定律:能量守恒定律•热力学第一定律,也被称为能量守恒定律,表明能量在系统中不能被创造或破坏,只能从一种形式转化为另一种形式。
•能量守恒定律的核心思想是能量的总量在封闭系统中保持不变。
•举例:一个火炉中的化学能转化为热能,使室温升高。
2. 第二定律:熵增定律•热力学第二定律描述了热能传递的方向,它表明自然界中热量总是从高温物体流向低温物体。
•熵增定律说明了系统的无序度(熵)在孤立系统中会增加,且不会减少。
•举例:一杯热水冷却时,热量会从水中传递到周围环境中,使水温降低。
伟大的科学家牛顿提出了哪三大力学定律伟大的科学家牛顿提出了三大力学定律伟大的科学家艾萨克·牛顿被公认为物理学和数学领域最具影响力的人物之一。
在他的学术生涯中,他提出了一系列的理论和定律,其中最著名的要属他的三大力学定律。
这三大定律对于我们理解物体运动的规律和研究力学非常重要。
在本文中,我们将详细探讨这三大力学定律以及它们对现代科学的巨大影响。
1. 牛顿第一定律-惯性定律牛顿第一定律也被称为惯性定律,它是力学中最基础的定律之一。
牛顿第一定律的表述为“一个物体在受力作用下,如果没有外力作用,将保持静止或匀速直线运动的状态。
”这意味着一个物体会保持其运动状态,无论是静止还是匀速直线运动,除非有外力施加在它上面。
换言之,物体具有惯性,它们不会主动改变它们的状态。
惯性定律在科学研究和工程设计中至关重要。
例如,在建筑设计中,工程师必须考虑自然力和重力对建筑物的影响,以确保其在各种条件下的稳定性。
此外,在航天工程中,工程师必须充分利用惯性定律来导航和控制飞行器的运动。
2. 牛顿第二定律-动量定律牛顿第二定律是牛顿力学中最为人熟知的定律之一。
它描述了物体的力学行为和其运动状态之间的关系。
牛顿第二定律的数学表达式为“力等于物体质量乘以加速度”,即F=ma。
这个定律指出,一个物体所受的合力等于其质量乘以加速度。
换句话说,物体的加速度与作用在它上面的力成正比,并与物体的质量成反比。
这个定律为我们提供了计算物体运动的基本工具。
动量定律在现代科学和工程领域广泛应用。
例如,应用牛顿第二定律,我们可以计算一个火箭的推力,从而推断它的运动速度。
此外,在汽车工程中,我们可以使用动量定律来优化车辆的性能,改善安全性能。
3. 牛顿第三定律-作用-反作用定律牛顿第三定律,也称为作用-反作用定律,是力学中的另一个基本定律。
这个定律阐述了力的相互作用方式,表明任何一对物体之间的作用力和反作用力是大小相等、方向相反的。
简单来说,牛顿第三定律告诉我们,对于任何对作用于物体的力,该物体会给予施加力同样大小但方向相反的反作用力。
运动三大定律
一、牛顿第一定律
弗里德曼牛顿发现了力学运动三大定律,即牛顿第一定律,牛顿第二定律,牛顿第三
定律。
牛顿第一定律是“物体在没有外界作用力的情况下,运动速度不变,即在匀速直线运动。
”
它说明,当物体处于外力作用无效的情况,它会保持原来的运动状态,包括它的速度
和方向,不受变化,这就是所谓的动量守恒定律。
例如:在空间中游动的飞船,当没有任何外力作用,它就会保持原来的均匀直线运动,改变它的状态需要作用新的外力才行。
二、牛顿第二定律
牛顿第二定律是“物体受到外力作用时将会发生变化,即受力后物体运动速度有可能
变化,而其物体运动方向也可能发生变化。
”
它说明,当物体受到外力作用时,不仅会给它施加加速度,而且会改变它原来的运动
方向,有可能让它从直线运动改变成曲线运动,称为“力与加速度的关系”。
例如,受太阳的引力作用,地球将作椭圆运动;受水面的摩擦作用,小车将在空中滑行,这其中就体现了牛顿第二定律中“力与加速度的关系”。
三、牛顿第三定律
牛顿第三定律是:“每个物体对另一个物体施加的力都会产生反作用力,并与它相等
相反。
”
这句话说明了在物体之间发生作用力时,两个物体间都会产生反作用力,而且这两种
反作用力相等相反,并且同时转移到两个物体上,由此引出动量定理。
例如,当两个球直接碰撞时,A给B施加的力为Fa,那么B给A产生的反作用力就是Fb,Fb和Fa的方向是相反的,而且其大小也相等。
物理牛顿力学的三大定律解析在物理学领域,牛顿力学被认为是最基础而且最重要的一个分支。
牛顿力学由物理学家艾萨克·牛顿在17世纪初提出,通过三条基本定律描述了物体的运动和受力情况。
本文将对牛顿力学的三大定律进行解析,帮助读者更好地理解这些定律的含义及应用。
一、牛顿第一定律(惯性定律)牛顿第一定律也称为惯性定律,它指出当物体处于静止状态或做匀速直线运动时,若没有外力作用,物体将保持其原有状态。
这意味着物体会保持静止或匀速直线运动,直到受到外力的作用为止。
牛顿第一定律的数学表达为:物体的加速度等于零(a = 0),即物体的运动状态不发生改变。
举个例子来说明牛顿第一定律:想象一个放置在光滑水平桌面上的小球,如果没有外力作用,例如摩擦力或推动力,那么小球将保持静止状态,或以匀速直线运动。
只有在桌面上施加一个外力,才能使小球改变运动状态。
二、牛顿第二定律(运动定律)牛顿第二定律是牛顿力学的核心定律,它描述了物体受力时的运动情况。
牛顿第二定律表明,物体所受合外力等于物体的质量乘以加速度,即 F = ma。
其中,F表示合外力,m表示物体的质量,a表示物体的加速度。
牛顿第二定律的意义在于它揭示了力对物体的影响,即物体运动状态发生改变时所受到的力的大小与方向。
根据牛顿第二定律,力与物体的质量成正比,加速度与力成正比,质量与加速度呈反比。
例如,当我们用力推动一个质量为m的物体时,推力越大,物体的加速度也就越大。
而当物体的质量增加时,相同大小的推力会导致较小的加速度。
三、牛顿第三定律(作用-反作用定律)牛顿第三定律,也被称为作用-反作用定律,指出如果一个物体施加力在另一个物体上,那么被施力物体同样会施加一个大小相等但方向相反的力在施力物体上。
这种力对称的关系被称为“作用力-反作用力对”。
牛顿第三定律的实质是相互作用,物体之间的力以对等的方式相互传递。
无论是力的大小还是方向,都是完全相等的。
这意味着每个作用力都有一个对应的反作用力。
牛顿力学的三大定律
