chap讲义3光波的基本性质
- 格式:ppt
- 大小:910.00 KB
- 文档页数:57
电磁学光的电磁波性质知识点总结光是一种电磁波,具有波粒二象性,既可以被看作是一种波动现象,也可以被看作是一种由光子组成的微粒流动现象。
光的电磁波性质包括波长、频率、光速、偏振等方面。
下面将对这些知识点进行详细总结。
1. 波长波长是指光波传播一个完整周期所需的距离。
波长通常用λ来表示,单位是米。
不同颜色的光波有不同的波长范围,可见光的波长范围大约为400-700纳米。
2. 频率频率是指光波单位时间内的振动次数。
频率通常用ν来表示,单位是赫兹(Hz)。
光波的频率与波长之间存在倒数关系,即ν=c/λ,其中c是光速。
3. 光速光速是光在真空中传播的速度,约为3.00×10^8米/秒。
光速是自然界中最快的速度,能够以每秒300,000公里的速度传播。
4. 偏振偏振是指光波振动方向的特性。
一束自然光是由许多不同方向的光波叠加而成的,它的振动方向是无规律的。
而偏振光则是指光波在特定方向上振动的光。
偏振光在光的传播过程中有着重要的应用,如偏光镜可以用来过滤掉特定方向上的光。
5. 干涉和衍射干涉和衍射是光波的特性现象。
干涉是指两束或多束光波相遇时产生的互相加强或抵消的现象。
干涉实验可以用来验证光是波动性质的重要实验之一。
而衍射是指光通过一个小孔或通过一个物体的边缘时,光波会发生向四周扩散的现象。
6. 折射和反射折射和反射是光与界面相交时产生的现象。
折射是指光由一种介质传播到另一种介质时,由于介质密度的不同,光线发生偏离原来的方向。
反射是指光与界面相交并从原来的介质中返回的现象。
折射和反射在光学中有着重要的应用,如透镜和镜子等。
7. 光的色散色散是指光在穿过不同介质时,由于介质的折射率不同,不同波长的光产生不同程度的折射。
这导致了光的分离,形成七彩虹谱。
色散现象在光学仪器中是很常见的,如光谱仪和棱镜等。
总结:光的电磁波性质涉及了波长、频率、光速、偏振、干涉、衍射、折射、反射和色散等方面知识点。
了解这些性质有助于我们深入理解光的本质以及光在自然界和应用中的作用。
第一章 光的干涉本章主要介绍光波的基本类型和一些传播特性(平面光波在各向同性均匀介质分界面上的反射和折射),这些内容是物理光学的基本内容之一,是学习以后各章节的基础。
重点知识:光波的主要类型及其数学表达式;平面光波在各项同性均匀介质分界面上的反射和折射特性。
1.1 光的波动理论一 光波与电磁波光是电磁波,这是我们所熟悉的结论,或者说,光是电磁辐射频谱的一段。
光波包括红外光、可见光和紫外光。
可见光的波长约在400—760nm 的一段电磁辐射。
光在真空中的传播速度s m c /299792458=。
既然光是电磁波,因此光的所有物理量和物理行为都应遵行电磁理论。
光扰动(光振动) 光波的电场强度E 与磁感应强度B的变化由于光与物质相互作用过程中电场起主要作用,因此将电场强度(电矢量)称作光矢量,本书所讨论的光振动未特别说明均理解为随时间和空间变化的光矢量。
A. 根据光振动在空间的分布,按波面形状可分为平面波、球面波、柱面波等;按频率则可分为单色光、准单色光和多色光。
若没有特别说明,所讨论的对象都按单色光来处理。
B. 光波属于横波,光矢量与光波传播方向垂直。
因此完全描述光波,还必须指明光场中任一点、任一时刻光矢量的方向,因此光波是一种矢量波。
(光的偏振现象就是光的矢量性质的表现)C. 当光的波长λ趋近于零或忽略不计时,以及在折射率不变或者变化缓慢的介质空间中,可以将光波看作是光线。
D. 电磁场的理论分析:场矢量的每个直角分量()t r f ,, 麦克斯韦方程组:tD J H ort E J B B t B E D orE ∂∂+=⨯∇∂∂+=⨯∇=∙∇∂∂-=⨯∇=∙∇=∙∇μεμρερ0反映介质的电磁性质的物质方程:EJ H H B E E D r r σμμμεεε=====00电磁场的能流密度,即Poynting 矢量为:H E S⨯=二 亥姆霍兹方程及其平面波和球面波解利用()()A A A2∇-∙∇⨯∇=⨯∇⨯∇可以推得电磁波在介质(无电荷、无传导电流)所要满足的波动方程:00222222=⎪⎪⎭⎫ ⎝⎛∂∂-∇=⎪⎪⎭⎫ ⎝⎛∂∂-∇E t B t μεμε式中2∇称为拉普拉斯算符,在直角坐标系中的表达为2222222z y x ∂∂+∂∂+∂∂=∇。
光波的基本性质总结一、熟悉下述基本概念:、熟悉下述基本概念:有关本章的概念都是定义问题,注意理解。
振动,波动,标量波与矢量波,纵波与横波,简谐波,波矢,波函数,复振幅,光波的位相及初位相,波面(等相面),平面波,球面波.复振幅光波的位相及初位相波面(等相面)平面波球面波1.波面——任意时刻振动状态相同的点所组成的面。
