激光发展史
- 格式:pptx
- 大小:5.84 MB
- 文档页数:23
第十二章激光发展简史2011-01-17激光是20世纪中叶以后近二三十年内发展起来的一门新兴科学技术。
它是现代物理学的一项重大成果,是20世纪量子理论、无线电电子学、微波波谱学以及固体物理学的综合产物,也是科学与技术、理论与实践紧密结合产生的灿烂成果。
激光科学从它的孕育到初创和发展,凝聚了众多科学家的创造智慧。
他们的探索精神,值得我们认真学习和总结[1]。
§12.1爱因斯坦提出受激辐射概念激光的理论基础早在1916年就已经由爱因斯坦奠定了。
他以深刻的洞察力首先提出了受激辐射的概念。
所谓受激辐射的概念是这样的:处于高能级的原子,受外来光子的作用,当外来光子的频率正好与它的跃迁频率一致时,它就会从高能级跳到低能级,并发出与外来光子完全相同的另一光子。
新发出的光子不仅频率与外来光子一样,而且发射方向、偏振态、位相和速率也都一样。
于是,一个光子变成了两个光子。
如果条件合适,光就可以象雪崩一样得到放大和加强。
特别值得注意的是,这样放大的光是一般自然条件下得不到的“相干光”。
爱因斯坦是在论述普朗克黑体辐射公式的推导中提出受激辐射概念的。
这篇论文题为《辐射的量子理论》,发表在德文《物理学年鉴》上。
爱因斯坦在玻尔能级理论的基础上进一步发展了光量子理论,他不但论述了辐射的两种形式:自发辐射和受激辐射,而且也讨论了光子与分子之间的两种相互作用:能量交换和动量交换,为后来发现的康普顿效应奠定了理论基础(参看§9.1)。
不过爱因斯坦并没有想到利用受激辐射来实现光的放大。
因为根据玻尔兹曼统计分布,平衡态中低能级的粒子数总比高能级多,靠受激辐射来实现光的放大实际上是不可能的。
因此在爱因斯坦提出受激辐射理论的许多年内,这个理论并没有太多运用,仅仅局限于理论上讨论光的散射、折射、色散和吸收等过程。
直到1933年,在研究反常色散问题时才触及到光的放大。
§12.2负色散的研究色散理论早在1900年就由特鲁德(P.Drude)建立,能够解释一部分实验结果。
激光发展史1917年,爱因斯坦提出了一套全新的技术理论”光与物质相互作用”。
这一理论是说在组成物质的原子中,有不同数量的粒子(电子)分布在不同的能级上,在高能级上的粒子受到某种光子的激发,会从高能级跳到(跃迁)到低能级上,这时将会辐射出与激发它的光相同性质的光,而且在某种状态下,能出现一个弱光激发出一个强光的现象。
这就叫做“受激辐射的光放大”,简称激光。
1953年,美国物理学家Charles Townes用微波实现了激光器的前身:微波受激发射放大。
1957年,GordonGould创造了“laser”这个单词,从理论上指出可以用光激发原子。
1958年,美国科学家肖洛(Schawlow)和汤斯(Townes)提出了“激光原理”,即物质在受到与其分子固有振荡频率相同的能量激发时,都会产生这种不发散的强光--激光。
他们为此发表了重要论文,并获得1964年的诺贝尔物理学奖。
1960年5月15日,美国加利福尼亚州休斯实验室的科学家梅曼宣布获得了波长为0.6943微米的激光,这是人类有史以来获得的第一束激光,梅曼因而也成为世界上第一个将激光引入实用领域的科学家。
1960年7月7日,梅曼宣布世界上第一台激光器诞生,梅曼的方案是,利用一个高强闪光灯管,来激发红宝石。
由于红宝石其实在物理上只是一种掺有铬原子的刚玉,所以当红宝石受到刺激时,就会发出一种红光。
在一块表面镀上反光镜的红宝石的表面钻一个孔,使红光可以从这个孔溢出,从而产生一条相当集中的纤细红色光柱,当它射向某一点时,可使其达到比太阳表面还高的温度。
1961年,中国第一台激光器诞生于王大珩领导的长春光机所。
1961年,激光首次在外科手术中用于杀灭视网膜肿瘤。
1962年,前苏联科学家尼古拉-巴索夫发明半导体二极管激光器,这是今天小型商用激光器的支柱。
1964年,我国著名物理学家王淦昌院士提出了激光核聚变的初步理论,从而使我国在这一领域的科研工作走在当时世界各国的前列。