牛顿力学三大定律,即牛顿第一定律、牛顿第二定律和牛顿第三定律,是牛顿力学中的基础定律,对于理解和分析物体运动具有重要作用。
这三个定律在科学领域中有着广泛的应用,例如在机械工程、航天工程以及许多其他领域。
一、牛顿第一定律
牛顿第一定律,又被称为惯性定律。
这个定律表述为:如果没有外力作用,一个物体将保持其静止状态,或者继续以恒定速度沿直线运动。
这条定律揭示了惯性的存在和本质,惯性是质点抵抗外力改变其运动状态的性质。
惯性造成物体保持速率恒定与运动方向不变。
二、牛顿第二定律
牛顿的第二定律,又被称为力的定律或加速度定律。
这个定律表述为:物体的加速度与作用于它的力成正比,与其质量成反比,且加速度的方向与力的方向相同。
这个表述形式,通常被写作F=ma。
这条定律揭示了力与加速度的关系,并且引入了质量的概念。
牛顿第二定律实际上定义了力,并强调绝对平移运动中质量的不变性,在近代物理学中,此原理对于设计机械系统和预测物体运动至关重要。
三、牛顿第三定律
牛顿的第三定律,又称为作用反作用定律,表述为:每个作用力都有一个大小相等、方向相反的反作用力。
也就是说当一个物体(物体A)向另一个物体(物体B)施加力时,A会受到从B来的与A施加给B
的力大小相等、方向相反的力。
这条定律揭示了力的互相作用,即没有孤立存在的力。
总结来说,牛顿三大定律回答了我们在解决物体运动问题上的基本信息:物体为什么运动?物体怎样运动?以及物体与物体之间如何相互作用?牛顿力学的三大定律未只是科学研究的基础,也是我们日常生活中理解物理现象的重要工具。
牛顿运动定律牛顿第一定律、牛顿第三定律知识要点一、牛顿第一定律1.牛顿第一定律的内容:一切物体总保持原来的匀速直线运动或静止状态,直到有外力迫使它改变这种状态为止.2.理解牛顿第一定律,应明确以下几点:1牛顿第一定律是一条独立的定律,反映了物体不受外力时的运动规律,它揭示了:运动是物体的固有属性,力是改变物体运动状态的原因.①牛顿第一定律反映了一切物体都有保持原来匀速直线运动状态或静止状态不变的性质,这种性质称为惯性,所以牛顿第一定律又叫惯性定律.②它定性揭示了运动与力的关系:力是改变物体运动状态的原因,是产生加速度的原因.2牛顿第一定律表述的只是一种理想情况,因为实际不受力的物体是不存在的,因而无法用实验直接验证,理想实验就是把可靠的事实和理论思维结合起来,深刻地揭示自然规律.理想实验方法:也叫假想实验或理想实验.它是在可靠的实验事实基础上采用科学的抽象思维来展开的实验,是人们在思想上塑造的理想过程.也叫头脑中的实验.但是,理想实验并不是脱离实际的主观臆想,首先,理想实验以实践为基础,在真实的实验的基础上,抓住主要矛盾,忽略次要矛盾,对实际过程做出更深一层的抽象分析;其次,理想实验的推理过程,是以一定的逻辑法则作为依据.3.惯性1惯性是任何物体都具有的固有属性.质量是物体惯性大小的唯一量度,它和物体的受力情况及运动状态无关.2改变物体运动状态的难易程度是指:在同样的外力下,产生的加速度的大小;或者,产生同样的加速度所需的外力的大小.3惯性不是力,惯性是指物体总具有的保持匀速直线运动或静止状态的性质,力是物体间的相互作用,两者是两个不同的概念.二、牛顿第三定律1.牛顿第三定律的内容两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在一条直线上.2.理解牛顿第三定律应明确以下几点:1作用力与反作用力总是同时出现,同时消失,同时变化;2作用力和反作用力是一对同性质力;3注意一对作用力和反作用力与一对平衡力的区别对一对作用力、反作用力和平衡力的理解典题解析例1.关于物体的惯性,下列说法正确的是:A 只有处于静止状态或匀速直线运动状态的物体才有惯性.B 惯性是保持物体运动状态的力,起到阻碍物体运动状态改变的作用.C 一切物体都有惯性,速度越大惯性就越大.D 一切物体都有惯性,质量越大惯性就越大.例2.有人做过这样一个实验:如图所示,把鸡蛋A 向另一个完全一样的鸡蛋B 撞去用同一部分,结果是每次都是鸡蛋B被撞破,则下列说法不正确的是 A A对B的作用力大小等于B对A的作用力的大小. B A对B的作用力的大于B对A的作用力的大小.C A 蛋碰撞瞬间,其内蛋黄和蛋白由于惯性,会对A 蛋壳产生向前的作用力.D A 蛋碰撞部位除受到B 对它的作用力外,还受到A 蛋中蛋黄和蛋白对它的作用力,所以受到合力较小.例3如图所示,一个劈形物abc 各面均光滑,放在固定的斜面上,ab 边成水平并放上一光滑小球,把物体abc 从静止开始释放,则小球在碰到斜面以前的运动轨迹是A 沿斜面的直线B 竖直的直线C 弧形曲线D 抛物线拓展如图所示,AB 为一光滑水平横杆,杆上套一轻环,环上系一长为L 质量不计的细绳,绳的另一端拴一质量为m 的小球,现将绳拉直,且与AB 平行,由静止释放小球,则当细绳与AB 成θ角时,小球速度的水平分量和竖直分量的大小各是多少 轻环移动的距离d 是多少深化思维怎样正确理解牛顿第一定律和牛顿第二定律的关系例4由牛顿第二定律的表达式F=ma ,当F=0时,即物体所受合外力为0或不受外力时,物体的加速度为0,物体就做匀速直线运动或保持静止,因此,能不能说牛顿第一定律是牛顿第二定律的一个特例同步练习1.伽利略理想实验将可靠的事实与理论思维结合起来,能更深刻地反映自然规律,伽利略的斜面实验程序如下:1减小第二个斜面的倾角,小球在这个斜面上仍然要达到原来的高度. 2两个对接的斜面,让静止的小球沿一个斜面滚下,小球将滚上另一个斜面.ABA3如果没有摩擦,小球将上升到释放时的高度.4继续减小第二个斜面的倾角,最后使它成水平面,小球沿水平面做持续的匀速直线运动.请按程序先后次序排列,并指出它属于可靠的事实还是通过思维过程的推论,下列选项正确的是数字表示上述程序号码A. 事实2→事实1→推论3→推论4B. 事实2→推论1→推论3→推论4C. 事实2→推论3→推论1→推论4D. 事实2→推论1→推论4→推论32. 火车在水平轨道上匀速行驶,门窗紧闭的车厢内有人向上跳起,发现仍落回到车上原来的位置,这是因为A.人跳起后,厢内空气给他一个向前的力,带着他随同火车一起向前运动.B.