第7章 图像分割 7.1 图像分割的定义和分类 7.2 基于边缘的分割 7.3 基于区域的分割 7.4 基于阈值的分割 7.5
- 格式:ppt
- 大小:1.22 MB
- 文档页数:23
数字图像处理与摄影技术作业指导书第1章数字图像处理基础 (3)1.1 数字图像处理概述 (3)1.1.1 数字图像定义 (3)1.1.2 数字图像处理的目的与意义 (4)1.1.3 数字图像处理的基本流程 (4)1.2 图像处理基本操作 (4)1.2.1 图像采样与量化 (4)1.2.2 图像变换 (4)1.2.3 图像滤波 (4)1.2.4 图像增强 (4)1.2.5 图像恢复 (4)1.3 图像类型与存储格式 (4)1.3.1 二值图像 (4)1.3.2 灰度图像 (4)1.3.3 彩色图像 (4)1.3.4 图像存储格式 (5)第2章摄影技术基础 (5)2.1 摄影光学原理 (5)2.1.1 镜头 (5)2.1.2 光圈 (5)2.1.3 快门 (5)2.1.4 感光度 (5)2.2 摄影器材与拍摄技巧 (5)2.2.1 相机类型 (5)2.2.2 镜头选择 (5)2.2.3 摄影附件 (6)2.2.4 拍摄技巧 (6)2.3 摄影构图与审美 (6)2.3.1 构图原则 (6)2.3.2 画面元素 (6)2.3.3 视角与角度 (6)2.3.4 色彩运用 (6)第3章图像增强 (6)3.1 灰度变换增强 (6)3.1.1 灰度变换原理 (6)3.1.2 线性灰度变换 (6)3.1.3 对数灰度变换 (7)3.1.4 幂次灰度变换 (7)3.2 直方图增强 (7)3.2.1 直方图均衡化 (7)3.2.2 直方图规定化 (7)3.3.1 频域滤波原理 (7)3.3.2 低通滤波 (7)3.3.3 高通滤波 (7)3.3.4 带通滤波和带阻滤波 (7)第4章图像复原与重建 (8)4.1 图像退化模型 (8)4.1.1 线性退化模型 (8)4.1.2 非线性退化模型 (8)4.2 噪声分析与去除 (8)4.2.1 噪声类型 (8)4.2.2 去噪方法 (8)4.3 图像重建技术 (9)4.3.1 逆滤波 (9)4.3.2 维纳滤波 (9)4.3.3 稀疏表示与重建 (9)4.3.4 深度学习方法 (9)第5章图像分割与边缘检测 (9)5.1 阈值分割 (9)5.1.1 灰度阈值分割 (10)5.1.2 彩色图像阈值分割 (10)5.2 区域生长与合并 (10)5.2.1 区域生长 (10)5.2.2 区域合并 (10)5.3 边缘检测算法 (10)5.3.1 基于梯度的边缘检测算法 (10)5.3.2 基于二阶导数的边缘检测算法 (10)5.3.3 其他边缘检测算法 (11)第6章形态学处理 (11)6.1 形态学基本运算 (11)6.1.1 膨胀 (11)6.1.2 腐蚀 (11)6.1.3 开运算 (11)6.1.4 闭运算 (11)6.2 形态学应用实例 (11)6.2.1 骨架提取 (11)6.2.2 噪声消除 (11)6.2.3 区域填充 (12)6.3 数学形态学在图像处理中的应用 (12)6.3.1 边缘检测 (12)6.3.2 目标分割 (12)6.3.3 特征提取 (12)6.3.4 图像增强 (12)第7章图像特征提取与描述 (12)7.1.1 颜色直方图 (12)7.1.2 颜色矩 (12)7.1.3 颜色聚合向量 (12)7.2 纹理特征提取 (13)7.2.1 灰度共生矩阵 (13)7.2.2 局部二值模式 (13)7.2.3 Gabor滤波器 (13)7.3 形状特征提取 (13)7.3.1 傅里叶描述符 (13)7.3.2 Hu不变矩 (13)7.3.3 Zernike矩 (13)第8章摄影后期处理技术 (13)8.1 色彩调整与校正 (13)8.2 图像合成与特效 (13)8.3 景深与动态范围优化 (14)第9章数字摄影与计算机视觉 (14)9.1 计算机视觉概述 (14)9.2 三维重建与虚拟现实 (14)9.3 摄影测量与遥感 (14)第10章数字图像处理与摄影技术在实际应用中的案例分析 (14)10.1 数字图像处理在医学领域的应用 (14)10.1.1 X射线成像 (15)10.1.2 CT和MRI成像 (15)10.1.3 超声成像 (15)10.2 摄影技术在广告摄影中的应用 (15)10.2.1 光线控制 (15)10.2.2 摄影构图 (15)10.2.3 后期处理 (15)10.3 数字图像处理与摄影技术在人工智能领域的融合与发展趋势 (15)10.3.1 计算机视觉 (15)10.3.2 智能驾驶 (16)10.3.3 无人机航拍 (16)10.3.4 发展趋势 (16)第1章数字图像处理基础1.1 数字图像处理概述1.1.1 数字图像定义数字图像是由像素点组成的二维离散信号,每个像素点的值代表该点的亮度或颜色信息。