激光科学与技术的发展激光科学与技术已经在各领域展现了其无限的潜力,给我们带来了前所未有的便利和惊喜。
激光是一种特殊的光,它除了具有光的各种性质外,还具有很强的单色性和相干性。
激光科学与技术的发展使得它在众多领域得到广泛应用,如医疗、材料加工、通信等。
那么,激光从何而来,其发展史如何?最新的激光科学与技术有哪些重要进展?本文将从这些方面介绍激光科学与技术的发展演变。
激光的发展史激光的发明与应用可以追溯到二十世纪五十年代。
1954年,美国科学家查尔斯·哈丁姆发现了一种稀土离子的射线分裂出的狭窄谱线光,即最初的激光光源—红宝石激光器。
1960年,美国物理学家提奇和高登发明了第一台获得连续运行的激光器—氩离子激光器。
此后,激光科学与技术不断发展迅速,激光的种类也越来越多,如:碳化钕激光器、半导体激光器、光纤激光器、化学气相激光器等等。
激光技术的应用激光技术在不同领域中有着广泛的应用。
现在我们主要介绍激光技术在医疗、材料加工、通信等方面的应用。
医疗方面激光技术在医疗领域的应用已经成为医学界的热点研究方向,其优点在于可使手术实现非接触性,减少感染率,能精准定位、快速完成。
激光在医疗领域的应用主要有:激光诊断,激光治疗,激光手术等。
如,激光角膜成形术(LASIK)已经成为眼科最先进的矫正近视的手术。
材料加工方面激光通过烧蚀、熔接、电离等作用方式在材料表面形成高温、高压、高能流等,可在材料表面形成几微米至几十微米厚的纳米涂层。
激光加工入侵量很低,切割、钻孔、焊接等加工成型更容易实现高难度加工。
例如,我们经常听到的激光切割机,是以高密度激光束通过光路系统集中到很小的空间区域,让材料表面烧熔、汽化或反应,实现切割效果。
通信方面通信领域中,激光广泛应用于光纤通信、卫星通信、无线通信等。
激光以宽带、高传输能力、无干扰、高抗干扰等优点著称。
现在,激光通信正逐步逐步替代电信,成为通信另一重要的发展方向。
未来展望激光科技在世界各国的研究和发展已经深入进行,以美国、中国、日本、欧洲等国家与地区为主的国际上,激光技术的研究有目共睹。
中国激光发展史激光技术是一项重要的现代科技成果,对于国家的科技实力和经济发展具有重要意义。
在中国,激光技术的发展经历了多个阶段,从最初的引进和研究,到自主创新和产业化,不断推动了中国激光产业的发展。
本文将从中国激光发展的历史角度,为大家介绍中国激光发展的脉络和成就。
20世纪50年代,激光技术在世界范围内开始兴起。
中国在1957年引进了最早的激光装置,为激光技术的发展奠定了基础。
随后,中国科学家开始在激光领域进行研究,探索激光技术的应用。
在这一时期,中国激光技术的研究主要以基础理论为主,通过国际学术交流和国内科研合作,中国的激光研究开始取得一些初步成果。
到了20世纪70年代,中国开始了激光技术的自主研究和发展。
在这个时期,中国科学家积极开展激光技术的研究工作,并在多个领域取得了重要突破。
1970年,中国科学院激光研究所成立,成为中国激光技术研究的重要机构之一。
此后,中国的激光研究逐渐走上了正轨,开始形成一支专业化的激光研究队伍。
在20世纪80年代,中国的激光技术研究进入了一个新的阶段。
中国科学家开始关注激光技术的应用,并在军事、工业、医疗等领域取得了一系列重要成果。
1983年,中国成功研制出第一台国产化的激光器,标志着中国激光技术实现了从引进到自主创新的重要转变。
此后,中国的激光技术研究进一步加强,取得了更多的创新成果。
到了21世纪,中国的激光技术研究和应用取得了长足的进步。
中国激光产业不断发展壮大,成为全球激光技术领域的重要力量。
中国的激光设备制造商也迅速崛起,为国内外市场提供了各类高质量的激光产品。
此外,中国的激光应用领域也在不断扩大,涵盖了工业加工、医疗美容、通信等多个领域。
中国的激光技术在航天、国防等领域的应用也取得了重要突破。
总结来看,中国激光发展经历了引进和研究、自主创新和产业化等多个阶段。
中国科学家通过多年的努力,使得中国的激光技术在世界上具有一定的影响力。