人跳起的瞬间,车厢底板给他一个向前的力,推动他随同火车一起向前运动.C.人跳起后,车继续向前运动,所以人下落后必定偏后一些,只是由于时间太短,距离太小,不明显而已.D.人跳起后直到落地,在水平方向上人和车始终具有相同的速度. 3.关于惯性下列说法正确的是:A.静止的火车启动时速度变化缓慢,是因为火车静止时惯性大B.乒乓球可以迅速抽杀,是因为乒乓球惯性小的缘故.C.物体超重时惯性大,失重时惯性小.D.在宇宙飞船中的物体不存在惯性.4. 如图所示,在一辆表面光滑足够长的小车上,有质量分别为m 1、m 2的两个小球m 1﹥m 2随车一起匀速运动,当车突然停止时,若不考虑其他阻力,则两个小球 A.一定相碰 B.一定不相碰 C.不一定相碰D.难以确定是否相碰,因为不知道小车的运动方向.5. 如图所示,重物系于线DC 下端,重物下端再系一根同样的线BA下列说法正确的是:A.在线的A 端慢慢增加拉力,结果CD 线拉断.B.在线的A 端慢慢增加拉力,结果AB 线拉断.C.在线的A 端突然猛力一拉,结果将AB 线拉断. D .在线的A 端突然猛力一拉,结果将CD 线拉断.6. 海南高考16世纪纪末,伽利略用实验和推理,推翻了已在欧洲流行了近两千年的亚里士多德关于力和运动的理论,开启了物理学发展的新纪元.在以下说法中,与亚里士多德观点相反的是A .四匹马拉拉车比两匹马拉的车跑得快:这说明,物体受的力越大,速度就越大B .一个运动的物体,如果不再受力了,它总会逐渐停下来,这说明,静止状态才是物体长时间不受力时的“自然状态”C .两物体从同一高度自由下落,较重的物体下落较快D .一个物体维持匀速直线运动,不需要受力7.关于作用力和反作用力,下列说法正确的是 A.物体相互作用时,先有作用力,后有反作用力.B.作用力和反作用力大小相等、方向相反、作用在同一直线上,因此这二力平衡.C.作用力与反作用力可以是不同性质的力,例如作用力是重力,其反作用力可能是弹力D.作用力和反作用力总是同时分别作用在两个相互作用的物体上.8.某同学坐在运动的车厢内,观察水杯中水面的变化情况,如下图所示,说明车厢 A.向前运动,速度很大. B.向前运动,速度很小. C.加速向前运动 D.减速向后运动.9. 如图所示,在车厢内的B 是用绳子拴在底部上的氢气球,A 是用绳挂在车厢顶的金属球,开始时它们和车厢一起向右作匀速直线运动,若忽然刹车使车厢作匀减速运动,则下列哪个图正确表示刹车期间车内的情况A BC D10.在地球赤道上的A 处静止放置一个小物体,现在设想地球对小物体的万有引力突然消失,则在数小时内,小物体相对于A 点处的地面来说,将 A.水平向东飞去.B.原地不动,物体对地面的压力消失. C.向上并渐偏向西方飞去. D.向上并渐偏向东方飞去. E.一直垂直向上飞去.11.有一种仪器中电路如右图,其中M 是质量较大的一个钨块,将仪器固定在一辆汽车上,汽车启动时, 灯亮,原理是 ,刹车时 灯亮,原理是 .牛顿第二定律车前进方向知识要点一.牛顿第二定律的内容及表达式物体的加速度a跟物体所受合外力F成正比,跟物体的质量m成反比,加速度的方向跟合外力的方向相同.其数学表达式为: F=ma二.理解牛顿第二定律,应明确以下几点:1.牛顿第二定律反映了加速度a跟合外力F、质量m的定量关系.注意体会研究中的控制变量法,可理解为:①对同一物体m一定,加速度a与合外力F成正比.②对同样的合外力F一定,不同的物体,加速度a与质量成反比.2.牛顿第二定律的数学表达式F=ma是矢量式,加速度a永远与合外力F同方向,体会单位制的规定.3.牛顿第二定律是力的瞬时规律,即状态规律,它说明力的瞬时作用效果是使物体产生加速度,加速度与力同时产生、同时变化、同时消失.瞬时性问题分析三.牛顿运动定律的适用范围——宏观低速的物体在惯性参照系中.1.宏观是指用光学手段能观测到物体,有别于分子、原子等微观粒子.2.低速是指物体的速度远远小于真空中的光速.3.惯性系是指牛顿定律严格成立的参照系,通常情况下,地面和相当于地面静止或匀速运动的物体是理想的惯性系.四.超重和失重1.超重:物体有向上的加速度或向上的加速度分量,称物体处于超重状态.处于超重的物体,其视重大于其实重.2. 失重:物体有向下的加速度或向下的加速度分量,称物体处于失重状态.处于失重的物体,其视重小于实重.3. 对超、失重的理解应注意的问题:1不论物体处于超重还是失重状态,物体本身的重力并没有改变,而是因重力而产生的效果发生了改变,如对水平支持面的压力或对竖直绳子的拉力不等于物体本身的重力,即视重变化.2发生超重或失重现象与物体的速度无关,只决定于加速度的方向.3在完全失重的状态下,平常一切由重力产生的物理观感现象都会完全消失,如单摆停摆,天平实效,浸在液体中的物体不再受浮力、液体柱不再产生压强等.典题解析例1关于力和运动,下列说法正确的是A.如果物体运动,它一定受到力的作用.B.力是使物体做变速运动的原因.C.力是使物体产生加速度的原因.D.力只能改变速度的大小.点评 力是产生加速度的原因,合外力不为零时,物体必产生加速度,物体做变速运动;另一方面,如果物体做变速运动,则物体必存在加速度,这是力作用的结果.例2如图所示,一个小球从竖直固定在地面上的轻弹簧的正上方某处自由下落,从小球与弹簧接触开始直到弹簧被压缩到最短的过程中,小球的速度和加速度的变化情况是A.加速度和速度均越来越小,它们的方向均向下.B.加速度先变小后又增大,方向先向下后向上;速度越来越小,方向一直向下.C.加速度先变小后又增大,方向先向下后向上;速度先变大后又变小,方向一直向下.D.加速度越来越小,方向一直向下;速度先变大后又变小,方向一直向下. 深化本题要注意动态分析,其中最高点、最低点和平衡位置是三个特殊的位置;例3 跳伞运动员从盘旋在空中高度为400m 的直升机上跳下.理论研究表明:当降落伞全部打开时,伞所受到的空气阻力大小跟伞下落的速度大小的平方成正比,即f=kv 2,已知比例系数k =20N.s 2/m 2,跳伞运动员的总质量为72kg.讨论跳伞运动员在风速为零时下落过程中的运动情况.