数字图像处理课程教学大纲(理论课程)◆课程编号:130128◆课程英文名称:Digital Image Processing◆课程类型:☐通识通修☐通识通选☐学科必修√学科选修☐跨学科选修☐专业核心√专业选修(学术研究)☐专业选修(就业创业)◆适用年级专业(学科类):四年级电子信息工程专业、通信工程(专业电气信息类)◆先修课程:信号与系统、数字信号处理、线性代数、概率统计◆总学分:2◆总学时:34一、课程简介与教学目标数字图像处理时模式识别,计算机视觉,图像通信,多媒体技术等学科的基础,是一门涉及多领域的交叉学科。
通过本课程的学习,使学习者系统地了解数字图像的基本概念、数字图像形成的原理,掌握数字图像处理的理论基础和技术方法,了解与各种处理技术相关的应用领域。
为学生今后从事数字图像信息处理工作奠定坚实的理论基础。
二、教学方式与方法教学方式:课堂讲授(以多媒体课件为主导)和课下上机实践相结合;教学方法:采用以BTEC(Business Technology Education Council)模式为主,以TBL(task-based learning)任务型模式为辅的两种教学模式相结合的教学方法。
用任务引导学习,更注重学生个性的发展和个人潜能的开发,考核以平时的课业、表现、出勤、学习态度和最后的考试共同衡量学生的学习水平,达到教学目的。
三、教学重点与难点(一)教学重点重点是第4章图像增强、第6章图像复原、第7章图像分割;(二)教学难点难点是第3章图像变换和第6章图像复原。
四、学时分配计划五、教材与教学参考书(一)教材1.《数字图像处理与分析》,刘直芳、王运琼、朱敏,清华大学出版社,2006;2.《数字图像处理(第二版》,R. C. Gonzalez和R. E. Woods(美国),电子工业出版社,2006;(二)教学参考书1.《图像工程(上册):图像处理》,章毓晋,清华大学出版社,2006;2.《图像工程(中册):图像分析》,章毓晋,清华大学出版社,2005;3.《数字图像处理学》,阮秋琦,电子工业出版社,2003;4.《数字图像处理》,陈天华,清华大学出版社,2007;5.《数字图像处理》,姚敏,机械工业出版社,2006;六、课程考核与成绩评定【考核类型】√考试☐考查【考核方式】☐开卷(Open-Book)√闭卷(Close-Book)☐项目报告/论文☐其它:(填写具体考核方式)【成绩评定】平时成绩占(30-40)%,考试成绩占(70-60)%七、课程内容概述第一章绪论(一)教学要求了解数字图像处理的基本概念和特点,研究的目的和意义,数字图像图像处理的主要研究内容,国内外研究现状与发展趋势,主要应用领域。
医学影像处理中的图像分割技术随着数字化和信息化的发展,各行各业都在积极应用计算机技术进行信息处理和分析,医学领域也不例外。
其中医学影像处理就是医学领域应用计算机技术进行信息处理和分析的重要方向之一。
医学影像处理旨在提高医疗领域的诊断效率、减少诊断误差、改善医疗保健质量。
其中影像分割技术是医学影像处理的重要组成部分。
本文将介绍医学影像处理中的图像分割技术。
一、图像分割技术的概述图像分割是指将数字图像分割成若干个互不重叠的子区域,并使得每个子区域内的像素具有相似的特征,以达到对图像信息的提取、分析或处理等目的。
在医学影像处理中,图像分割技术可以将数字影像中的组织、器官、病变等部位分离开来,从而对医学影像进行定量化分析和诊断。
目前,医学影像分割技术已成为医学领域中应用最广泛的技术之一。
二、图像分割的方法和分类图像分割方法可以分为基于阈值分割、基于聚类分割、基于边缘分割和基于区域分割等四类。
1.基于阈值分割基于阈值分割的方法是最简单、最快速的图像分割方法之一。
它将图像中每个像素的像素值与一个预设的阈值进行比较,将像素值大于或小于阈值的像素划分到不同的子区域中。
基于阈值分割的方法通常适用于图像中只包含两种物体的情况。
2.基于聚类分割基于聚类分割的方法是通过将图像中的像素聚为类别,以区分出不同的物体或背景。
该方法首先将图像中的像素按照其像素值进行聚类,然后根据像素值相似度,判断像素是否属于同一类别。
基于聚类分割的算法通常适用于多物体和多层次的图像分割。
3.基于边缘分割基于边缘分割的方法是通过检测图像中的边缘,将像素划分到边缘不同侧的子区域中。
该方法通常使用边缘检测算法,如Sobel、Canny等进行边缘检测。
4.基于区域分割基于区域分割的方法是通过对区域进行最小化或最大化,以得到对图像的有效划分。
该方法通常使用一些叫做分割匹配算法的方法,如meanshift、K-means等进行区域划分。
三、医学影像分割的应用医学影像分割技术的应用非常广泛,可以用于各种医学检查和诊断,如疾病诊断、手术指导、药物研究等。