平面波、球面波3.简谐波——波函数是余弦或正弦函数表达的单色波4.波矢——方向代表波面的法线方向,大小代表单位长度波相位的变化量5.复振幅的空间频率——描述光场在垂直传播方向的平面上复振幅的空间周期性6.相速度——等相位(振幅)面的传播速度7.光的各种偏振态线、圆、椭圆、自然——三、知识点串讲•——麦克斯韦方程组和波动微光的电磁理论基础分方程•光波的数学描述——光波的波函数•平面电磁波的性质•电磁波在媒质界面上的反射和折射维简波的复指数式复光波的数学描述•一维简谐平面波的复指数形式和复振幅([)](exp[),(00k t kz j E t z E ϕω+−=exp()exp()](exp[00t z E t j kz j E ωωϕ−=−+=)p()(j )](exp[)(00ϕ+=kz j E z E•光波的数学描述三维简谐平面波–波面的定义——等位相面–波函数和复振幅exp[()]E r t E k r k t νϕ=⋅−+v v v 0000(,)p[exp[()]x y z j E j k x k y k z k t νϕ=++−+v v v0000()exp[()]exp[2()]x y z E r E j k r E j f x f y f z ϕπϕ=⋅+=+++[200(,,)exp[2()],)exp[2()]x y E x y t E j f x f y k t E x E j f x f y πνϕπϕ=+−+=++00(p[x y y•反射波和折射波性质电磁波在媒质界面上的折射和反射–振幅变化规律;布儒斯特定律和偏振性质;位相变化规律;反射率和透射率。
物理学中的光学与光波性质光学与光波性质引言:光学是物理学的一个重要分支,研究光的传播、反射、折射、干涉、衍射等现象,以及光的性质和相互作用。
光波性质是光学研究的核心内容之一,包括光的波动性、光的传播速度、光的频率和波长等。
本教案将从光的波动性、光的传播速度和光的频率与波长三个方面进行论述。
一、光的波动性1. 光的波动模型光的波动性可以用波动模型来解释,即光是一种电磁波。
通过引入麦克斯韦方程组,可以推导出光波的传播方程,从而解释光的波动性。
2. 光的干涉和衍射光的波动性在干涉和衍射现象中得到了充分的体现。
干涉是指两束或多束光波相互叠加形成明暗交替的条纹,衍射是指光波通过一个小孔或物体边缘时发生弯曲和扩散。
3. 光的偏振性光波在传播过程中会发生偏振现象,即光波的振动方向只在某一平面上。
光的偏振性在光学仪器和光通信中有着重要应用。
二、光的传播速度1. 光速的测定光速是光在真空中的传播速度,是一个物理常数。
历史上,许多科学家通过不同的实验方法来测定光速,其中最著名的是法国物理学家菲涅耳和法拉第的实验。
2. 光速与介质的关系光在不同介质中的传播速度是不同的,这是由于光在介质中与物质相互作用导致的。
根据斯涅尔定律,光在介质中传播时会发生折射现象,从而改变了光的传播速度。
三、光的频率与波长1. 光的频率光的频率是指光波单位时间内振动的次数,用赫兹(Hz)表示。
不同颜色的光波具有不同的频率,频率越高,光波的能量越大。
2. 光的波长光的波长是指光波在传播方向上的一个完整周期的长度,用米(m)表示。
不同颜色的光波具有不同的波长,波长越短,光波的能量越大。
3. 光的频率和波长的关系光的频率和波长之间存在着一定的关系,即频率和波长的乘积等于光速。
这一关系被称为光的频率-波长关系,是光学研究中的重要基础。
结论:光学是研究光的传播、反射、折射、干涉、衍射等现象的学科,光波性质是光学研究的核心内容之一。
本教案从光的波动性、光的传播速度和光的频率与波长三个方面进行了论述,希望能够帮助学生深入理解光学的基本概念和原理。
光波的描述
光波是一种电磁波,具有特定的频率、波长和能量。
以下是光波的一些主要描述:
1.频率:光波的频率是指单位时间内波动的次数,通常以赫兹(Hz)为单位表示。
频率是光波的一个关键参数,因为它决定了光波的能量和颜色。
2.波长:光波的波长是指两个相邻波峰之间的距离,通常以纳米(nm)为单位表示。
波长与频率成反比关系,即波长越长,频率越低;反之亦然。
3.能量:光波的能量是由其频率和振幅决定的。
高频率的光波具有更高的能量,而低频率的光波能量较低。
4.方向性:光波具有特定的传播方向,其方向与电场强度和磁感应强度垂直的方向相同。
5.相干性:当两束或多束光波在空间或时间上存在固定的相位差时,它们之间的相互干涉现象称为相干性。
6.偏振:光波的电场强度在传播方向上具有一定的振动方向,这种特性称为偏振。
偏振是光波的一个重要特性,它决定了光波在传播过程中的行为。
总之,光波是一种具有特定频率、波长和能量的电磁波,它具有特定的传播方向、相干性和偏振特性。
这些特性使得光波在许多领域中具有重要的应用,如通信、照明、成像等。