例4如下图所示,一质量为m 的物体系于长度分别为L 1、L 2 的两根细线上,L 1 的一端悬挂在天花板上,与竖直方向夹角为a ,L 2水平拉直,物体处于平衡状态,现将L 2线剪断,求剪断瞬间物体的加速度. 1下面是某同学对该题的一种解法:解:设L 2线上拉力为T 1,L 2上拉力为T 2,重力为mg ,物体在三力作用下平衡. T 1cos a=mg,T 1sin a=T 2T 2=mg tan a剪断线的瞬间,T 2突然消失,物体在T 2反方向获得加速度,即mg tan a=ma ,所以加速度a=g tan a,方向与T 2相反.你认为这个结果正确吗 请对该解法做出评价并说明理由.2若将上题中的细线L 1改变为长度相同、质量不计的轻弹簧,其他条件不变,求解的步骤与1完全相同,即a=g tan a ,你认为这个结果正确吗 请说明理由.点评 1.牛顿运动定律是力的瞬时作用规律,加速度和力同时产生, 同时变化,同时消失,分析物体在某一时刻的瞬时加速度,关键是分析瞬时前后的受力及其变化.2.明确两种基本模型的特点:1轻绳不需要形变恢复时间,在瞬时问题中,其弹力可以突变.2轻弹簧或橡皮绳需要较长的形变恢复时间,在瞬时问题中,其弹力来不及变化不能突变大小和方向均不变.同步练习1. 在牛顿第二定律中F=kma 中,有关比例系数k 的说法正确的是 A. 在任何情况下都等于1B. k 的数值是由质量、加速度和力的大小决定的C. k 的数值是由质量、加速度和力的单位决定的D.在国际单位制中,k 等于1.2. 如右图所示,一木块在水平恒力F 的作用下沿光滑水平面向右匀加速运动,前方墙上固定一劲度系数足够大的弹簧,当木块接触弹簧后,将 A.立即做减速运动. B.立即做匀速运动.C.在一段时间内速度继续增大.D.当物块速度为零时,其加速度最大.3.轻质弹簧下端挂一重物,手执弹簧上端使物体向上匀加速运动.当手突然停止时,重物的运动情况是:A.立即向上做减速运动B.先向上加速后减速C.上升过程中加速度越来越大D.上升过程中加速度越来越小4. 如右图是做直线运动的物体受力F 与位移s 的关系图,则从图中可知,①这物体至位移s 2 时的速度最小②这物体至位移s 1时的加速度最大③这物体至位移s 1后便开始返回运动.④这物体至位移s 2时的速度最大. A. 只有① B.只有③ C. ①③ D.②④5.如图所示,DO 是水平面,初速为v 0的物体从D 点出发沿DBA 滑动到顶点A 时速度刚好为零.如果斜面改为AC ,让该物体从D 点出发沿DCA 滑动到A 点且速度刚好为零,则物体具有的初速度已知物体与路面之间的动摩擦因数处处相同且不为零A .大于v 0B .等于v 0C .小于v 0D .取决于斜面的倾角6. 下列说法正确的是A.体操运动员双手握住单杠作大回环通过最低点时处于超重状态.B.蹦床运动员在空中上升和下落过程都处于失重状态.C.举重运动员在举起杠铃后不动的那段时间内处于超重状态.D.游泳运动员仰卧在水面静止不动时处于失重状态.7. 黄冈模拟轻质弹簧的上端固定在电梯的天花板上,下端悬挂一个铁球,电梯中有质量为50㎏ 的乘客,如图示,在电梯运行时,乘客发现轻弹簧的伸长量是电梯静止时的伸长量的一半,这一现象表明:g =10m/s 2A.电梯此时可能正以1m/s 2的加速度加速上升,也可能以1m/s 2的加速度减速下降.B. 电梯此时不可能是以1m/s 2的加速度减速上升,只能是以5m/s 2的加速度加速下降;C.电梯此时正以5m/s 2的加速度加速上升,也可以是以5m/s 2的加速度减速下降.D.不论电梯此时是上升还是下降,也不论电梯是加速还是减速,乘客对电梯地板的压力大小一定是250N.8. 如图所示,木块A 与B 用一轻弹簧相连,竖直放在木块C 上,三者静置于地面,它们的质量比是1:2:3.设所有的接触面光滑,当沿着水平方向迅速抽出木块C 的瞬间,A 和B 的加速度分别是a 1 = ,a 2= 9. 民用航空客机的机舱,除了有正常的舱门和舷梯连接,一般还有紧急出FFSS 1 S 2 CAB口,发生意外的飞机在着地后,打开紧急出口的舱门,会自动生成一个由气囊构成的斜面,机舱内的人可沿该斜面滑行到地面上来,若机舱离气囊底端的竖直高度为3.2m,斜面长4.0m,一个质量为60kg 的乘客在气囊上受到的阻力为240N.求人滑到气囊底端的速度大小为 g =10m/s 210. “蹦极跳”是一种能获得强烈失重、超重感的娱乐项目.人处在离沟底水面上方二十多层楼的高处,用橡皮绳拴住身体,让人自由下落,落到一定位置时橡皮绳拉紧,设人体立即做匀减速运动,接近水面时刚好减为零,然后反弹.已知“勇敢者”头戴50N 的安全帽,开始下落的高度为76m,设计的系统使人落到离水面28m 时,弹性绳才绷紧,则当他落到离水面50m 左右位置时,戴安全帽的头顶感觉如何 当它落到离水面15m 左右时,头向下脚向上,则其颈部要用多大的力才能拉住安全帽 g=10m/s 211. 用如图所示的装置可以测量汽车在水平路面上作匀加速直线运动的加速度.该装置是在矩形车厢前、后壁上各安装一个由压敏电阻组成的压力传感器.用两根完全一样的轻弹簧夹着一个质量为2.0㎏的滑块,两弹簧的另一端分别压在传感器a 、b 上,其压力大小可直接从传感器的显示屏上读出.现将装置沿运动方向固定在汽车上,b 在前,a 在后,当汽车静止时,传感器a 、b 的示数均为10N.g =10m/s 21若传感器a 的示数为14N,b 为6 N,求此时汽车的加速度大小和方向. 2当汽车怎样运动时,传感器a 的示数为零.12. 一个闭合的正方形金属线框abcd,从一个有严格边界的磁场的正上方自由落下,如图示,已知磁场的磁感应强度为B ,线框的边长为l ,质量为m ,线框的总电阻为R ,线框的最低边距磁场边界的高度为H ,试讨论线框进入磁场后的可能的运动情况,并画出v —t 示意图.求解动力学问题的常用方法知识要点一. 动力学的两类基本问题 1. 已知受力求运动应用牛顿第二定律求加速度,如果再知道运动的初始条件,应用运动学公式就可以求解物体的具体运动情况. 2. 已知运动求力传感器av传感器ba cd由运动情况求出加速度,由牛顿第二定律求出物体所受到合外力,结合受力的初始条件,推断物体的受力情况.