未来,中国的激光技术发展仍面临着一些挑战和机遇,需要不断加强基础研究和技术创新,推动激光技术在更多领域的应用,为国家的科技创新和经济发展做出更大贡献。
激光技术的发展与应用在21世纪,激光技术得到了广泛的应用。
激光技术是一种能量极高的光源,它能够提供聚焦、切割、治疗和测量等多种功能。
本文旨在探讨激光技术的发展与应用。
一、激光技术的发展史激光技术的历史可以追溯到1958年,当时美国物理学家魏曼(W. Maiman)首次制造了一种获得激光光束的器件——宝石激光体(system). 直到1960年,美国贝尔实验室的研究人员成功地发明了一种类气体分子激光器,标志着激光技术进入了实用阶段。
之后,激光技术被广泛应用于医疗、通讯、军事、制造等领域。
二、激光技术的应用领域1.医疗领域激光可以在医疗领域中起到许多作用。
比如,对于癌症和其他组织的治疗,激光可以运用其热性质动态地摧毁恶性组织和肿瘤。
另外,激光技术可用于美容整形手术,如脱毛、除皱、抽脂、永久性化妆等。
2.通讯领域激光还被广泛用于通讯领域。
利用光感应器和激光来发射信号,可以使光信号传送得更远、更稳定,而不易受到电磁干扰的影响。
此外,激光还可以应用于光纤通讯技术,因为其能够在纤维内传输信号。
3.军事领域激光技术在军事领域也有广泛的应用,如激光导弹的瞄准和隐身系统(可以隐藏无人机的发射源)。
激光雷达也可以用于探测物体的位置,甚至可以穿透云层来进行侦察。
4.制造领域激光技术也被广泛用于制造领域。
利用激光进行精细切割和精细焊接可以提高工业生产效率。
此外,研究人员也利用激光进行3D打印,这为工艺制造领域提供了新的思路和工具。
三、未来展望随着新材料的发展和激光技术的日益成熟,激光技术将会在更广泛的领域中发挥作用。
比如,激光技术可以被应用在量子计算机和人工智能等领域,从而推动科学与技术的发展。
总之,激光技术的发展和应用一直在不断地拓展新的领域。
尽管激光技术还存在许多问题,如高能耗和高成本等,但是这仅是一个技术发展的过程。
我们有理由相信,在不久的将来,激光技术必然会在各个领域中有更广泛的应用。
医用激光的发展史和弱激光治疗的现状、发展及展望激光是20世纪60年代初产生的一项重大技术,被视为20世纪四大发明之一(激光、半导体、原子能和电子计算机),是长期以来对量子物理、波谱学、光学和电子学等学科综合研究的成果。
早在1917年爱因斯坦首先提出了受激辐射的概念,他指出,不同能级的粒子在能级之间发生跃迁的同时,要吸收或发射能量。
跃迁过程分为受激跃迁和自发跃迁,其中受激跃迁又分为受激辐射和受激吸收两类。
这些都为激光发展提供了物理学基础。
如何实现粒子数反转,实现光的放大,1923年台尔曼、1940年前苏联的法布里康德、1946年瑞士的布洛赫、1951年珀塞尔和庞德等人在这方面作出了贡献。
特别是1954年汤斯研制成氨分子量子振荡器,这一新的器件称为脉塞(Maser),并且前苏联的巴索夫(Bасов)和普罗霍洛夫(IIрохров)独立地进行类似的研究工作,也研制出一台微波量子振荡器,所以,1964年物理学诺贝尔奖为汤斯、巴索夫和普罗霍洛夫三个所获。
1954~1957年威汤斯和肖洛做出了法布里-珀罗谐振腔(即两个端面的反射镜)。
值得骄傲的是我国王大珩教授在20世纪50年代末即提出将原子发光体放在法布里-珀罗谐振腔内,可以延长某一频率的光波波列,提高单色性。
1960年美国梅曼(Maiman)用红宝石作为工作物质制成世界第一台激光器,从此,为人类开创了一项新的技术--激光技术。
第一台激光器诞生后的6个月,在贝尔实验室的伊朗科学家阿里贾万(A.Javan)研究成功第一台气体激光器--He-Ne激光器。
随后几年,各种激光器如同雨后春笋一样相继发明,如钕玻璃,掺钕钇铝石榴石、二氧化碳、氩离子。
20世纪70年代,氮分子、氦镉、染料、氪、铜蒸汽、钬、一氧化碳、氟化氢等化学激光器逐渐得以应用。
20世纪80年代,人们又探索研制出一批新型的激光器,包括准分子激光器、Er:YAG 激光器、HF激光器、X射线激光器和自由电子激光器等。