第七章 图像分割(2)
- 格式:pptx
- 大小:1.54 MB
- 文档页数:46
第七章图像分割1、什么是区域?什么是图像分割?答:在对图像的研究和应用中,人们往往仅对图像中的某些部分感兴趣。
这些感兴趣的部分常称为目标或图像,它们一般对应图像中的特定的、具有独特性质的区域。
这里的区域是指相互连通的、有一致属性的像素的集合。
图像分割是指把图像分成互不重叠区域并提取感兴趣目标的技术。
2、边缘检测的理论依据是什么,有哪些方法?各有哪些特点?答:边缘是指图像中像素灰度有阶跃变化或屋顶状变化的那些像素的集合。
它存在于目标和背景、目标与目标、区域与区域、基元与基元之间。
他对图像识别和分析十分有用,边缘能够画出目标物体轮廓,使观察者一目了然,包含了丰实的信息,是图像识别中抽取的重要属性。
利用边缘灰度变化的一阶或二阶导数特点,可以将边缘点检测出来。
方法包括:(1)梯度算子;特点是仅计算相邻像素的灰度差,对噪音敏感,无法抑制噪声的影响。
(2)Roberts梯度算子;与梯度算子检测边缘的方法类似,但效果较梯度算子略好。
(3)Prewitt和Sobel算子;该算子不仅能检测边缘点,且能进一步抑制噪声的影响,但检测的边缘较宽。
(4)方向算子;检测能力强,抗噪能力好。
(5)拉普拉斯算子;特点是各向同性、线性和位移不变的;对细线和孤立点检测效果较好。
但边缘方向信息丢失,常产生双像素的边缘,对噪声有双倍加强作用。
(6)马尔算子;马尔算子用到的卷积模板一般较大,不过这些模板可以分解为一维卷积来快速计算。
(7)Canny算子;可以减少小模板检测中的边缘中断,有利于得到较为完整的线段。
3、什么是hough变换?hough变换检测直线时,为什么不采用y=kx+b的表达式?试述采用hough变换检测直线的原理。
答:设在直线坐标系中有一条直线L,在原点到该直线的垂直距离为Ρ,垂线与x周的夹角为θ,则可用Ρ、θ来表示该直线,其直线方程为:Ρ=xcosθ+ysinθ而这条直线用极坐标表示则为一点(Ρ,θ),可见,直角坐标系中的一条直线对应极坐标系中的一点,这种线到点的变换叫做hough变换。
第一章引言一.填空题1. 数字图像是用一个数字阵列来表示的图像。
数字阵列中的每个数字,表示数字图像的一个最小单位,称为像素2.像增强等;二是从图像到非图像的一种表示,如图像测量等。
5. 数字图像处理包含很多方面的研究内容。
其中,图像重建的目的是根据二维平面图像数据构造出三维物体的图像。
二.简答题1. 数字图像处理的主要研究内容包含很多方面,请列出并简述其中的4种。
①图像数字化:将一幅图像以数字的形式表示。
主要包括采样和量化两个过程。
②图像增强:将一幅图像中的有用信息进行增强,同时对其无用信息进行抑制,提高图像的可观察性。
③图像的几何变换:改变图像的大小或形状。
④图像变换:通过数学映射的方法,将空域的图像信息转换到频域、时频域等空间上进行分析。
如傅利叶变换等。
⑤图像识别与理解:通过对图像中各种不同的物体特征进行定量化描述后,将其所期望获得的目标物进行提取,并且对所提取的目标物进行一定的定量分析。
2. 什么是图像识别与理解?图像识别与理解是指通过对图像中各种不同的物体特征进行定量化描述后,将其所期望获得的目标物进行提取,并且对所提取的目标物进行一定的定量分析。
比如要从一幅照片上确定是否包含某个犯罪分子的人脸信息,就需要先将照片上的人脸检测出来,进而将检测出来的人脸区域进行分析,确定其是否是该犯罪分子。
5. 简述图像几何变换与图像变换的区别。
①图像的几何变换:改变图像的大小或形状。
比如图像的平移、旋转、放大、缩小等,这些方法在图像配准中使用较多。
②图像变换:通过数学映射的方法,将空域的图像信息转换到频域、时频域等空间上进行分析。
比如傅里叶变换、小波变换等。
第二章图像的基本概念一.填空题1. 量化可以分为均匀量化和非均匀量化两大类。
2. 采样频率是指一秒钟内的采样次数。
3. 图像因其表现方式的不同,可以分为连续图像和离散图像两大类。
3.5. 对应于不同的场景内容,一般数字图像可以分为二值图像、灰度图像和彩色图像三类。
图像分割之(二)Graph Cut(图割)Graph cuts是一种十分有用和流行的能量优化算法,在计算机视觉领域普遍应用于前背景分割(Image segmentation)、立体视觉(stereo vision)、抠图(Image matting)等。
此类方法把图像分割问题与图的最小割(min cut)问题相关联。
首先用一个无向图G=<V,E> 表示要分割的图像,V和E分别是顶点(vertex)和边(edge)的集合。
此处的Graph和普通的Graph稍有不同。
普通的图由顶点和边构成,如果边的有方向的,这样的图被则称为有向图,否则为无向图,且边是有权值的,不同的边可以有不同的权值,分别代表不同的物理意义。
而Graph Cuts图是在普通图的基础上多了2个顶点,这2个顶点分别用符号”S”和”T”表示,统称为终端顶点。
其它所有的顶点都必须和这2个顶点相连形成边集合中的一部分。
所以Graph Cuts中有两种顶点,也有两种边。
第一种顶点和边是:第一种普通顶点对应于图像中的每个像素。
每两个邻域顶点(对应于图像中每两个邻域像素)的连接就是一条边。
这种边也叫n-links。
第二种顶点和边是:除图像像素外,还有另外两个终端顶点,叫S (source:源点,取源头之意)和T(sink:汇点,取汇聚之意)。
每个普通顶点和这2个终端顶点之间都有连接,组成第二种边。
这种边也叫t-links。
上图就是一个图像对应的s-t图,每个像素对应图中的一个相应顶点,另外还有s和t两个顶点。
上图有两种边,实线的边表示每两个邻域普通顶点连接的边n-links,虚线的边表示每个普通顶点与s和t连接的边t-links。
在前后景分割中,s一般表示前景目标,t一般表示背景。
图中每条边都有一个非负的权值w e,也可以理解为cost(代价或者费用)。
一个cut(割)就是图中边集合E的一个子集C,那这个割的cost(表示为|C|)就是边子集C的所有边的权值的总和。