二. 应用牛顿运动定律解题的一般步骤1.取对象——根据题意确定研究对象,可以是单个物体也可以是系统.2.画图——分析对象的受力情况,画出受力分析图;分析运动情况,画出运动草图.3.定方向——建立直角坐标系,将不在坐标轴上的矢量正交分解.4.列方程——根据牛顿定律和运动学公式列方程. 三. 处理临界问题和极值问题的常用方法临界状态常指某种物理现象由量变到质变过渡到另一种物理现象的连接状态,常伴有极值问题出现.典型例题一、已知受力情况判断运动情况例1如图所示,AC 、BC 为位于竖直平面内的两根光滑细杆,A 、B 、C 三点恰好位于同一圆周上,C 为该圆周的最低点,a 、b 为套在细杆上的两个小环,当两环同时从A 、B 两点自静止开始下滑,则A. 环a 将先到B. 环b 先到C. 两者同时到D. 无法判断例2 将金属块m 用压缩的弹簧卡在一个矩形箱中,如图示,在箱子的上顶部和下地板装有压力传感器,箱子可以沿竖直轨道运动,当箱子以a =2m/s 2的加速度竖直向上作匀减速运动时,上顶部的压力传感器显示的压力为6.0N,下地板的压力传感器显示的压力为10N,g =10m/s 2.1若上顶部压力传感器的示数是下地板压力传感器的示数的一半,判断箱子的运动情况.2要使上顶部压力传感器的示数为零,箱子沿竖直方向运动情况可能是怎样的拓展一弹簧秤的秤盘质量m 1=1.5kg,盘内放一质量为m 2=10.5kg 的物体P ,弹簧质量不计,其劲度系数为k =800N/m,系统处于静止状态,如图所示.现给P 施加一个竖直向上的力F ,使P 从静止开始向上做匀加速直线运动,已知在最初0.2s 内F 是变化的,在0.2s 后是恒定的,求F 的最大值和最小值各是多少 g=10m/s 2例3.一物体放在光滑水平面上,初速度为零.先对物体施加一向东的水平恒力F,历时1s ;随即把此力方向改为向西,大小不变,历时1s ;接着又把此力改为向东,大小不变,历时1s .如此反复,只改变力的B/s方向,不改变力的大小,共历时1min,在此1min 内物体的运动情况是:A .物体时而向东运动,时而向西运动,在1min 末静止于初始位置以东B .物体时而向东运动,时而向西运动,在1min 末静止于初始位置C .物体时而向东运动,时而向西运动,在1min 末继续向东运动D .物体一直向东运动,从不向西运动,在1min 末静止于初始位置以东二、由受力情况判断运动情况1.由一种状态转换为另一种状态时往往要考虑临界状态 例4 如右图所示,斜面是光滑的,一个质量为0.2kg 的小球用细绳吊在倾角是530的斜面顶端,斜面静止时,球紧靠在斜面上,绳与斜面平行,当斜面以8 m/s 2的加速度向右做匀加速运动时,求绳子的拉力及斜面对小球的弹力.2.两个或两个以上物体相互连接参与运动的系统称为连接体.以平衡态或非平衡态下连接体问题拟题屡次呈现于高考卷面中,是考生备考临考的难点之一.例4用质量为m 、长度为L 的绳沿着光滑水平面拉动质量为M 的物体,在绳的一端所施加的水平拉力为F , 如图甲所示,求:1物体与绳的加速度;2绳中各处张力的大小假定绳的质量分布均匀,下垂度可忽略不计.三、对系统应用牛顿运动定律的两种方法:1.牛顿第二定律不仅适用于单个物体,同样也适用于系统.若系统内有几个物体,m 1、m 2、m 3…,加速度分别为a 1、a 2、a 3…,这个系统的合外力为F 合,不考虑系统间的内力则这个系统的牛顿第二定律的表达式为F 合= m 1a 1 +m 2a 2 +m 3a 3 +…,其正交分解表达式为∑Fx = m 1a 1x +m 2a 2x +m 3a 3x +… ∑Fy = m 1a 1y +m 2a 2y +m 3a 3y +…若一个系统内各个物体的加速度大小不相同,而又不需要求系统内物体间的相互作用力,对系统整体列式,可减少未知的内力,使问题简化.例5 如图所示,质量为M 的框架放在水平地面上,一轻质弹簧固定在框架上,下端拴一个质量为m 的小球,当小球上下振动时,框架始终没有跳起来.在框架对地面的压力为零的瞬间,小球加速度大小为:A .g B.M +mg/mC. 0 D .M -mg/m例6 如右图所示,质量为M =10kg 的木楔ABC 置于粗糙的水平地面上,动摩擦因数μ=0.02,在倾角为300的斜面上,有一质量为m =1.0㎏的物块由静止开始沿斜面下滑.当滑行距离为s =1.4m 时,其速度v =1.4m/s.在这过程中木a甲M楔没有动,求地面对木楔的摩擦力的大小和方向.g =10m/s 22. 自然坐标法:在处理连接体问题中,除了常用整体法和隔离法外,还经常用到自然坐标法,即:沿着绳子的自然弯曲方向建立一个坐标轴,应用牛顿第二定律列式.例7 一轻绳两端各系重物A 和B ,质量分别为M 、m 且M >m ,挂在一光滑的定滑轮两侧,刚开始用手托住重物使整个装置处于静止状态,当松开手后,重物B 加速下降,重物A 加速上升,若B 距地面高为H ,求1经过多长时间重物B 落到地面 2运动过程中,绳子的拉力为大同步练习1.07卷Ⅰ如图所示,在倾角为30°的足够长的斜面上有一质量为m 的物体,它受到沿斜面方向的力F 的作用.力F 可按图a 、b 、c 、d 所示的四种方式随时间变化图中纵坐标是F 与mg 的比值,为沿斜面向上为正已知此物体在t =0时速度为零,若用4321υυυυ、、、分别表示上述四种受力情况下物体在3秒末的速率,则这四个速率中最大的是 A .1υB .2υC .3υD .4υ2. 如右图所示,一质量为M 的楔形块放在水平桌面上,它的顶角为900,两底角为a 、β,两个质量均为m 的小木块放在两个斜面上.已知所有的接触面都是光滑的.现在两个小木块沿斜面下滑,而楔形木块静止不动,这时楔形木块对水平桌面的压力等于 A. Mg+ mg B. Mg + 2mg C. Mg + mg sin a + sin βD. Mg + mg cos a + cos β3. 某消防队员从一平台上跳下,下落2m 后双脚着地,接着他用双腿弯曲的方法缓冲,使自身重心又下降了0.5m,在着地的过程中地面对他双脚的平均作用力估计为 A. 自身重力的2倍 B. 自身重力的5倍 C. 自身重力的8倍 D. 自身重力的10倍4. 原来做匀速运动的升降机内,有一个伸长的弹簧拉住质量为m 的物体A ,相对升降机静止在地板上,如图所示,现发现A 突然被弹簧拉向右方,由此判断,此时升降MaβAAB HA B a Aa BMg xo mg ·。
牛顿第一定律和牛顿第三定律一、牛顿第一定律:理解:①牛顿第一定律是物体不受外力作用时的规律,是独立的,与牛顿第二定律无关。
②牛顿第一定律不能用实验来验证,是通过理想实验方法总结出来的。
③牛顿第一定律的意义在于它科学的阐述了力和惯性的概念,正确揭示了力和运动的关系。
二、惯性:理解:①惯性是一切物体都具有的性质,是物体的固有属性,与物体的速度和受力无关。
②惯性的表现:物体不受外力作用时,有保持静止或匀速直线运动的性质;物体受到外力作用时其关性大小表现在运动状态改变的难易程度上。
③力和物体的惯性都对物体运动状态的改变产生影响,但不能把物体的惯性作为一种力。
三、牛顿第三定律:理解:作用力与反作用力之间的关系适用于任何物体,任何状态,与物体间是否接触无关。
分力和合力无反作用力。
作用力与反作用力作用效果不能抵消。
例题:1、一个小球正在做曲线运动,若突然撤去外力,它将A、立即静止下来B、仍做曲线运动C、做减速运动D、做匀速直线运动2、在一艘匀速向北行驶的轮船甲板上,一运动员作立定跳远,若向各个方向都用相同的力,则A、向北跳最远B、向南跳最远C、向东向西跳一样远但没有向南跳远D、无论向哪个方向跳都一样远思考:发射相同的卫星(质量和轨道),向哪个方向发射最省燃料?3、重球系于线DC下端,重球下系一根同样的线BA,下面说法正确的是A、在线的A端缓慢增加拉力,CD先断B、在线的A端缓慢增加拉力,AB先断C 、 在线的A 端突然猛力一拉,AB 先断D 、 在线的A 端突然猛力一拉,CD 先断4、汽车拉着拖车在水平路面上沿着直线加速行驶根据牛顿运动定律可知A 、 汽车拉拖车的力大于拖车拉汽车的力B 、 汽车拉拖车的力等于拖车拉汽车的力C 、 汽车拉拖车的力大于拖车受到的阻力D 、 汽车拉拖车的力等于拖车受到的阻力5、在平直的轨道上,密闭的车厢向右做匀加速直线运动。
某时刻起车厢顶上P 点连续处掉下几个水滴并都落到车厢的地板上下列说法正确的是:A 、 这几个水滴都落到P 点正下方的O 点B 、 这几个水滴都落到OA 之间的同一点C 、 这几个水滴都落到OB 之间的同一点D 、 这几个水滴不可能落到同一点思考:若车厢高h ,车箱加速度为a ,则水滴落地点到O 点的距离是多少?6、一向右运动的车厢顶上悬挂着单摆M 与N ,它们只能在图示上摆动,某一瞬间出现如图所示情景,由此可知,车厢的运动及两个单摆相当于车厢的运动的可能情况是A 、 车厢做匀速直线运动,M 在摆动,N 静止B 、 车厢做匀速直线运动,M 在摆动,N 也在摆动C 、 车厢做匀速直线运动,M 静止,N 在摆动D 、 车厢做匀加速直线运动,M 静止,N 也静止7、两辆完全相同的汽车,一辆是空车,一辆装满货物,在同一路面上以相同的速度行驶,两辆车的车轮与地面的动摩擦因数相同,当急刹车后(车轮不转,只可能滑动),则A 、空车滑动的距离较小B 、空车滑动的距离较大C 、两车滑行过程中加速度不等D 、两车滑动的时间相等牛顿第二定律一、牛顿第二定律:①加速度与合外力关系的四性:同体性、矢量性、瞬时性、独立性。
牛 顿 运 动 定 律1、牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,除非作用在它上面的力迫使它改变这种状态为止。
(1)运动是物体的一种属性,物体的运动不需要力来维持;(2)它定性地揭示了运动与力的关系,即力是改变物体运动状态的原因,(运动状态指物体的速度)又根据加速度定义:t v a ∆∆=,有速度变化就一定有加速度,所以可以说:力是使物体产生加速度的原因。
(不能说“力是产生速度的原因”、“力是维持速度的原因”,也不能说“力是改变加速度的原因”。
);(3)定律说明了任何物体都有一个极其重要的属性——惯性;一切物体都有保持原有运动状态的性质,这就是惯性。
惯性反映了物体运动状态改变的难易程度(惯性大的物体运动状态不容易改变)。
质量是物体惯性大小的量度。
(4)牛顿第一定律描述的是物体在不受任何外力时的状态。
而不受外力的物体是不存在的,牛顿第一定律不能用实验直接验证,因此它不是一个实验定律(5)牛顿第一定律是牛顿第二定律的基础,物体不受外力和物体所受合外力为零是有区别的,所以不能把牛顿第一定律当成牛顿第二定律在F =0时的特例,牛顿第一定律定性地给出了力与运动的关系,牛顿第二定律定量地给出力与运动的关系。
2、牛顿第二定律:物体的加速度跟作用力成正比,跟物体的质量成反比。
公式F=ma.(1)牛顿第二定律定量揭示了力与运动的关系,即知道了力,可根据牛顿第二定律研究其效果,分析出物体的运动规律;反过来,知道了运动,可根据牛顿第二定律研究其受力情况,为设计运动,控制运动提供了理论基础;(2)牛顿第二定律揭示的是力的瞬时效果,即作用在物体上的力与它的效果是瞬时对应关系,力变加速度就变,力撤除加速度就为零,力的瞬时效果是加速度而不是速度;(3)牛顿第二定律是矢量关系,加速度的方向总是和合外力的方向相同的,可以用分量式表示,F x =ma x ,F y =ma y , 若F 为物体受的合外力,那么a 表示物体的实际加速度;若F 为物体受的某一个方向上的所有力的合力,那么a 表示物体在该方向上的分加速度;若F 为物体受的若干力中的某一个力,那么a 仅表示该力产生的加速度,不是物体的实际加速度。
著名十大物理定律1、牛顿第一定律:物体的运动状态不改变的前提下,物体内不存在其它内在力作用,物体处于静止状态或运动状态的速度不变。
也就是说,牛顿第一定律宣称物体想要保持其运动状态,则所受的外力必须为零。
2、牛顿第二定律:如果物体受到外力作用,物体所受物体量等于外力大小与物体质量的乘积,以牛顿(N)为单位。
也就是说,物体受力的变化程度跟力和质量成正比。
3、牛顿第三定律:任何一处受到外力,另一处也会作用等量的反作用力。
也就是说,对任何一物体作用的力必有相等的反作用力,作用和反作用力的方向是相反的。
4、引力法则:两个物体的引力成正比于它们的质量并且两个物体之间的距离的平方成反比。
它说明宇宙中物体之间是可以相互作用的,并且遵循引力法则。
5、相对论:在相对论中,物体之间的间距不仅受到时间与空间的影响,而且还会受到重力的影响,由此生成一个相对的性质,如时间-空间的非定性性质,空间的扭曲,时间的延缓,光的偏折。
6、量子力学:它是现代物理学研究的基础,它描述的是微观世界中物质的可能性,以及物质的无穷多的变化方式。
它是由三个部分组成的,分别为波动力学、内力力学和量子电动力学。
7、普朗克定律:它是普朗克在量子力学中提出的定律,又称为光电效应,它表明了当玻尔兹曼粒子在能量较低的外力场中转换光子时产生辐射。
从而,使用普朗克定律,可以准确地计算出外力场中物理现象中光子之间的数量细节。
8、麦克斯韦定律:麦克斯韦定律描述了非连续作用系统中的物理现象。
它表明,只要给定的系统的均衡力等于互相作用的物体的质量和速度,这些物体将保持其平衡状态,不受外力的影响。
9、热力学第一定律:它指的是热可以在没有影响(即与外部系统的能量变化无关)的内部过程之中被转化,从而可以应用在实际的物理现象中。
它其实也是守恒定律的一种,说明总能量不变,其实也就是熵在保持不变。
10、热力学第二定律:该定律指热不可以从低温到高温自由转化,只能是从高温到低温的一种过程,否则就会出现热的消失,导致能量的改变,甚至是能量的渗漏。
动力学的基本定律动力学是研究物体运动和运动变化规律的科学,是物理学的一个重要分支。
在动力学中,有三条基本定律被广泛接受和应用,它们分别是牛顿第一定律、牛顿第二定律和牛顿第三定律。
一、牛顿第一定律:惯性定律牛顿第一定律又称为惯性定律,它表明若物体处于静止状态,则会继续保持静止;若物体处于匀速直线运动状态,则会继续保持匀速直线运动,除非有外力作用于它。
简单来说,物体的运动状态不会自发改变,除非有力使它改变。
二、牛顿第二定律:运动定律牛顿第二定律是描述物体运动状态变化的原因,它表明物体所受合力与物体的加速度成正比,且方向与合力相同。
其数学表达式为F=ma,其中F表示物体所受合力,m表示物体的质量,a表示物体的加速度。
这个定律说明了物体的加速度与作用在物体上的合力成正比,且与物体的质量成反比。
三、牛顿第三定律:相互作用定律牛顿第三定律又称为相互作用定律,它规定当物体A对物体B施加力时,物体B一定会对物体A施加同大小、反方向的力。
这意味着所有的力都是成对出现的,且两个相互作用力的大小相等、方向相反,并作用在不同的物体上。
换句话说,如果有一个物体对另一个物体施加了力,那么这两个物体之间一定存在相互作用力。
通过牛顿的三个基本定律,我们可以对物体的运动进行分析和预测。
牛顿的运动定律不仅适用于地球上的物体,也适用于宇宙中的天体运动。
这些定律为我们解释了许多经典力学现象,如自由落体运动、弹簧振子的运动等。
除了牛顿力学外,还有其他形式的动力学定律,在研究微观领域的物理现象时起到了重要作用。
例如,量子力学描述了微观粒子的运动行为,而相对论则描述了高速运动物体的性质。
总结起来,动力学的基本定律是牛顿的三个定律,它们分别是牛顿第一定律、牛顿第二定律和牛顿第三定律。
这些定律不仅在物理学领域发挥着重要作用,也被广泛应用于其他科学和工程领域,为我们理解和探索世界提供了坚实的基础。
9牛顿第一定律、牛顿第三定律
一、复习目标
1、理解力和运动的关系,知道物体的运动不需要力来维持。
2、理解牛顿第一定律,理解惯性的概念,知道质量是惯性大小的量度。
3、认识力的作用是相互的,能找出某个力对应的反作用力。
4、理解牛顿第三定律,能区别相互作用力和平衡力。
二、要点讲练
(一)牛顿第一定律
1、内容:一切物体总保持或状态,直到有迫使它改变这一状态为止。
2、对牛顿第一定律(即惯性定律)的理解:
(1)一切物体都具有的一种基本属性——。
(2)力和运动的关系:力改变物体运动状态的原因,而维持物体运动的原因,物体的运动并不需要力来维持。
(填“是”或“不是”)
3、惯性:
(1)惯性是物体固有的属性,与物体的受力情况及运动状态。
(2)是物体惯性大小的唯一量度,质量大的物体大。
问题1:如何理解伽利略理想斜面实验?
1.理想实验有时更能深刻地反映自然规律,伽利略设想了一个理想实验,如图1所示,
其中有一个是实验事实,其余是推论。
①减小第二个斜面的倾角,小球在这斜面上仍然要达到原来的高度;
②两个对接的斜面,让静止的小球沿一个斜面滚下,
小球将滚上另一个斜面;
③如果没有摩擦,小球将上升到原来释放的高度;
④继续减小第二个斜面的倾角,最后使它成水平面,
小球要沿水平面做持续的匀速运动。
请将上述理想实验的设想步骤按照正确的顺序排列
(只要填写序号即可)。
在上述的设想步骤中,有的属于可靠的事实,有的则是理想化的推论。
下列关于事实和推论的分类正确的是()
A.①是事实,②③④是推论B.②是事实,①③④是推论
C.③是事实,①②④是推论D.④是事实,①②③是推论
2.16世纪末,伽利略用实验和推理,推翻了已在欧洲流行了近两千年的亚里士多德关
于力和运动的理论,开启了物理学发展的新纪元。
在以下说法中,与亚里士多德观点相反的是()
A.四匹马拉的车比两匹马拉的车跑得快,这说明物体受的力越大,速度就越大。
B.一个运动的物体,如果不再受力了,它总会逐渐停下来,这说明静止状态才是物体不受力时的“自然状态”。
C.两物体从同一高度自由下落,较重的物体下落较快。
D.一个物体维持匀速直线运动,不需要受力。
3.(多选)关于伽利略的理想斜面实验下列说法正确的是()
图3 m1 m2
A.伽利略的理想实验是假想的,没有科学依据
B.伽利略的理想实验是在可靠的事实基础上进行抽象思维而创造出来的一种科学推理方法,是科学研究中的一种重要方法
C.伽利略的理想实验有力地否定了亚里士多德的观点
D.在科学发展的今天,伽利略的理想斜面实验是可以通过实验演示的
问题2:如何理解牛顿第一定律?它揭示了力和运动有什么关系?
4.(多选)对于牛顿第一定律的看法,下列观点正确的是()
A.牛顿第一定律揭示了力是产生并维持运动的原因
B.牛顿第一定律揭示了力是改变物体运动状态的原因
C.牛顿第一定律描述的是一种理想状态,无实际意义
D.牛顿第一定律给出了惯性的概念,从而揭示出物体运动,不需要力来产生或维持
5.以下说法正确的是()
A.物体不受外力作用时,一定处于静止状态
B.要使物体运动必须有力的作用,没有力的作用,物体将静止
C.要使物体静止必须有力的作用,没有力的作用,物体将运动
D.物体不受外力作用时,总保持原来的匀速直线运动状态或静止状态
6.(多选)下列物体的运动状态没有发生变化的是()
A.停在空中的直升机 B.减速驶入车站的汽车
C.匀速直线下落的跳伞员D.环绕地球运转的人造卫星
7.如图所示,在一辆表面光滑的小车上有质量分别为m1、m2的两个
小球(m1>m2)随车一起匀速运动,当车突然停止时,如不考虑
其它阻力,设车无限长,则两个小球()
A.一定相碰
B.一定不相碰
C.不一定相碰
D.不能确定是否相碰
8.一列以速度v匀速行驶的列车内有一水平桌面,桌面上的A处有一小球。
若车厢内的
旅客突然发现小球沿如图3所示(俯视图)的虚线从A点运动到B点,则由此可以判断列车的运行情况是()
A.减速行驶,向南转弯
B.减速行驶,向北转弯
C.加速行驶,向南转弯
D.加速行驶,向北转弯
问题3:什么是惯性?其大小如何量度?怎样正确理解惯性?
9.下列说法正确的是()
A.运动得越快的汽车越不容易停下来,是因为汽车运动得越快,惯性越大
B.小球在做自由落体运动时,惯性不存在了
C.把一个物体竖直向上抛出后,能继续上升,是因为物体仍受到一个向上的推力D.物体的惯性仅与质量有关,质量大的惯性大,质量小的惯性小
10.关于惯性的下列说法中正确的是()
A.物体能够保持原有运动状态的性质叫惯性。
B.物体不受外力作用时才有惯性。
C.物体静止时有惯性,一开始运动,不再保持原有的运动状态,也就失去了惯性。
D.物体静止时没有惯性,只有始终保持运动状态才有惯性。
11.火车在长直水平轨道上匀速行驶,车厢内有一个人向上跳起,发现仍落回到车上原处,
这是因为()
A.人跳起后,车厢内的空气给人一个向前的力,这力使他向前运动
B.人跳起时,车厢对人一个向前的摩擦力,这力使人向前运动
C.人跳起后,车继续向前运动,所以人下落后必定向后偏一些,只是由于时间很短,距离太小,不明显而已
D.人跳起后,在水平方向人和车水平速度始终相同
(二)牛顿第三定律
1、内容:两个物体之间的作用力与反作用力总是大小,方向,作用在,这就是牛顿在前人的实验基础上总结出来的牛顿第三定律。
2、对牛顿第三定律的理解
作用力与反作用力的关系可总结为“三同、三异、三无关”:
(1)三同:同,同,同时
(2)三异:方向,作用对象,作用效果
(3)三无关:与物体的种类无关,与物体的无关,与是否存在其它力无关
问题4:作用力和反作用力有哪些特点?
12.关于作用力与反作用力,下列说法中正确的是()
A.先有作用力,后有反作用力
B.凡是大小相等,方向相反,作用在一条直线上的两个力,必定是一对作用力和反作用力
C.作用力和反作用力一定是同时产生,同时消失
D.作用力和反作用力既然总是大小相等方向相反就应该能互相抵消
13.(多选)如图4所示,P和Q叠放在一起,静止在水平桌面上,在以下各对力中属于作
用力和反作用力的是()
A.P对Q的压力和Q对P的支持力
B.P所受重力和P对Q的压力
C.Q对桌面的压力和桌面对Q的支持力
D.P所受重力和Q对P的支持力
14.(多选)下列说法正确的是()
A.拔河比赛时,胜方拉对方的力大于败方拉对方的力
B.马能拉车前进是因为马对车的拉力大于车对马的拉力
C.太阳对地球的吸引力与地球对太阳的吸引力大小一定相等
D.用铁锤钉钉子,锤对钉的打击力与钉对锤的作用力大小一定相等
15.(多选)下列说法中正确的是()
A.人走路时地对脚的推力大于人对地的蹬力,所以人才能向前进
B.只有人站着不动时人对地的压力才与地对人的弹力等大
C.人站着在地面上时人对地的压力总是与地对人的弹力等大
D.以卵击石时,石头对卵的压力与卵对石头的弹力等大
问题6:怎样正确区分平衡力与作用力、反作用力?
16.物体静止于一斜面上如图所示.则下述说法正确的是()
A.物体对斜面的压力和斜面对物体的支持力是一对平衡力
B.物体对斜面的摩擦力和斜面对物体的摩擦力是一对作用力
和反作用力
C.物体所受重力和斜面对物体的作用力是一对作用力和反作用力
D.物体所受重力可以分解为沿斜面向下的力和对斜面的压力
17.粗糙的水平地面上有一只木箱,现用一水平力拉木箱匀速前进,则()
A.拉力与地面对木箱的摩擦力是一对作用力与反作用力
B.木箱对地面的压力与地面对木箱的支持力是一对平衡力
C.木箱对地面的压力与地面对木箱的支持力是一对作用力与反作用力
D.木箱对地面的压力与木箱受到的重力是一对平衡力
18.如图,不计悬绳的重量,把B、C两个物体悬吊在天花板A点。
当物体静止后,
下面哪一对力是平衡力()
A.天花板对绳的拉力和绳对天花板的拉力
B.上段绳对B物的拉力和下段绳对B物的拉力
C.下段绳对B物的拉力和下段绳对C物的拉力
D.下段绳对C物的拉力和C物受到的重力
参考答案
(一)牛顿第一定律
1、匀速直线运动,静止,外力
2、惯性,是,不是
3、无关,质量,惯性
1.②③①④;B
2. D
3.BC
4.BD
5. D
6.AC
7. B
8. A
9. D
10. A
11. D
(二)牛顿第三定律
1、相等,相反,同一条直线上
2、大小,性质,产生、变化、消失;相反,不同,不同;运动状态
12. C
13.AC
14.CD
15.CD
16. B
17. C
18. D。